
A Cache-Oblivious Implicit Dictionary
with the Working Set Property

Gerth Stølting Brodal, Casper Kejlberg-Rasmussen, Jakob Truelsen

MADALGO?, Department of Computer Science, Aarhus University, Denmark.
{gerth,jakobt,ckr}@madalgo.au.dk

Abstract. In this paper we present an implicit dictionary with the work-
ing set property i.e. a dictionary supporting insert(e), delete(x) and pre-
decessor(x) in O(logn) time and search(x) in O(log `) time, where n is
the number of elements stored in the dictionary and ` is the number
of distinct elements searched for since the element with key x was last
searched for. The dictionary stores the elements in an array of size n
using no additional space. In the cache-oblivious model the operations
insert(e), delete(x) and predecessor(x) cause O(logB n) cache-misses and
search(x) causes O(logB `) cache-misses.

1 Introduction

In this paper we consider the problem of creating an implicit dictionary [9] with
the working set property. An implicit dictionary maintains a set of n distinct keys,
and encodes a data structure supporting fast insertions, deletions, predecessor
queries and searches in the permutation of these keys as they are laid out in
an array [9]. Between operations no additional space usage is allowed, while
during an operation only a constant number of word registers may be used. The
number of elements n is assumed externally maintained. Computation is done
in a machine with a constant number of registers with a word size of Θ(log n)
bits. All operations are unit cost, similar to the RAM model. Extensive research
has been done in the implicit/in-place model, from as early as binary heaps [11],
to an in-place 3-d convex hull algorithm [4]. Implicit dictionaries have been the
topic of several papers culminating in a dictionary supporting all operations in
O(log n) time [5]. For a more extensive overview see [8].

The working set property states that the time to search for an element e
with key x must be O(log `), where ` is the number of distinct elements searched
for since e was last searched for. This property has been achieved by numer-
ous structures. The splay tree [10], a skip list variant [2], and the working set
structure [7], all achieve the property in the amortized, expected or worst-case
sense. The unified access bound, which is a generalization of the working set
bound, is achieved in [1]. The unified access bound states that, if `(g) is the

? Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

Reference Insert/Delete Search Predecessor
Additional
space (words)

[5] O(logn) O(logn) O(logn) None
[7] O(logn) O(log `) O(log `) O(n)
[3, Sec. 2] O(logn) O(log `) exp. O(logn) O(log log n)
[3, Sec. 3] O(logn) O(log `) exp. O(log `) exp. O(

√
n)

This paper O(logn) O(log `) O(logn) None

Table 1. The operation time, and space overhead of important structures for the
dictionary problem.

number of distinct elements accessed since g was last accessed, and d(g, e) de-
notes the rank distance between g and e, then the search time for e must be
O(ming log(`(g)+d(g, e)+2)). In [3] two structures with low space overhead are
presented, achieving the working set property in the expected sense, see Table 1.

The dictionary in [5] is, in addition to being implicit, also designed for the
cache-oblivious model [6] where all the operations imply O(logB n) cache-misses,
where B is the cache-line length that is unknown to the algorithm.

1.1 Our results

We present an implicit dictionary with the working set property that supports in-
sertions, deletions, and predecessor queries in O(log n) time and search queries in
O(log `) time. Our result improves the construction of [3, Section 2] by requiring
no additional space. Furthermore our structure is cache-oblivious and supports
insert, delete and predecessor operations in O(logB n) cache-misses and search
in O(logB `) cache misses.

Our implicit cache-oblivious dictionary makes essential use of the notion of
an implicit moveable dictionary, i.e. a dictionary stored in a consecutive sub-
array that can be moved to the left or the right, one position at a time. We
construct a moveable dictionary from a constant number of the implicit and
cache-oblivious dictionaries from [5], achieving a dictionary inheriting the same
properties, but which is also moveable. The moveable dictionary is in itself an
interesting result because it is a general transformation, that can be applied to
any data structure that can be laid out in an array and grows/shrinks in one
end and supporting insertions and deletions. Hence we can plug in say a binary
heap, and get a moveable binary heap.

In the literature the working set property is often stated in terms of the num-
ber of operations. We note that if we perform a search for an element whenever
it is inserted, we will also satisfy these kinds of bounds.

This paper is organized as follows. In Section 2 we present our implicit move-
able dictionary. In Section 3 we show how our implicit working set dictionary
structure is constructed by composing O(log log n) implicit moveable dictionar-
ies.

2 A moveable dictionary

In this section we describe an implicit moveable dictionary which can be laid
out in an array in the range [i; j], where n = j − i+ 1 is the number of elements
in the dictionary. When deleting an element from the dictionary we are allowed
to shrink the dictionary from the left or the right end, such that the structure
now lies in the range [i + 1; j] or [i; j − 1], respectively. Likewise we can insert
and expand the dictionary at the left or right end such that the structure now
lies in the range [i − 1; j] or [i; j + 1], respectively. The structure also supports
search and predecessor operations. All operations run in O(log n) time. The
moveable dictionary is implicit except for O(log n) extra bits that need to be
stored/encoded externally (in the Di structures in Section 3).

The dictionary supports the following operations:

– Insert-left(e) and insert-right(e): inserts an element e into the dictionary which
grows in the left and right side, respectively.

– Delete-left(x) and delete-right(x): deletes the element with key x from the
dictionary which shrinks in the left and right side, respectively.

– Search(x): returns the element e with key x in the dictionary if such an
element exits, otherwise none is returned.

– Predecessor(x): is given a key x and returns the element e in the dictionary
with the largest key less than x.

An amortized solution can be obtained using two of the dictionaries by
Franceschini and Grossi [5] (in the following denoted FG dictionaries). Let r
be an index in the range i ≤ r ≤ j. One FG dictionary denoted R is located
in the range [r; j] and grows to the right as normal, and one FG dictionary de-
noted L is located in the range [i; r− 1] and grows to the left, i.e. for L we have
inverted all the indexes of the original FG dictionary. The insert-left and insert-
right operations insert elements into L and and R, respectively. The delete-left
operation searches for the element e to be deleted in L and R. If e is in L it is
deleted from L and we are done. Otherwise e is deleted from R and an arbitrary
element is deleted from L and inserted into R – provided L is non-empty. If L is
empty we first rebuild the data structure such that L and R differ in size by at
most one, by repeatedly reinserting into new L and R structures starting from
the new index r =

⌈
i+j
2

⌉
. The delete-right operation is handled symmetrically.

To search for an element with a given key we search in L and then in R; to find
the predecessor element of a given key we find the predecessor in L and R and
return the largest of the two. Since [5] supports all operations in O(log n) time,
all operations run in O(log n) amortized time, which e.g. can be seen using the
potential function Φ = | |L| − |R| |.

In the following we describe how to deamortize the above construction using
incremental rebalancing of L and R. An additional FG dictionary C is placed
between L and R (see Figure 1). In the following we w.l.o.g. assume that n ≥ 24,
such that all intervals stated below are guaranteed to include an integer. If L or
R get outside the range [3

24n,
7
24n], say L is getting too big/small, we initialize an

incremental job to make L smaller/bigger by transferring elements to/from C.

RL C

or

Fig. 1. We have three FG dictionaries L,C and R, where L always grows/shrinks in
the left direction, and R grows/shrinks in the right, and C will change direction during
the execution of the jobs to shrink or grow L or R.

Each time an insert and delete operation is executed we perform a constant
number of steps of the current job. While resizing L there might be a pending
job waiting for resizing R, and vice versa. During the execution of a job we have
a temporary FG dictionary, which can be one of either L′, C ′ or R′, depending
on how far we are in the execution of the job (see Figure 2).

2.1 Methods and jobs

The insert-left and delete-left operations, and the grow-left and shrink-left jobs
described here have analogous right-versions.

Search(x) We always have the structures L,C and R, and possibly one of the
structures L′, C ′ or R′. We search each of the at most four structures. If we find
an element e with key x we return e, otherwise we return none.

Predecessor(x) As in search we search for the predecessor in each of the structures
L,C,R and possibly one of L′, C ′ or R′, and return the largest of the four
candidates found.

Insert-left(e) We insert e into L. If |L| > 7
24n we initialize a shrink-left job unless

a left job is already running/pending.

Delete-left(x) We delete the element with key x from L. We can do this even
though the element we want to delete resides in L′, C, C ′, R or R′ by swapping the
element we want to delete with one from L. We can swap elements by performing
two deletions and two insertions. If |L| < 3

24n we initialize a grow-left job unless
a left job is already running/pending.

Grow-left The job consists of the following steps to be performed incrementally
(see Figure 2 (left)). Notice that during the incremental work, deletions and
insertions are performed on L and R by the update operations. We let ninit

denote the size of the dictionary when the job is initialized, and assume that
ninit is remembered when the job is initialized.

1) If C is not growing to the left then turn C around so it grows toward L. We
turn C around by creating a new C ′ in the growing end of C which grows
towards C, into which we insert all the elements of C, one element at a time.

2) Construct L′ of size
⌈

2
24ninit

⌉
at the beginning of L, growing to the right, by

deleting elements from C and inserting them into L′.

RL C

RL C

RL C

RL C

1)

2)

3)

4)

5)

RL C

RL C

G
ro
w
-l
ef
t

S
h
ri
n
k
-l
ef
t

RL C

RL C

RL C

RL C

RL′ C

RL C

L′

L′

L′

L′

L′

L′

L′

L

1)

2)

3)

4)

5)

Fig. 2. The steps of the two operations grow-left and shrink-left, notice that they are
almost each other’s inverse. (Left) The five steps of the grow-left operation, notice that
in step 4) the arrow at the top means that we have split L up into two by use of
address-mapping. (Right) The five steps of the shrink-left operation, in step 3) we have
again used address-mapping to split L in two.

3) Turn L′ around so it faces L, like we turned C in step 1).
4) Continue deleting an element from C and inserting it into L′, so L′ expands

into L. The element overridden in L is moved into the empty place in C
where we took the element to place in L′. We do this by splitting L into two
pieces by address-mapping, see steps 3) and 4) in Figure 2 (left). When we
have moved L completely to the right of L′, we swap the names of L and L′.

5) Merge L′ back into C, by deleting an element from L′ and inserting it into C
until L′ is empty.

Shrink-left The job consists of the following steps (see Figure 2 (right)). Notice
the similarity to grow-left.

1) If C is not growing to the left then turn C around so it grows toward L.
2) Create L′ by deleting

⌈
5
24ninit

⌉
elements from C, one element at a time and

inserting them into L′, which we create to the left of C.
3) Swap the names of L and L′. Delete an element from L′ and insert it into C so

it expands into L, then move the element overridden in L to the empty space
to the left of L′, do this one element at a time until L is moved completely
to the left of L′.

4) Turn L′ around so it faces C.
5) Merge L′ back into C.

2.2 Correctness

The correctness of the search and predecessor operations follows directly from
the fact that the dictionary consists of at most four FG dictionaries. Similarly
the insert-left and insert-right operations insert a single new element into an FG
dictionary and otherwise only moves elements between the FG dictionaries. The
only operations remaining to be considered are the delete-left and delete-right
operations. In the following we only consider the delete-left operation (delete-
right is symmetric). The only technical detail we need to argue about is that
there always is a non-empty FG dictionary L oriented to the left that has its
leftmost element stored in the leftmost entry in the subarray.

In the following when considering a job, we let ninit, n0, nfinish denote the
size of the moveable dictionary: when the job was initialized, when the execution
of the job started, and just after it is finished, respectively.

By performing the incremental work sufficiently fast, we will be able to per-
form the job during at most βn0 moveable dictionary updates, for any constant
β > 0. An upper bound on the number of primitive steps (that is movement
of one element from one FG dictionary to another one, and possibly move in
memory) per update is: During the execution of the job at most βn0 insertions
can take place, i.e. the dictionary always has size at most (1 + β)n0. Therefor
each of the five steps of a job require at most (1 + β)n0 primitive steps. In total
there are at most 5(1 + β)n0 primitive steps. By performing at least 5(1 + β)/β
primitive steps per update, the job finishes within βn0 updates.

To relate ninit and n0 we make the observation that any job under execution
will finish during the next βn updates, where n is the current number of elements
in the dictionary. To see this, observe that a job that has run for d updates needs
to be executed for at most βn0 − d ≤ β(n0 − d) ≤ βn further updates, provided
β ≤ 1. From this it follows that when a job is initialized, it at most takes βninit

updates before the current job finishes and the new job starts being executed,
i.e. (1− β)ninit ≤ n0 ≤ (1 + β)ninit.

Let tfinish denote the number of updates between the initialization of a job
until it it is finished. We have tfinish ≤ βninit + βn0 ≤ βninit + β(1 + β)ninit =
(β2 + 2β)ninit. We get nfinish ≤ ninit + tfinish ≤ (1 + β2 + 2β)ninit and nfinish ≥
ninit − tfinish ≥ (1− β2 − 2β)ninit.

During the lifetime of a job, i.e. between its initialization and its the time it
finish, there are always at least 3

24ninit − tfinish ≥ (3
24 − β

2 − 2β)ninit elements
that still can be deleted from the leftmost FG dictionaries which shrink the
subarray from the left. By selecting β sufficiently small such that β2 + 2β < 3

24 ,
this number is always non-zero.

What remains to be argued is that i) 3
24nfinish ≤ |L| ≤ 7

24nfinish when a left
job is finished, ii) |C| ≥

⌈
2
24ninit

⌉
when a grow job starts its execution, and iii)

|L| ≥
⌈

5
24ninit

⌉
immediately before step 3) in a shrink job. We need i) to ensure

that 3
24n ≤ |L| ≤

7
24n holds just before a job is initialized, and ii) and iii) to

ensure that grow-left and shrink-left are well defined, respectively.
The above can be shown by the following observations: i) After a shrink or

grow job |L| ≤ 5
24ninit + 1 + tfinish ≤ 6

24ninit + tfinish which is less than 7
24nfinish

for β2 + 2β ≤ 1
31 . Similarly after a shrink or grow job |L| ≥ 5

24ninit − tfinish

which is greater than 3
24nfinish for β2 + 2β ≤ 2

27 . ii) Before grow-left |C| ≥
n0−|L|−|R| ≥ (ninit−βninit)−(7

24ninit +βninit)− 7
24ninit(1+β) which is greater

than 3
24ninit ≥

⌈
2
24ninit

⌉
for β ≤ 7

55 . iii) In shrink-left |L| ≥ 7
24ninit− tfinish which

is greater than 6
24ninit ≥

⌈
5
24ninit

⌉
for β2 +2β ≤ 1

24 . We note that setting β = 1
63

will satisfy all the stated constraints.
The O(log n) time bounds for the operations follow from the O(log n) time

bounds of the FG dictionaries. In the cache-oblivious model we notice that be-
cause the FG dictionary is cache-oblivious and we only use a constant number of
FG dictionaries, where we split at most one of them into two parts by address-
mapping then we only multiply the bound on the cache-misses from the FG
dictionary by a constant factor. Hence all operations cause O(logB n) cache-
misses.

We notice that we can make the moveable dictionary implicit such that we
do not need to store O(log n) bits between operations. We do this by introducing
a block D of O(log n) elements to the left of L which pair-encodes the O(log n)
bits. With pair-encoding we mean that each consecutive pair of elements encodes
a bit. If the key of the first element is lower than the key of the second, the pair-
encodes a 0 bit. If on the other hand the key of the first element is greater
than the key of the second, the pair-encodes a 1 bit. As we need to read this
block to get the O(log n) bits, we can maintain (and possibly move) D when
we perform insert-left, insert-right, delete-left and delete-right operations. From a
cache-oblivious viewpoint this does also not change the asymptotic bound on
the number of cache-misses.

3 Construction of the working set dictionary

In the following we describe our working set dictionary archiving insertions,
deletions and predecessor searches in O(log n) time and searches in O(log `).
We first describe the overall structure leaving the details of the memory layout
to be handled in Section 3.3. The structure is composed of O(log log n) blocks,

where the i’th block Bi stores O(22i

) elements. The main design goal is to have
elements that have been searched for within the last ` distinct searches located
in one of the first O(log log `) blocks.

Block Bi consists of a list Di of size wi where wi = α2i for some appro-
priate constant α, and three implicit moveable dictionaries, Li, Ci and Ri. We
use Di to pair-encode O(2i) bits, used for memory management in the working
set dictionary and storing data needed between operations in the moveable dic-
tionaries Li, Ci and Ri. Block Bi contains exactly 2 · 22i

+ wi elements, except
for the last block Bm that might contain less than 2 · 22i

+ wi elements, as this
is the block that grows or shrinks when we insert or delete, respectively.

When an element e is searched for it is moved from its current block Bj to
the first block B0. To make room for this in B0, we move an element from each
block Bi to Bi+1 until we reach the block Bj where e was originally located.
We move elements from Ri to Li+1, for i = 0, . . . , j − 1 (see Figure 3). Once Ri

D0

L0 C0 R0

B0

D1

L1

B1

. . .

Rj−1

Dj

Lj Cj Rj

Bj

Dm

Lm Cm Rm

Bm

. . .

Bj−1

Fig. 3. Layout of the data structure. The arrows indicate the movement of elements
after an element in Rj has been searched for. The dotted lines in block Bm indicate
that the strucutres do not necessarily exist.

is empty we move Ci to Ri, and Li to Ci. Doing this we can guarantee that at
least 22i

distinct elements have been searched for since any element in Ri was
last searched for. We can give this guarantee because an element will be located
in Ci at least until searches for 22i

other elements have been performed.

3.1 Invariants

Our data structure satisfies the invariants below. Here I.1 to I.4 are about the
sizes of data structures and are important for memory management. On the
other hand I.5 to I.8 are about the location of elements according to when they
were last searched for and are important for achieving the working set property.

I.1 |Ci| ≤ 22i

and |Ri| 6= 0⇒ |Ci| = 22i

, for all i.
I.2 |Di| ≤ wi and |Li|+ |Ci|+ |Ri| 6= 0⇒ |Di| = wi, for all i.

I.3 |Li|+ |Ri| = 22i

, for all i < m, and |Lm|+ |Rm| ≤ 22m

.

I.4 |Li| < 22i

, for all i.
I.5 All elements searched for since Li was last empty are contained in Li, Di

or Bj for some j < i.
I.6 For any e in some Ci either at least |Li| distinct elements have been searched

for after e was last searched for or e has never been searched for.
I.7 For any e in some Ri either at least 22i

distinct elements have been searched
for after e was last searched for or e has never been searched for.

I.8 For any e in Di, Li or Ci, for i > 0, either at least 22i−1

distinct elements
have been searched for after e was last searched for, or e has never been
searched for.

From the invariants we make the following observations:

O.1 |Di| = wi for all i < m (from I.2 and I.3).
O.2 |Ri| > 0 for all i < m (from I.3 and I.4).

O.3 |Ci| = 22i

for all i < m (from I.1 and O.2).

O.4 |Bi| = wi + 2 · 22i

for all i < m (from O.1, O.3, and I.3).

O.5 For i > 0 and any e in Bi, either at least 22i−1

distinct elements have been
searched for after e was last searched for or e has never been searched for
(from I.7 and I.8).

3.2 Operations

Our data structure uses the operations shift and find internally, and supports the
operations insert, delete, predecessor and search. Below is a detailed description
of all operations.

Shift(j) handles the case when |Rj | = 0 and |Lj | = 22j

, i.e. I.4 is violated for
block Bj . This is done by discarding Rj , renaming Cj to Rj , renaming Lj to Cj ,
and creating a new empty Lj . After shift(j) finishes I.4 also holds for Bj .

Find(x) finds the data structure Si containing the element with key x or returns
none if no such element exists. Here Si will be either Di, Li, Ci or Ri for some i.
This is done by searching for x in the blocks starting with B0 and going in an
incremental linear fashion towards Bm. Within each block, x is searched for in
Di using a linear scan, and the implicit moveable dictionaries Li, Ci and Ri

are searched for x using their built-in search operation. As soon as x is found,
a reference to the data structure Si containing the element is returned, and no
further blocks are considered. In the case when x is not found in any of the
blocks none is returned.

Predecessor(x) returns the element e in the data structure with the largest key
less than x. This is done for B0, . . . , Bm by a linear scan of Di and invoking
the built-in predecessor operation on Li, Ci and Ri and returning the element
among the results with the highest key.

Insert(e) inserts the element e into the data structure. This is done by inserting e
into one of the data structures in Bm. It is inserted into Dm if |Dm| < wm.
Otherwise, if |Cm| < 22m

it is inserted into Cm, else it is inserted into Rm. If this
makes |Lm|+ |Rm| = 22m

, then a new block Bm+1 is initialized by incrementing
m by one.

Delete(x) deletes the element with key x from the data structure. We first check
if x is in the dictionary by performing a find(x) operation. If x is not found
we return. Here Sj will be one of Dj , Lj , Cj or Rj . If Bm is empty, m is
decremented by one. An arbitrary element e is deleted from the first of the
structures Rm, Cm, Lm and Dm that is non-empty. If e has key x we return,
else the element with key x is deleted from Sj and e is inserted into Sj .

Search(x) returns the element e with key x or none if such an element does
not exist. This is done by performing a find(x) operation, finding the data struc-
ture Sj containing x. If x is not in the data structure then none is returned.

If x is found in a data structure Sj then the element e with key x is found by
running the built-in search method on Sj . If Sj is either D0 or L0 we return e im-
mediately. If Sj = Cj and |Rj | > 0, an arbitrary element g is removed from Rj , e
is removed from Cj and g is inserted in Cj . In the other case where Sj 6= Cj

or |Rj | = 0, the element e with key x is deleted from Sj .

In all cases we then proceed by deleting an arbitrary element h from Ri−1 and
inserting it into Li, for i = j, . . . , 1. In the special case where i = j and Sj = Dj

we insert h into Dj instead of Lj .

We then insert e into L0. Now for i = 0, . . . , j we check whether |Li| = 22i

,
and if this is the case we perform a shift(i) operation. Finally we return e.

3.3 Memory management

From O.4 we know that any block except the last will contain a fixed number of
elements, namely 2 ·22i

+wi. This implies that we can lay out the blocks sequen-
tially in the array, and then we only have to worry about memory management
inside each block. The last block Bm can vary in size, and is located at the end
of the array where growing and shrinking must occur.

By I.2 we know that Di will be completely constructed before the other
structures are needed, therefore we lay it out sequentially in the beginning of
the block. The remaining structures will be laid out sequentially in the order:
Li, Ci, Ri.

Right before we insert an element into Li, we move Ci and Ri one position to
the right to make room. We can move Li, Ci or Ri to the right by performing a
delete-left operation on an arbitrary element e followed by an insert-right(e). This
moving will take time O(2i). We do the same when inserting into Ci, but here
we only move Ri one position to the right. We never need to move structures to
the left.

To perform queries on the substructures in a block Bi we need to store
various information in Di. We need nLi

, nCi
and nRi

: the size of Li, Ci and Ri,
respectively. We store nCi and nRi in Di explicitly using 2i bits each, whereas nLi

can be computed as nLi = |Bi|−wi−nCi−nRi . Furthermore we store in Di the
Θ(2i) bits we allow the moveable dictionaries Li, Ci and Ri to maintain between
operations, denoted dataLi

, dataCi
and dataRi

.
We maintain all these bits in Di, using pair-encoding. The fields are stored

in the following order: dataLi , nCi , dataCi , nRi , dataRi . Whenever we add an
element to or remove an element from Di we maintain the ordering of the pair
by performing a swap if needed.

To perform an operation on block Bi we need to know the index bi of the
first element, which can be computed as b0 = 0, and bi = bi−1 + 2 · 22i−1

+wi−1.
We may also need |Di| which can be computed as |Di| = min(wi, n − bi), and

|Bi| which can be computed as |Bi| = wi + 2 · 22i

if i < m and |Bm| = n − bm
otherwise.

Whenever we want to perform an operation on Ci, we first extract nLi , nCi ,
nRi and dataCi from the pair-encoding in Di and put them into registers. From
the sizes and the value of bi we can compute the index of the first element
in C. Using that information we can run the operation on the implicit moveable
dictionary. Once that is done we dataC write back to the pair-encoding in Di.
Totally this requires O(2i) time. We do similarly if we perform an operation on
Li or Ri.

When performing a shift operation we override nRi
and dataRi

with nCi
and

dataCi
and we override nCi

and dataCi
with nLi

and dataLi
. This renames the

data structures, initiating a new empty Li before the old full one, and “deletes”
the old empty Ri.

During an insert operation, when Di increases to wi, we initialize nLi
, dataLi

,
nCi

, dataCi
, nRi

and dataRi
. Finally we calculate m when it is needed as the

minimal value where
∑m

j=0 2 · 22j

+ wj > n.

3.4 Analysis

To see that the invariants are maintained for the operations we need to show
that each invariant is maintained for each operation. In general this is tedious
but trivial. As an example below we give the proof for the shift operation to give
a taste of how the proofs go. In the following Si refers to a data structure before
the shift operation and S′i refers to the same data structure after the operation,
similarly for m.

We now prove that shift is correct. We assume that Bj satisfies all invariants

except I.4 before shift(j). Since the shift operation requires that |Lj | = 22j

and

C ′j = Lj I.1 holds for j after the shift operation. Because |Lj | = 22j

and I.2 holds
before the operation we know that |Dj | = wj . Since the shift operation did not
change Dj , I.2 also holds for j after the operation. When verifying I.3 we have
two cases: if j = m, then from I.1 we know that |Cm| ≤ 22m

so |L′m| + |R′m| =

0 + |Cm| ≤ 22m

so I.3 holds. Else if j < m then by O.3 we know that |Cj | = 22j

.
Now since L′j is empty and R′j = Cj , then I.3 holds for j < m after the operation.
Since L′j is empty, no elements have been accessed after it was last empty thus

I.5 trivially holds for j. Likewise because
∣∣L′j∣∣ = 0, then I.6 is maintained for j.

Because shift(j) assumed |Lj | = 22j

, and because R′j = Cj , then I.6 immediately
implies that I.7 holds for j after shift(j). Lastly, since all elements in L′j and C ′j
come from Lj , and D′j contains the same elements as Dj then I.8 held for j since
it holds before the shift(j) operation.

The core of the analysis of the running times of the predecessor and search
operations stems from the find operation. Let ` be the number of distinct ele-
ments searched for since we last searched for some element e in some block Bj .

By O.5 we know that at least 22j−1

elements have been searched for after e
was last searched for so ` ≥ 22j−1

, i.e. 2j = O(log `). For each block we use
constant time to calculate bi, |Di|, and whether i = m. This can be done since
we have already computed bi−1 once bi is needed. The time used for the find
operation in block Bi is O(2i), plus the time for doing the linear scan in Di,

and O(log 22i

) = O(2i) for doing searches in Li, Ci and Ri from the bounds on
the moveable dictionary. The total time for doing searches in all blocks 0, . . . , j is
then O(

∑j
i=0 2i) = O(2j) = O(log `) which becomes the time for the search op-

eration. Since predecessor queries need to access all blocks, they require O(log n)
time. Similarly insertions and deletions require O(log n) time.

From the cache-oblivious viewpoint we incur O(2i/B) cache-misses when

searching Di and O(logB 22i

) = O(2i/ logB) cache-misses when searching in

Li, Ci and Ri. Since the blocks B0, . . . , Bblog log Bc in total store O(B) elements
and are stored consecutively in the array, the accesses to these blocks imply a to-
tal of O(1) cache-misses. For the remaining blocks 22i ≥ B and in total we incur

O(
∑j

i=blog log Bc+1 2i/ logB) = O(logB `) cache-misses for the find operation. It

follows that search implies O(logB `) cache-misses, and predecessor queries, insert
and delete operations imply O(logB n) cache-misses.

Acknowledgements

We would like to thank Mark Greve and Freek van Walderveen for their help on
proofreading this paper.

References

1. Bǎdoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on
comparison-based dynamic dictionaries. Theoretical Computer Science 382(2), 86–
96 (2007)

2. Bose, P., Doüıeb, K., Langerman, S.: Dynamic optimality for skip lists and B-
trees. In: Proc. 19th Annual ACM-SIAM Symposium on Discrete algorithms. pp.
1106–1114. SIAM, Philadelphia, PA, USA (2008)

3. Bose, P., Howat, J., Morin, P.: A distribution-sensitive dictionary with low space
overhead. In: Proc. 11th International Symposium on Algorithms and Data Struc-
tures. LNCS, vol. 5664, pp. 110–118. Springer-Verlag (2009)

4. Chan, T.M.Y., Chen, E.Y.: Optimal in-place algorithms for 3-d convex hulls and
2-d segment intersection. In: Proc. 25th Annual Symposium on Computational
Geometry. pp. 80–87. ACM (2009)

5. Franceschini, G., Grossi, R.: Optimal worst-case operations for implicit cache-
oblivious search trees. In: Proc. 8th International Workshop on Algorithms and
Data Structures. LNCS, vol. 2748, pp. 114–126. Springer-Verlag (2003)

6. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proc. 40th Annual IEEE Symposium on Foundations of Computer
Science. pp. 285–297. IEEE (1999)

7. Iacono, J.: Alternatives to splay trees with O(log(n)) worst-case access times. In:
Proc. 12th Annual ACM-SIAM symposium on Discrete algorithms. pp. 516–522.
SIAM (2001)

8. Mortensen, C.W., Pettie, S.: The complexity of implicit and space-efficient prior-
ity queues. In: Proc. 9th Biennial Workshop on Algorithms and Data Structures.
LNCS, vol. 3608, pp. 49–60. Springer-Verlag (2005)

9. Munro, J.I., Suwanda, H.: Implicit data structures for fast search and update.
Journal of Computer and System Sciences 21(2), 236–250 (1980)

10. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

11. Williams, J.W.J.: Algorithm 232: Heapsort. Communications of the ACM 7(6),
347–348 (1964)

