
ON RANGE SEARCHING IN THE GROUP MODEL AND
COMBINATORIAL DISCREPANCY ∗

KASPER GREEN LARSEN†

Abstract. In this paper we establish an intimate connection between dynamic range searching
in the group model and combinatorial discrepancy. Our result states that, for a broad class of range
searching data structures (including all known upper bounds), it must hold that tutq = Ω(disc2)
where tu is the worst case update time, tq the worst case query time and disc is the combinatorial
discrepancy of the range searching problem in question. This relation immediately implies a whole
range of exceptionally high and near-tight lower bounds for all of the basic range searching problems.
We list a few of them in the following:

• For d-dimensional halfspace range searching, we get a lower bound of tutq = Ω(n1−1/d).
This comes within a lg lgn factor of the best known upper bound.

• For orthogonal range searching, we get a lower bound of tutq = Ω(lgd−1 n).
• For ball range searching, we get a lower bound of tutq = Ω(n1−1/d).

We note that the previous highest lower bound for any explicit problem, due to Pǎtraşcu [STOC’07],
states that tq = Ω((lgn/ lg(lgn + tu))2), which does however hold for a less restrictive class of data
structures.

Our result also has implications for the field of combinatorial discrepancy. Using textbook
range searching solutions, we improve on the best known discrepancy upper bound for axis-aligned
rectangles in all dimensions d ≥ 3.

Key words. range searching, lower bounds, group model, discrepancy, computational geometry

AMS subject classifications. 68P05,68Q17

1. Introduction. Range searching is one of the most fundamental and well-
studied topics in the fields of computational geometry and spatial databases. The
input to a range searching problem consists of a set of n geometric objects, most
typically points in d-dimensional space, and the goal is to preprocess the input into a
data structure, such that given a query range, one can efficiently aggregate information
about the input objects intersecting the query range. Some of the most typical types
of query ranges are axis-aligned rectangles, halfspaces, simplices and balls.

The type of information computed over the input objects intersecting a query
range include for instance, counting the number of such objects, reporting them and
computing the semi-group or group sum of a set of weights assigned to the objects.

In the somewhat related field of combinatorial discrepancy, the focus lies on un-
derstanding set systems. In particular, if (Y,A) is a set system, where Y = {1, . . . , n}
are the elements and A = {A1, . . . ,Am} is a family of subsets of Y , then the mini-
mum discrepancy problem asks to find a 2-coloring χ : Y → {−1,+1} of the elements
in Y , such that each set in A is colored as evenly as possible, i.e. find χ minimizing
disc∞(χ, Y,A), where

disc∞(χ, Y,A) = max
j

∣∣∣∣∣∣
∑
i∈Aj

χ(i)

∣∣∣∣∣∣ .
∗The conference version of this paper appeared at FOCS’11.
†Kasper Green Larsen is supported in part by a Google Europe Fellowship in Search and Infor-

mation Retrieval, and in part by MADALGO – Center for Massive Data Algorithmics, a Center of
the Danish National Research Foundation. MADALGO, Department of Computer Science, Aarhus
University, Denmark, larsen@cs.au.dk

1

The main result of this paper is the establishment of an intimate connection
between dynamic range searching in the group model and combinatorial discrepancy.
Our results have strong implications for both fields. For range searching, we obtain
exceptionally high and near-tight lower bounds for all of the basic problems, and for
combinatorial discrepancy we improve the best upper bounds for one of the most
well-studied problems using textbook range searching solutions.

1.1. Range Searching in the Group Model. In this paper, we focus on
dynamic range searching in the group model. In this setting, each input object to
a range searching problem is assigned a weight from a commutative group, and the
goal is to preprocess an input set into a data structure, consisting of a collection of
group elements and auxiliary data, such that given a query range, one can efficiently
compute the group sum of the weights assigned to the input objects intersecting the
query range. The data structure answers queries by adding and subtracting a subset
of the precomputed group elements (in a group, each element has an inverse element,
thus we have subtraction) to finally yield the answer to the query. In addition to
answering queries, we require that a data structure supports updating the weights of
the input objects.

Since the group model was first introduced there has been two slightly different
definitions of data structures, one a bit less restrictive than the other. The most
restrictive type of data structure is known in the literature as oblivious, while the
other type has not received a formal name. To avoid confusion, we have chosen to
name this other type of data structure weakly oblivious. In the following we review
both definitions, starting with the least restrictive:

Weakly Oblivious Data Structures. A weakly oblivious data structure in the group
model, is a dynamic data structure with no understanding of the particular group in
question, i.e. it can only access and manipulate weights through black-box addition
and subtraction [16]. Thus from the data structure’s point of view, each precomputed
group element is just a linear combination over the weights (and possibly previous
weights) assigned to the input objects. When answering a query, such a data structure
adds and subtracts a subset of these linear combinations to finally yield the linear
combination summing exactly the weights currently assigned to the input objects
intersecting the query range. When given an update request, the data structure may
delete some of the stored group elements, and also create new group elements to
store by adding and subtracting both previously stored group elements and the newly
assigned weight.

The query time of such a data structure is defined as the number of precomputed
group elements used when answering a query, and the update time is defined as the
number of created and deleted group elements on an update request. Thus deciding
which precomputed group elements to add and subtract is considered free of charge.

We note that if we did not require the data structure to have no knowledge of
the group in question, then range searching over any finite group would be trivial:
The data structure could start by storing each element in the group and then encode
the weights assigned to the input points in the auxiliary data. Thus when given a
query, it can compute the answer by examining the auxiliary data and then returning
the corresponding stored group element using no group operations at all. The group
model is thus incomparable to the classic cell-probe model.

Oblivious Data Structures. The second, and slightly more restrictive definition of
data structures, was given by Fredman [15]. Again data structures are considered
to have no knowledge of the group, and queries are still answered by adding and

2

subtracting precomputed linear combinations over the weights assigned to the input
points. The update operations are however more constrained: an update of the
weight assigned to an input object p, is supported simply by re-evaluating every
precomputed group element for which the weight of p occurs with non-zero coefficient
in the corresponding linear combination. Every stored group element thus corresponds
to a linear combination over the currently assigned weights, and may not include
previous weights. We refer to such data structures as oblivious data structures.

We define the query time of an oblivious data structure as the number of group
elements used when answering a query, and the update time is defined as the number
of linear combinations that need to be re-evaluated when updating the weight of an
input object. We note that lower bounds proved for weakly oblivious data structures
also apply to oblivious data structures. For a more formal and mathematical definition
of an oblivious data structure, we refer the reader to Section 2.

Given that data structures in the group model have no understanding of the
particular group in question, the additional freedom allowed for weakly oblivious data
structures might seem artificial. Thus we mention that the main motivating factors
for studying weakly oblivious data structures are that they allow for amortization in
the update algorithm and secondly, previous lower bounds proved for weakly oblivious
data structures were (somewhat) easily extendible to cell probe lower bounds.

1.1.1. Previous Results. In the following, we first review the previous results
on lower bounds for range searching problems in the (semi-group and) group model,
and then present the best known upper bounds for the two most fundamental range
searching problems: orthogonal range searching and halfspace range searching.

In the related semi-group model, researchers have been very successful in proving
lower bounds. In the semi-group model, input objects have been assigned a weight
from a commutative semi-group (elements do not necessarily have inverse elements),
and the goal is to compute the semi-group sum of the weights assigned to input objects
intersecting a query range. Since there are no inverse elements, a data structure cannot
subtract. This gives a very geometric flavor to range searching lower bound proofs: If
a data structure stores a precomputed semi-group element involving the weight of an
input object, then the query algorithm can only use that precomputed group element
when answering query ranges that intersects that input object (its weight cannot be
cancelled out). Thus semi-group lower bound proofs boils down to arguing that it is
hard to “cover” all query ranges with a small collection of subsets of input objects.

Unfortunately we have no such property when allowing subtraction (i.e. the
group model). The difficulties encountered when moving from the semi-group to the
group model have been recognized as major obstacles for decades, and we believe the
following quote by Pǎtraşcu captures the essence of these difficulties:

“Philosophically speaking, the difference in the type of reasoning behind semi-
group lower bounds and group lower bounds is parallel to the difference between
understanding geometry and understanding computation. Since we have been vastly
more successful at the former, it should not come as a surprise that progress outside
the semi-group model has been extremely slow [20].”

In 1982, Fredman [15] gave the definition of an oblivious data structure in the
group model. He then managed to prove an Ω(lg n) lower bound on the average cost
per operation in a sequence of n updates and n queries to the partial sums problem. In
the partial sums problem, the input is an array of n entries, each storing an element
from a commutative group, and the goal is to support weight updates and range
queries of the form: “What is the group sum of the elements in the subarray from

3

index i through j?”.

The next result on group model lower bounds was due to Fredman and Saks [16],
who introduced the celebrated chronogram technique. Using this technique, they
again proved lower bounds for the partial sums problem, stating that any dynamic
data structure must have an average cost per operation of Ω(lg n/ lg lg n) over a se-
quence of n updates and n queries [16]. While the lower bound is weaker than the
earlier lower bound of Fredman, it holds also for weakly oblivious data structures.

In [12] and [11] Chazelle proved lower bounds for offline range searching in the
group model. For the problem of offline halfspace range searching in two-dimensional
space, he showed an Ω(n lg n) lower bound on the total number of group operations
needed [12]. In the offline halfspace range searching problem, the input consists of n
points and n halfspaces, and the goal is to compute for each halfspace the group sum of
the weights assigned to the points intersecting it. In [11] he applied his techniques to
orthogonal range searching as well, and managed to show a lower bound of Ω(n lg lg n)
in the two-dimensional case. Orthogonal range searching is essentially the extension of
partial sums to higher dimensions: Here the input consists of n points in d-dimensional
space and the query ranges are axis-aligned (hyper-) rectangles.

The next big result was due to Pǎtraşcu and Demaine [21], who managed to
show an Ω(lg n) lower bound on the average cost per operation over a sequence of n
updates and n queries to the partial sums problem. While matching the early results
of Fredman, this bound also applies to weakly oblivious data structures.

Finally, Pǎtraşcu [20] proved an Ω(lg n/ lg(lg n+S/n)) lower bound for the query
time of static data structures for two-dimensional orthogonal range searching. Here S
is the space used by the data structure in number of precomputed group sums. Using
an elegant extension of the chronogram technique, this provided the highest lower
bound to date for any dynamic range searching problem in the group model, namely
tq = Ω((lg n/ lg(lg n + tu))2), where tq is the query time and tu is the update time.
This lower bound applies to weakly oblivious data structures for two-dimensional
orthogonal range searching.

Given that it has now been three decades since the model was defined, we believe
it is fair to say that progress indeed has been extremely slow outside the semi-group
model, with the highest lower bound to date not exceeding Ω((lg n/ lg lg n)2) per
operation.

On the upper bound side, there is no separation between what has been achieved
for oblivious and weakly oblivious data structures. Thus, all the bounds we mention
in the following hold for both types of data structures.

The best results for d-dimensional orthogonal range searching in the group model
is achieved through the classic data structures known as range trees [8]. These data
structures provide a solution with tq = tu = O(lgd n). From the above lower bounds,
these data structures are seen to be optimal in 1-d, and to have a query time within a
lgO(1) lg n factor from optimal in 2-d. Unfortunately it is not even known from a lower
bound perspective whether the query and update time must grow with dimension.

For halfspace range searching, one can use Chan’s latest results on partition trees
to give data structures with tu = O(lg lg n) and tq = O(n1−1/d) [10], and with some
extra work, one can extend the results in [19] to achieve a tradeoff between query

time and update time of tq = Õ(n1−1/d/t
1/d
u), for any tu = Ω(lg n). Here Õ(·) hides

polylogarithmic factors. Thus the highest known lower bound for any explicit problem
is exponentially far from the best known upper for halfspace range searching.

4

1.2. Combinatorial Discrepancy. The minimum discrepancy problem men-
tioned earlier is the central problem in combinatorial discrepancy. Understanding the
best achievable colorings for various families of set systems has been an active line of
research for decades, and the results obtained have found numerous applications in
other areas of computer science, see for instance the seminal books of Matoušek [18]
and Chazelle [13] for introductions to discrepancy theory, and for applications in
complexity lower bounds, computational geometry, pseudo-randomness and commu-
nication complexity.

The results most important to our work are those related to families of set systems
with a range searching flavor to them. More formally, if we let X be a universe
of geometric objects (think of X as all possible input geometric objects to a range
searching problem, for instance all points d-dimensional space), P ⊂ X a set of n
geometric input objects {p1, . . . , pn} (a concrete input to a range searching problem)
and R a collection of query ranges, where each query range R ∈ R is a subset of X
(for every query to the range searching problem, R contains a set consisting of those
elements in X that intersects the query range), then we define the induced set system
(P,AP,R), where AP,R = {R ∩ P : R ∈ R} is the family of sets containing for each
R ∈ R, the set consisting of all input objects that are contained in R (AP,R is also
known in the literature as the trace of R on P). With this definition, we define the
`∞-discrepancy disc∞(P,R) as

disc∞(P,R) = min
χ:P→{−1,+1}

disc∞(χ, P,AP,R)

= min
χ:P→{−1,+1}

max
Aj∈AP,R

∣∣∣∣∣∣
∑
pi∈Aj

χ(pi)

∣∣∣∣∣∣ ,
thus the `∞-discrepancy measures the best achievable 2-coloring of the induced set
system of P and R. A similar measure, called the `2-discrepancy disc2(P,R), also
plays a key role in our results

disc2(P,R) = min
χ:P→{−1,+1}

√√√√√ 1

|AP,R|
∑

Aj∈AP,R

 ∑
pi∈Aj

χ(pi)

2

.

Observe that we always have disc2(P,R) ≤ disc∞(P,R). Finally, we define the num-
ber of distinct query ranges of an induced set system as |AP,R|, that is, as the number
of distinct sets (AP,R is not a multiset).

To make absolutely clear the connection to range searching, consider as an exam-
ple the d-dimensional orthogonal range searching problem. Here X is simply Rd, i.e.
the set of all d-dimensional points. The family R contains all axis-aligned rectangles
in Rd (each axis-aligned rectangle is a subset of Rd). Finally, we see that for any
induced set system (P,AP,R), where P is a set of n input points in X, the number of
distinct query ranges is bounded by O(n2d) since each axis-aligned rectangle defining
a range in R can be shrunk to have one point from P on each of its 2d sides without
changing the set of input points contained in the query range.

1.2.1. Previous Results. In the following, we review the discrepancy upper
and lower bounds related to the most fundamental types of range searching. We
note that a lower bound on the discrepancy of a range searching problem is a proof
that there exists a subset P ⊂ X of n input objects to the range searching problem,

5

for which disc∞(P,R) or disc2(P,R) is bounded from below, while upper bounds on
the discrepancy imply that disc∞(P,R) or disc2(P,R) is bounded from above for
all subsets P ⊂ X of n input objects. Since disc2(P,R) ≤ disc∞(P,R) we also
get that lower bounds on the `2-discrepancy translates directly to lower bounds on
the `∞-discrepancy, and similarly, upper bounds for the `∞-discrepancy translates
to upper bounds for the `2-discrepancy. Hence when the upper bounds or lower
bounds achieved for the two measures match, we only state the strongest result in the
following.

The discrepancy of halfspace range searching is particularly well understood. If
we let Hd denote the set of all halfspaces in d-dimensional space (where each halfspace
H ∈ Hd is a subset of Rd), then Alexander [1] proved that there exists a set P of n
points in Rd, such that disc2(P,Hd) = Ω(n1/2−1/2d). A matching upper bound was
subsequently established by Matoušek [17], even for the `∞-discrepancy.

For orthogonal range searching (or axis-aligned rectangles), the picture is more
muddy. On the lower bound side, Beck [4] proved that there exists a set P of n
points in R2, such that disc∞(P,B2) = Ω(lg n), where we use Bd to denote the family
containing all axis-aligned rectangles in Rd. However, in dimensions d ≥ 3, the
highest achieved lower bounds achieved are only disc∞(P,Bd) = Ω(lg(d−1)/2+µ(d) n),
where µ(d) > 0 is some small but strictly positive function of d [9]. For the `2-

discrepancy, the highest lower bound is disc2(P,Bd) = Ω(lg(d−1)/2 n) [22, 11]. On the

upper bound side, Srinivasan [24] proved that disc∞(P,B2) = O(lg5/2 n) for any set P
of n points in R2, and for dimensions d ≥ 3, the best upper bound is disc∞(P,Bd) =

O(lgd+1/2 n
√

lg lg n) [18].
If the ranges are balls with arbitrary radius, then an `2-discrepancy lower bound

of Ω(n1/2−1/2d) can be established from the results on halfspace ranges [18] (a large
enough ball looks locally like a halfspace). A matching lower bound for the `∞-
discrepancy was proved in the two-dimensional case, even when all balls (discs) have
a fixed radius [5].

For line range searching, Chazelle and Lvov proved that there exists a set P of n
points in R2, such that disc∞(P,L2) = Ω(n1/6) [14]. Here L2 denotes the set of all
lines in two-dimensional space.

Another interesting lower bound is related to arithmetic progressions. Let (Y,A)
be the set system where Y = {0, . . . , n − 1} and A contains every arithmetic pro-
gression on Y , i.e. for every pair of integers i, d satisfying 0 ≤ i, d < n, A con-
tains the set Ai,d = {i + jd | j ∈ {0, . . . , b(n − i − 1)/dc}}. Then Roth proved
disc2(Y,A) = Ω(n1/4) [23].

Finally, we conclude by mentioning some additional discrepancy upper bounds
that are related to the later proofs in this paper. If (Y,A) is a set system in which
everyAi ∈ A has cardinality at most t, then Banaszczyk [2] proved that disc∞(Y,A) =
O(
√
t lg |A|) and disc2(Y,A) = O(

√
t). The best bound for the `∞-version of this

problem, that is independent of |A| and |Y |, is due to Beck and Fiala [6] and it
states that disc∞(Y,A) = O(t). We note that there exist results [7] improving on the
additive constants in the bound of Beck and Fiala. While many discrepancy upper
bounds are purely existential, we mention that Bansal [3] recently gave constructive
discrepancy minimization algorithms for several central problems.

1.3. Our Results. The main result of this paper is the establishment of a theo-
rem relating the update and query time of dynamic range searching data structures in
the group model and the combinatorial discrepancy of the corresponding range search-
ing problem. Before presenting our theorem, we need one final definition regarding

6

oblivious data structures.
Recall that an oblivious data structure preprocesses an input set of n geometric

objects into a collection of group elements, each corresponding to a linear combina-
tion over the weights assigned to the input objects. Queries are answered by again
computing linear combinations over the precomputed group elements, and updates
are supported by re-evaluating every linear combination involving the weight of the
updated point. We define the multiplicity of an oblivious data structure as the largest
absolute value occurring as a coefficient in any of these linear combinations. We note
that every known data structure uses only coefficients amongst {−1, 0,+1}, thus all
known data structures have multiplicity 1, but there is nothing inherent in the group
model that prevents larger coefficients. When giving our more formal definition of
oblivious data structures in Section 2, we also give a more precise definition of mul-
tiplicity. We are finally ready to present the main result of this paper:

Theorem 1.1. Let R be the query ranges of a range searching problem, where
each set in R is a subset of a universe X. Furthermore, let P ⊂ X be a set of n geo-
metric input objects to the range searching problem. Then any oblivious data structure
for the range searching problem must satisfy tutq = Ω(disc∞(P,R)2/∆4 lgm) on the
input set P . Here ∆ denotes the multiplicity of the data structure, tu its worst case
update time, tq its worst case query time and m the number of distinct query ranges
in (P,AP,R), i.e. m = |AP,R|. For the `2-discrepancy, any oblivious data structure
for the range searching problem must satisfy tutq = Ω(disc2(P,R)2/∆4) on the input
set P .

Thus for constant multiplicity oblivious data structures (which includes all known
upper bounds), we get extremely high lower bounds compared to previous results. We
mention these lower bounds in the following (for constant multiplicity), and note that
the number of distinct query ranges for all of the considered problems is polynomial
in the input size (i.e. lgm = Θ(lg n)):

For halfspace range searching in d-dimensional space we get a lower bound of

tutq = Ω(n1−1/d),

simply by plugging in the `2-discrepancy lower bound of Ω(n1/2−1/2d). This comes
within a lg lg n factor of Chan’s upper bound, and is exponentially larger than the
highest previous lower bound for any explicit problem of tq = Ω((lg n/ lg(lg n+ tu))2).
We note that halfspace range searching is a special case of simplex range searching,
this bound therefore also applies to simplex range searching.

For orthogonal range searching, we do not improve on the best bounds in the
two-dimensional case, but for d-dimensional orthogonal range searching we get a lower
bound of

tutq = Ω(lgd−1 n),

from the `2-discrepancy lower bound Ω(lg(d−1)/2 n). By a standard reduction, this
bound also applies to the well-studied problem of d-dimensional rectangle stabbing
(range searching where the input set contains axis-aligned rectangles, and the queries
are points).

For d-dimensional ball range searching, our lower bound matches that for half-
space range searching, and in the two-dimensional case, we get a lower bound of
tutq = Ω(n1/2/ lg n) even when all query balls (discs) have the same fixed radius.

For line range searching, that is, range searching where the input is a set of n
two-dimensional points and a query ask to sum the weights of all points intersecting
a query line, we get a lower bound of tutq = Ω(n1/3/ lg n).

7

Finally, for the arithmetic progression range searching problem, i.e. the range
searching problem where the input is a set of n ordered points p0, . . . , pn−1 and a query
asks to sum the weights of the points in an arithmetic progression (see Section 1.2),
we get a lower bound of tutq = Ω(n1/2).

For more lower bounds we refer the reader to the books by Matoušek [18] and
Chazelle [13].

Our result also has implications for the field of combinatorial discrepancy. By
contraposition of Theorem 1.1, we get a discrepancy upper bound for d-dimensional
orthogonal range searching (axis-aligned rectangles) of disc∞(P,Bd) = O(lgd+1/2 n)
for any set P of n points in Rd. This upper bound follows directly from the textbook
range tree data structures with tu = tq = O(lgd n). While the improvement over
the best previous result is only a

√
lg lg n factor in dimensions d ≥ 3, we still find

this a beautiful example of the interplay between data structures and combinatorial
discrepancy.

Finally, we mention that our proof of Theorem 1.1 relies on a, we believe, novel
application of discrepancy upper bound techniques.

2. Preliminaries. In the following we define range searching, oblivious data
structures and discrepancy in terms of matrices.

Incidence Matrices. Let (P,AP,R) be the induced set system of a set P of n
geometric objects {p1, . . . , pn} and a family R of query ranges. Then we define the
incidence matrix CP,R ∈ {0, 1}|AP,R|×n of R and P as the {0, 1}-matrix having a
column for each input object in P and a row for each set in the induced set system
AP,R = {A1, . . . ,A|AP,R|}. The i’th row of CP,R has a 1 in the j’th column if pj ∈ Ai
and a 0 otherwise.

Oblivious Data Structures. Consider a range searching problem where the query
ranges R are subsets of a universe X. Then an oblivious data structure for the range
searching problem is a factorization of each incidence matrix CP,R, where P ⊂ X
is a set of n geometric input objects, into two matrices QP,R and DP,R such that
QP,R ·DP,R = CP,R [15].

The data matrix DP,R ∈ ZS×n represents the precomputed group sums stored
by the data structure on input P . Each of the S rows is interpreted as a linear
combination over the weights assigned to the n input objects, and we think of the
data structure as maintaining the corresponding group sums when given an assignment
of weights to the input objects.

The query matrix QP,R ∈ Z|AP,R|×S specifies the query algorithm. It has one row
for each set Ai in the induced set system AP,R, and we interpret this row as a linear
combination over the precomputed group sums, denoting which elements to add and
subtract when answering a query range intersecting precisely the input objects in Ai.

We note that with the above interpretations of the data and query matrix, we get
that QP,R · DP,R = CP,R ensures that when given a query range R ∈ R, the query
algorithm adds and subtracts a subset of the precomputed linear combinations to fi-
nally yield the linear combination summing precisely the weights assigned to the input
objects intersecting R. For a concrete example of what the matrices corresponding to
a data structure might look like, we refer the reader to Section 4.1 where we review
the data structure solution for orthogonal range searching.

The worst case query time of an oblivious data structure on an input set P , is
defined as the maximum number of non-zero entries in a row of QP,R. The worst
case update time on an input set P is similarly defined as the maximum number of
non-zero entries in a column of DP,R. The space of the data structure is the number

8

of columns in QP,R (equivalently number of rows in DP,R). Finally, we define the
multiplicity as the largest absolute value of an entry in DP,R and QP,R.

Combinatorial Discrepancy and Matrices. The definitions of discrepancy can also
be stated in terms of matrices. Let P be a set of n geometric input objects and R a
family of query ranges. Then

disc∞(P,R) = min
x∈{−1,+1}n

‖CP,R · x‖∞

disc2(P,R) = min
x∈{−1,+1}n

1√
m
‖CP,R · x‖2

are easily seen to be the exact same definition of disc∞(P,R) and disc2(P,R) as the
ones presented in the introduction. Here m denotes the number of rows in CP,R, ‖·‖∞
gives the `∞-norm of a vector (largest absolute value amongst the coordinates) and
‖ · ‖2 gives the `2-norm of a vector.

3. Establishing the Connection. In this section we prove our main result,
Theorem 1.1. Let R be a collection of query ranges, all subsets of a universe X. Also
let P ⊂ X be a set of n geometric input objects. Our goal is to show that CP,R
cannot be factored into two matrices QP,R and DP,R, unless QP,R has a row with
many non-zero entries, or DP,R has a column with many non-zero entries, i.e. either
the query or update time of an oblivious data structure for the input set P must be
high.

The key idea for proving this, is to multiply a factorization by a cleverly chosen
vector. More formally, if QP,R · DP,R = CP,R is a factorization provided by the
oblivious data structure, then we find a vector x ∈ Rn such that QP,R ·DP,R · x has
small coefficients if QP,R and DP,R are too sparse, and at the same time CP,R · x
has large coefficients. Since QP,R · DP,R · x = CP,R · x this gives the desired lower
bound. The trick in finding a suitable vector x is to consider vectors in {−1,+1}n.
Making this restriction immediately allows us to use combinatorial discrepancy lower
bounds to argue that CP,R · x has large coefficients, and at the same time we can
use combinatorial discrepancy upper bound techniques to exploit the sparse rows and
columns of QP,R and DP,R.

Proof of Theorem 1.1. Let R be the query ranges of the range searching problem
and P a set of n geometric input objects. Furthermore, let m denote the number of
distinct query ranges in (P,AP,R), and assume that an oblivious data structure for
the input set P exists, having worst case update time tu, worst case query time tq
and multiplicity ∆.

Let QP,R ·DP,R = CP,R denote the corresponding factorization provided by the
oblivious data structure. The first step of the proof is to argue that there exists a
vector x ∈ {−1,+1}n for which ‖QP,R ·DP,R · x‖∞ (or ‖QP,R ·DP,R · x‖2) is small.
The existence of this vector is guaranteed by the following theorem:

Theorem 3.1. Let Q ∈ Rm×p and D ∈ Rp×n be two matrices of reals, such that
every row of Q has at most tQ non-zero entries, and every column of D has at most tD
non-zero entries. Finally, let ∆ be an upper bound on the absolute value of any entry
in Q and D. Then, for the `∞-norm, there exists a vector x ∈ {−1,+1}n, such that
‖QDx‖∞ = O(∆2

√
tDtQ lgm). For the `2-norm, there exists a vector x ∈ {−1,+1}n,

such that ‖QDx‖2 = O(∆2√tDtQm).
Before proving the theorem, we show that it implies Theorem 1.1. Recall that all

coefficients in QP,R and DP,R are bounded in absolute value by the multiplicity ∆

9

of the oblivious data structure. At the same time, each row of QP,R has at most tq
non-zero entries, and each column of DP,R has at most tu non-zero entries. Finally,
since (P,AP,R) has at most m distinct query ranges, we get that QP,R has at most
m rows. Thus by Theorem 3.1, there must exist a vector x∗ ∈ {−1,+1}n such
that ‖QP,R · DP,R · x∗‖∞ = O(∆2

√
tutq lgm). Since x∗ ∈ {−1,+1}n, we also have

‖CP,R · x∗‖∞ ≥ disc∞(P,R). But QP,R ·DP,R · x∗ = CP,R · x∗, thus it must hold that
∆2
√
tutq lgm = Ω(disc∞(P,R)). For the `2-norm, we similarly get that there exists

a vector x∗ ∈ {−1,+1}n such that ‖QP,R ·DP,R ·x∗‖2 = O(∆2√tutqm). At the same
time, we have by the definition of `2-discrepancy that ‖CP,R ·x∗‖2 ≥

√
m ·disc2(P,R)

which completes the proof of Theorem 1.1.
What remains is to prove Theorem 3.1.

3.1. Proof of Theorem 3.1. This section is devoted to proving our main tech-
nical result, Theorem 3.1. Throughout the section, we let Q ∈ Rm×p and D ∈ Rp×n
be matrices satisfying the constraints of Theorem 3.1. The main tool in our proof
is a result in discrepancy theory due to Banaszczyk [2]. We first introduce some
terminology and then present his result.

Let Bp2 denote the closed Euclidean unit ball in Rp. Let γp denote the (standard)

p-dimensional Gaussian measure on Rp with density (2π)−p/2e−‖x‖
2
2/2. Then the

following holds
Theorem 3.2 (Banaszczyk [2]). There is a numerical constant c > 0 with the

following property. Let K be a convex body in Rp with γp(K) ≥ 1/2. Then to each
sequence u1, . . . , un ∈ cBp2 there correspond signs ε1, . . . , εn ∈ {−1,+1} such that
ε1u1 + · · ·+ εnun ∈ K.

To prove Theorem 3.1, we seek a column vector x ∈ {−1,+1}n that somehow
simultaneously exploits the sparse rows of Q and the sparse columns of D. We argue
for the existence of this vector by carefully defining a convex body capturing the
sparsity of Q, and a sequence of vectors in cBp2 capturing the sparsity of D. The
application of Theorem 3.2 on this choice of convex body and vectors in cBp2 then
yields the desired vector x. We define two different convex bodies for the `∞ and the
`2 bounds.

Convex Body for the `∞-norm. For the `∞-result, we define the following convex
body Kα in Rp:

Kα := {y = (y1, . . . , yp) ∈ Rp | |〈Q1, y〉| ≤ α ∧ · · · ∧ |〈Qm, y〉| ≤ α},

where Qi denotes the i’th row vector of Q, 〈Qi, y〉 =
∑p
j=1Qi,jyj is the standard

inner product, and α ≥ 0 is a parameter to be fixed later. This body is clearly convex
since each constraint |〈Qi, y〉| ≤ α corresponds to the intersection of two halfspaces.
Therefore Kα is the intersection of 2m halfspaces, i.e. Kα is convex.

In understanding the choice of convex body Kα, think of each coordinate in Rp as
representing a coordinate of Dx. In this setting, each of the constraints |〈Qi, y〉| ≤ α
intuitively forces the coordinates ofQDx to be small. Our goal is to apply Theorem 3.2
on Kα, thus we find a value of α such that γp(Kα) ≥ 1/2:

Lemma 3.3. If α = Ω(∆
√
tQ lgm), then γp(Kα) ≥ 1/2.

Proof. Recall that γp(Kα) denotes the probability that a random vector z ∈
Rp, with each coordinate distributed independently as a Gaussian with mean 0 and
variance 1, lies within Kα. In computing Pr[z ∈ Kα], we first bound Pr[|〈Qi, z〉| > α]
for a fixed i: Since each row Qi has at most tQ non-zero entries, we get that 〈Qi, z〉
is a linear combination of at most tQ independent Gaussians, each with mean 0 and

10

variance 1. Furthermore, each coefficient in the linear combination is bounded by ∆
in absolute value, thus 〈Qi, z〉 is itself Gaussian with mean 0 and variance σ2

i ≤ tQ∆2.
By standard tail bounds for Gaussian distributions, we get that Pr[|〈Qi, z〉| > α] =

e−O(α2/σ2
i). Setting α = Ω(∆

√
tQ lgm) = Ω(σi

√
lgm) this is less than 1/m2. By a

union bound over all m constraints in the definition of Kα, we conclude that Pr[z /∈
Kα] < 1/m, i.e. γp(Kα) > 1− 1/m > 1/2.

Convex Body for the `2-norm. For the `2 result, we define the convex body:

Cα := {y ∈ Rp | ‖Qy‖2 ≤ α}.

To see that this body is convex, let y1, y2 ∈ Cα. We must show that ty1+(1−t)y2 ∈ Cα
for any t ∈ [0, 1]. But ‖Q(ty1 + (1− t)y2)‖2 = ‖tQy1 + (1− t)Qy2‖2 ≤ t‖Qy1‖2 + (1−
t)‖Qy2‖2 ≤ α and hence ty1 + (1 − t)y2 ∈ Cα. Next we find a value of α such that
γp(Cα) ≥ 1/2:

Lemma 3.4. If α = Ω(∆
√
mtQ), then γp(Cα) ≥ 1/2.

Proof. Again let z ∈ Rp be a random vector with each coordinate distributed
independently as a Gaussian with mean 0 and variance 1. We want to bound Pr[z ∈
Cα]. For this, we first prove a bound on E[〈Qi, z〉2]. From the arguments above, we
have that 〈Qi, z〉 is a Gaussian with mean 0 and variance σ2

i ≤ tQ∆2. It follows that
E[〈Qi, z〉2] ≤ tQ∆2. By linearity of expectation, we have

E

[∑
i

〈Qi, z〉2
]
≤ mtQ∆2.

From Markov’s inequality it follows that
∑
i〈Qi, z〉2 ≤ 2mtQ∆2 with probability at

least 1/2. This implies ‖Qz‖2 ≤
√

2mtQ∆ with probability at least 1/2, which
completes the proof.

Sequence of Vectors. We are now ready to define a sequence of vectors in cBp2
and apply Theorem 3.2. Letting Dj denote the j’th column vector of D, we define
the vectors d1, . . . , dn, where dj = c/(∆

√
tD) · Dj , and c > 0 is the constant in

Theorem 3.2. Since each column of D has at most tD non-zero entries, each bounded
by ∆ in absolute value, we get that ‖Dj‖2 ≤

√
tD∆ for all j, and thus d1, . . . , dn ∈

cBp2 .
For the `∞ result, let α = Θ(∆

√
tQ lgm). We now get by Theorem 3.2, that there

exist signs ε1, . . . , εn ∈ {−1,+1} such that
∑n
j=1 εjdj ∈ Kα. Now define the vector

x = (ε1, . . . , εn). We claim that ‖QDx‖∞ = O(∆2
√
tDtQ lgm). To see this, note that

Dx =
∑n
j=1 εjDj = c−1∆

√
tD
∑n
j=1 εjdj . Now consider the i’th coordinate of QDx.

This coordinate is given by the inner product 〈Qi, Dx〉 = c−1∆
√
tD〈Qi,

∑n
j=1 εjdj〉.

But since
∑n
j=1 εjdj ∈ Kα, this is by definition of Kα bounded in absolute value by

c−1∆
√
tDα = O(∆2

√
tDtQ lgm).

For the `2 result, let α = Θ(∆
√
mtQ). We again get from Theorem 3.2, that there

exist signs ε1, . . . , εn ∈ {−1,+1} such that
∑n
j=1 εjdj ∈ Cα. By similar arguments as

above, it follows that the vector x = (ε1, . . . , εn) satisfies ‖QDx‖2 = O(∆2√tDtQm).
This concludes the proof of Theorem 3.1.

4. Implications. Having established Theorem 1.1, we now get to all of the
immediate implications. To not waste space on repeating ourselves, we refer the
reader to the list of results presented in Section 1.3 for an overview of the range
searching lower bounds achieved (they follow directly by plugging in the discrepancy
lower bounds from Section 1.2 in Theorem 1.1). Thus for the remainder of the section,

11

we present our combinatorial discrepancy upper bound for orthogonal range searching
(axis-aligned rectangles).

4.1. Combinatorial Discrepancy Upper Bounds. In this section we review
the classic data structure solution to orthogonal range searching [8]. We give a rather
thorough review to also make clear the translation of a data structure into matrix
factorization. We finally summarize the implications of combining the solution with
Theorem 1.1.

1-d Orthogonal Range Searching. We set out in the one-dimensional case. Here
the input to orthogonal range searching is a set P of n points on the real line, and
the goal is to support computing the group sum of the weights assigned to the input
points intersecting a query interval. This problem clearly includes the partial sums
problem as a special case.

The solution to this problem, is to construct a complete binary tree T over the
input points ordered by their coordinates. Each leaf of T is associated to one input
point, and each internal node v is associated to the range of points associated to the
leaves of the subtree rooted at v. The data structure stores one group sum for each
node in T . The group sum stored for a node v is simply the sum of the weights
assigned to the input points associated to v.

Let [x1, x2] be a range query. To answer the range query, we first find the two
leaves v1 and v2 containing the successor of x1 and the predecessor of x2, respectively.
Let u denote the lowest common ancestor of v1 and v2. We now traverse the path
from the left child of u to v1, and for each node w that is a right child of a node on
this path, but not itself on the path, we add up the group sum stored at w. We then
do the same with v1 replaced by v2 and the roles of left and right reversed, and finally
we add up the group sums stored at v1 and v2. This is easily seen to sum precisely
the weights of the points with a coordinate in the range [x1, x2].

Since the height of T is O(lg n), we get that the data structure answers queries
in tq = O(lg n) group operations. The weight of each input point p is associated
to one node at each level of the tree, namely the ancestor nodes of the leaf that is
associated to p. Thus the update time is also tu = O(lg n), since an update consists
of re-evaluating the group sums stored in these nodes.

For completeness, we also sketch what the matrices QP,R and DP,R look like for
this data structure. DP,R has one row for each node in T and one column for each
input point. The row corresponding to a node v has a 1 in the column corresponding
to a point p if v is associated to p, and a 0 otherwise. QP,R has a column for each node
in T (i.e. for each stored group sum). Furthermore, if p1, . . . , pn denotes the input
points ordered by their coordinate, then QP,R has one row for every pair of points pi
and pj , (i ≤ j). For the row corresponding to a pair pi and pj , let [xi, xj] denote a
query range containing precisely the coordinates of the points pi, . . . , pj . Then that
row has a 1 in each column corresponding to a node for which the stored group sum
is added when executing the above query algorithm on [xi, xj], and a 0 elsewhere.

Higher Dimensions. The above data structure is easily extended to higher di-
mensions: Construct the one-dimensional layout on the last coordinate of the input
points, i.e. construct a complete binary tree over the sorted list of points. Each node
in the tree no longer maintains the group sum of the weights assigned to points in the
subtree, but instead stores a (d− 1)-dimensional data structure on the projection of
the points in the subtree onto the first (d− 1) dimensions.

A query [x1, x2]× · · · × [x2d−1, x2d] is answered analogous to the one-dimensional
approach, except that whenever the one-dimensional data structure adds up the group

12

sum stored in a node, we instead project the query range onto the first d−1 dimensions,
and ask the resulting query to the (d − 1)-dimensional data structure stored in that
node. Since each queried (d − 1)-dimensional data structure is implemented only on
points with a d’th coordinate inside [x2d−1, x2d], this correctly computes the answer
to the query range.

It is easily seen that the weight of a point is included in O(lgd n) stored group
sums, thus the update time of this data structure is tu = O(lgd n). The query algo-
rithm similarly adds up tq = O(lgd n) stored group sums. Finally, we observe that
this data structure has multiplicity 1 since the corresponding matrix factorizations use
only coefficients amongst {0, 1}. By contraposition of Theorem 1.1 we thus conclude

Corollary 4.1. For any set P of n points in Rd, it holds that disc(P,Bd) =

O(lgd+1/2 n), where Bd denotes the set of all axis-aligned rectangles in Rd.

5. Conclusion. In this paper we established a powerful theorem relating the
update and query time of dynamic range searching data structures in the group model
and the combinatorial discrepancy of the corresponding range searching problem. Our
result immediately implied a whole range of data structure lower bounds, and also an
improved upper bound for the discrepancy of axis-aligned rectangles in dimensions
d ≥ 3.

We believe our results are a big leap in the right direction, but there are still a
number of open problems to consider. Most importantly, we would like to remove the
dependence on the multiplicity of data structures. Proving lower bounds independent
of the multiplicity seems closely related to matrix rigidity and depth-2 linear circuits
computing linear operators, and thus might turn out to be very challenging. A break-
through in this direction might also help towards establishing higher lower bounds
for static range searching problems. On the other hand, it would also be interesting
to find an example of a range searching problem for which high multiplicity helps. If
possible, this seems to involve finding a completely new approach to designing data
structures, and might inspire improved solutions to many natural problems.

Extending the achieved lower bounds to weakly oblivious data structures would
also be a major result, especially if this could be done independent of the multiplicity.
Previous such lower bounds could even be extended to the cell-probe model.

The lower bounds obtained from our technique are all for the product of the
update time and query time. Finding a technique that can prove different types of
tradeoffs between the two would also be extremely interesting. In particular, such a
technique might be used to prove a lower bound for halfspace range searching that
(essentially) matches the entire tradeoff curve of [19].

Finally, we mention that there is some hope of removing the lgm factor in the
`∞-discrepancy results. More specifically, the famous Komlós conjecture states that
any sequence of unit length vectors can be assigned signs such that the signed sum of
the vectors have all coordinates bounded by a constant. Except for the linear trans-
formation with Q, this is exactly the property we used to derive our `∞-discrepancy
bounds. Thus it seems likely that a proof of Komlós’ conjecture could be extended to
our case and thus remove the lgm factor.

Acknowledgment. The author wishes to thank Timothy M. Chan, Peter Bro
Miltersen, Jeff M. Phillips and Elad Verbin for much useful discussion on the con-
tents and writing of this paper. The author also wishes to thank an anonymous
SICOMP reviewer for pointing out that many of the lower bounds achieved through
`∞-discrepancy could be improved by a lg n-factor using `2-discrepancy results.

13

REFERENCES

[1] R. Alexander, Geometric methods in the study of irregularities of distribution, Combinatorica,
10 (1990), pp. 115–136.

[2] Wojciech Banaszczyk, Balancing vectors and gaussian measures of n-dimensional convex
bodies, Random Structures & Algorithms, 12 (1998), pp. 351–360.

[3] Nikhil Bansal, Constructive algorithms for discrepancy minimization, in Proc. 51st IEEE
Symposium on Foundations of Computer Science, 2010, pp. 3–10.

[4] J. Beck, Balanced two-colorings of finite sets in the square I, Combinatorica, 1 (1981), pp. 327–
335.

[5] , On irregularities of point sets in the unit square, in Combinatorics. Proc. 7th Hungarian
colloquium, 1988, pp. 63–74.

[6] J. Beck and T. Fiala, Integer-making theorems, Discrete Applied Mathematics, 3 (1981),
pp. 1–8.

[7] D. Bednarchak and M. Helm, A note on the Beck-Fiala theorem, Combinatorica, 17 (1997),
pp. 147–149.

[8] Jon Louis Bentley, Multidimensional divide-and-conquer, Communications of the ACM, 23
(1980), pp. 214–229.

[9] D. Bilyk, M. T. Lacey, and A. Vagharshakyan, On the small ball inequality in all dimen-
sions, Journal of Functional Analysis, 254 (2008), pp. 2470–2502.

[10] Timothy M. Chan, Optimal partition trees, in Proc. 26th ACM Symposium on Computational
Geometry, 2010, pp. 1–10.

[11] Bernard Chazelle, Lower bounds for off-line range searching, in Proc. 27th ACM Symposium
on Theory of Computation, 1995, pp. 733–740.

[12] , A spectral approach to lower bounds with applications to geometric searching, SIAM
Journal on Computing, 27 (1998), pp. 545–556.

[13] , The Discrepancy Method: Randomness and Complexity, Cambridge University Press,
2000.

[14] Bernard Chazelle and Alexey Lvov, A trace bound for the hereditary discrepancy, in Proc.
16th ACM Symposium on Computational Geometry, 2000, pp. 64–69.

[15] Michael L. Fredman, The complexity of maintaining an array and computing its partial sums,
Journal of the ACM, 29 (1982), pp. 250–260.

[16] M. L. Fredman and M. Saks, The cell probe complexity of dynamic data structures, in Proc
21st ACM Symposium on Theory of Computation, 1989, pp. 345–354.

[17] J. Matoušek, Tight upper bounds for the discrepancy of half-spaces, Discrete and Computa-
tional Geometry, 13 (1995), pp. 593–601.

[18] , Geometric Discrepancy, Springer, 1999.
[19] Jiŕı Matoušek, Efficient partition trees, Discrete and Computational Geometry, 8 (1992),

pp. 315–334.
[20] Mihai Pǎtraşcu, Lower bounds for 2-dimensional range counting, in Proc. 39th ACM Sym-

posium on Theory of Computation, 2007, pp. 40–46.
[21] Mihai Pǎtraşcu and Erik D. Demaine, Logarithmic lower bounds in the cell-probe model,

SIAM Journal on Computing, 35 (2006), pp. 932–963.
[22] K. F. Roth, On irregularities of distribution, Mathematika, 7 (1954), pp. 73–79.
[23] , Remark concerning integer sequences, Acta Arithmetica, 9 (1964), pp. 257–260.
[24] Aravind Srinivasan, Improving the discrepancy bound for sparse matrices: better approxima-

tions for sparse lattice approximation problems, in Proc. 8th ACM/SIAM Symposium on
Discrete Algorithms, 1997, pp. 692–701.

14

