BI Hyperdoctrines and Higher-Order Separation Logic

Lars Birkedal

The IT University of Copenhagen

Goals

- Intro to Higher-order Separation Logic
 - examples of why it is useful to use higher-order logic
- Intro to (BI) hyperdoctrines
- Observe some benefits of "abstract approach"
- Main reference: [B. Biering and L. Birkedal and N. Torp-Smith: BI-Hyperdoctrines, Higher-order Separation Logic, and Abstraction. ACM Transactions on Programming Languages and Systems, 29(5): 2007.
 - (Journal version of ESOP'05 paper.)]

HOSL Example

From [Petersen et. al.: A Realizability Model of HTT, ESOP'08]: Imperative ADT:

```
stacktype =
   \prod \alpha : \mathsf{Type}. \sum \beta : \mathsf{Type}. \sum inv : \beta \times \alpha \mathsf{ list} \to \mathsf{Prop}.
 /*new*/ (-).\{emp\}s: \beta\{inv(s, [])\} \times
 /*push*/\prod s:\beta.\prod x:\alpha.
                          (l: \alpha \, \mathsf{list}).\{inv(s,l)\}u: 1\{inv(s,x::l)\} \times
 /*pop*/ \prod s:\beta.
                          (x:\alpha,l:\alpha \mathsf{\,list}).
                               \{inv(s,x::l)\}y:\alpha\{inv(s,l)\land y=_{\alpha}x\}\times
 /*del*/ \prod s:\beta.
                          (l:\alpha \mathsf{\,list}).\{inv(s,l)\}u:1\{\mathsf{emp}\}
```


Overview

- Earlier work [Pym, O'Hearn, et. al.] has established correspondence between a part of separation logic and propositional BI
- We extend the correspondence to full separation logic and a simple version of *predicate* BI, and, moreover, to higher-order
 - define a class of sound and complete models: BI Hyperdoctrines
 - show that one cannot simply use toposes as models
 - argue that higher-order separation logic is useful for formalizations of separation logic and for data abstraction

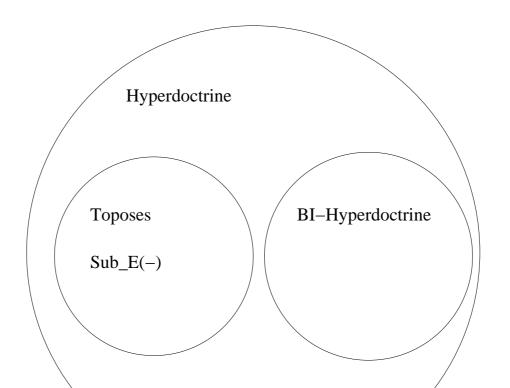
Why abstract approach?

Results applicable in many different situations, e.g.:

- Relational Parametricity and Separation Logic [LB-Yang: FOSSACS'07]
- Higher-order store [LB et. al.: ICALP'08]
- Hoare Type Theory [Petersen et. al.: ESOP'08]
- Idealized ML [Krishnaswami: thesis proposal, Krishnaswami et. al.: submitted]
- HOSL for Java [LB-Parkinson, ongoing]

BI Hyperdoctrines — Overview

- A hyperdoctrine is a categorical formalization of a model of predicate logic [Lawvere 1969]. Sound and complete for IHOL.
- Toposes also sound and complete for IHOL.
- BI Hyperdoctrines sound and complete for IHOL + BI



First-order Hyperdoctrines, I

Let C be a category with finite products. A *first-order* hyperdoctrine P over C is a contravariant functor $P: C^{op} \to Poset$ s.t.:

- lacktriangle Each $\mathcal{P}(X)$ is a Heyting algebra.
- Each $\mathcal{P}(f): \mathcal{P}(Y) \to \mathcal{P}(X)$ is a Heyting algebra homomorphism.
- ♦ There is an element $=_X$ of $\mathcal{P}(X \times X)$ satisfying that for all $A \in \mathcal{P}(X \times X)$,

$$\top \leq \mathcal{P}(\Delta_X)(A)$$
 iff $=_X \leq A$.

First-order Hyperdoctrines, II

• For each product projection $\pi: \Gamma \times X \to \Gamma$ in \mathcal{C} , $\mathcal{P}(\pi): \mathcal{P}(\Gamma) \to \mathcal{P}(\Gamma \times X)$ has both a left adjoint $(\exists X)_{\Gamma}$ and a right adjoint $(\forall X)_{\Gamma}$:

$$A \leq \mathcal{P}(\pi)(A')$$
 if and only if $(\exists X)_{\Gamma}(A) \leq A'$

$$\mathcal{P}(\pi)(A') \leq A$$
 if and only if $A' \leq (\forall X)_{\Gamma}(A)$.

Natural in Γ .

Interpretation in Hyperdoctrines

- Types and terms interpreted by objects and morphisms of C
- Each formula ϕ with free variables in Γ is interpreted as a \mathcal{P} -predicate $\llbracket \phi \rrbracket \in \mathcal{P}(\llbracket \Gamma \rrbracket)$ by induction on the structure of ϕ using definining properties of hyperdoctrine.
- A formula ϕ with free variables in Γ is *satisfied* if $\llbracket \phi \rrbracket$ is \top in $\mathcal{P}(\llbracket \Gamma \rrbracket)$.
- Sound and complete for intuitionistic predicate logic.
- A first-order hyperdoctrine is sound for *classical* predicate logic in case all the fibres $\mathcal{P}(X)$ are Boolean algebras and all the reindexing functions $\mathcal{P}(f)$ are Boolean algebra homomorphisms.

Hyperdoctrines

A (general) *hyperdoctrine* is a first-order hyperdoctrine with the following additional properties:

- C is cartesian closed; and
- there is $H \in \mathcal{C}$ and a natural bijection $\Theta_X : Obj(\mathcal{P}(X)) \simeq \mathcal{C}(X, H)$.

Cartesian closure interprets higher types.

Type of propositions is interpreted by H.

BI Hyperdoctrines

- ◆ Recall: A BI algebra is a Heyting algebra, which has an additional symmetric monoidal closed structure (I, *, -*)
- Define: A first-order hyperdoctrine P over C is a first-order BI hyperdoctrine in case
 - \blacksquare all the fibres $\mathcal{P}(X)$ are BI algebras, and
 - lacksquare all the reindexing functions $\mathcal{P}(f)$ are BI algebra homomorphisms
- Likewise for general BI hyperdoctrines.

First-order Predicate BI, I

• Predicate logic with equality extended with I, $\phi * \psi$, $\phi \twoheadrightarrow \psi$ satisfying the usual rules for BI (in any context Γ):

$$(\phi * \psi) * \theta \vdash_{\Gamma} \phi * (\psi * \theta) \qquad \phi * (\psi * \theta) \vdash_{\Gamma} (\phi * \psi) * \theta$$

$$\vdash_{\Gamma} \phi \leftrightarrow \phi * I \qquad \phi * \psi \vdash_{\Gamma} \psi * \phi$$

$$\frac{\phi \vdash_{\Gamma} \psi \qquad \theta \vdash_{\Gamma} \omega}{\phi * \theta \vdash_{\Gamma} \psi * \omega} \qquad \frac{\phi * \psi \vdash_{\Gamma} \theta}{\phi \vdash_{\Gamma} \psi \twoheadrightarrow \theta}$$

First-Order Predicate BI, II

Notice

- No BI structure on contexts (in [Pym:2002] there is)
- In particular, weakening on the level of variables is always allowed

$$\frac{\phi \vdash_{\Gamma} \psi}{\phi \vdash_{\Gamma \cup \{x:X\}} \psi}$$

- Fine because simple and what we need for separation logic
- Can be interpreted in first-order BI hyperdoctrines
- Theorem The interpretation of first-order predicate BI is sound and complete.
- Also for classical predicate BI, of course

Higher-order Predicate BI

- Higher-order predicate logic extended with BI as above.
- BI hyperdoctrines sound and complete class of models.

Example of BI hyperdoctrine

Let B be a complete BI algebra. Define Set-indexed BI hyperdoctrine:

- $igoplus \mathcal{P}(X) = B^X$, functions from X to B, ordered pointwise
- \bullet For $f: X \to Y$, $\mathcal{P}(f): B^Y \to B^X$ is comp. with f.
- \bullet =_X (x, x') is \top if x = x', otherwise \bot .
- Quantification: for $A \in B^{\Gamma \times X}$

$$(\exists X)_{\Gamma}(A) \stackrel{def}{=} \lambda i \in \Gamma. \bigvee_{x \in X} A(i, x)$$
$$(\forall X)_{\Gamma}(A) \stackrel{def}{=} \lambda i \in \Gamma. \bigwedge_{x \in X} A(i, x)$$

in B^{Γ} .

Toposes and BI Hyperdoctrines

- igoplus Earlier work showed how to use some toposes to model propostional BI (Sub $_{\mathcal{E}}(1)$ is a BI-algebra, for certain \mathcal{E})
- $igoplus ext{Toposes model (higher-order) predicate logic, since <math> ext{Sub}_{\mathcal{E}}$ is a hyperdoctrine.
- But, surprise, we cannot interpret predicate BI in toposes:

Theorem Let \mathcal{E} be a topos and suppose $\operatorname{Sub}_{\mathcal{E}}: \mathcal{E}^{op} \to \operatorname{Poset}$ is a BI hyperdoctrine. Then the BI structure on each lattice $\operatorname{Sub}_{\mathcal{E}}(X)$ is trivial, i.e., for all $\varphi, \psi \in \operatorname{Sub}_{\mathcal{E}}(X)$, $\varphi * \psi \leftrightarrow \varphi \wedge \psi$.

Higher-order Separation Logic

Next:

- Recall pointer model and interpretation of separation logic in pointer model
- Show how to view pointer model as a BI hyperdoctrine and that the standard interpretation therein coincides with standard interpretation of separation logic.
- Leads to obvious extension of separation logic to higher-order.
- Some implications thereof.

Pointer Model of Sep. Logic

- set [Val] interpreting the type Val
- lacktriangle set [[Loc]] of locations with $[[Loc]] \subseteq [[Val]]$
- set of heaps $H = [Loc] \rightharpoonup_{fin} [Val]$, ordered discretely, with partial binary operation * defined by

$$h_1*h_2=\left\{egin{array}{ll} h_1\cup h_2 & \mbox{if }h_1\#h_2 \ \mbox{undefined} & \mbox{otherwise,} \end{array}
ight.$$

lack set $Var \rightharpoonup_{fin} [Val]$ of stacks

Standard Int. of Formulas

Given by a forcing relation $s, h \Vdash \phi$, where $FV(\phi) \subseteq dom(s)$:

7

$$s, h \Vdash \forall x. \phi$$
 iff for all $v \in \llbracket \text{Val} \rrbracket. s[x \mapsto v], h \Vdash \phi$

Separation Logic as a BI Hyp.

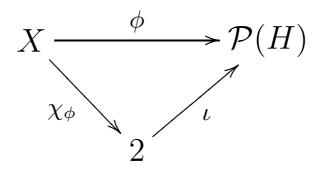
- $igoplus \mathcal{P}(H)$ is a complete Boolean BI algebra, ordered by inclusion.
- Let S be the BI hyperdoctrine induced by the complete Boolean BI algebra
- Theorem $h \in \llbracket \phi \rrbracket (v_1, \dots, v_n)$ iff $[x_1 \mapsto v_1, \dots, x_n \mapsto v_n], h \Vdash \phi$.
- (also works for other models of separation logic, e.g., intuitionistic and permissions models)

Higher-order Sep. Logic

- The BI hyperdoctrine S also gives a model of higher-order separation logic, with $\mathcal{P}(H)$ the set of truth values.
- Now consider some applications of higher-order.

Formalization of Sep. Logic, I

- Applications of sep. logic have used various extensions, with sets of lists, trees, relations, etc.
- Our point here is that they can be seen as trivial definitional extensions, since they are all definable in higher-order logic.
- Let $2 = \{\bot, \top\}$. There is a canonical map $\iota : 2 \to \mathcal{P}(H)$. Say $\phi : X \to \mathcal{P}(H)$ is *pure* if there is a map $\chi_{\phi} : X \to 2$ s.t.



commutes.

Formalization of Sep. Logic, I

- The sub-logic of pure predicates is simply the standard classical higher-order logic of Set.
- Allows to use classical higher-order logic for defining lists, trees, etc.
- In particular, recursive definitions of predicates, earlier done at the meta-level, can now be done inside the higher-order logic itself.

Logical Characterizations...

of classes of formulas:

- ◆ Traditional definition of a *precise*: q is precise iff, for s, h, there is at most one subheap h_0 of h such that $s, h_0 \Vdash q$.
- igoplus Prop. q is precise iff

$$\forall p_1, p_2 : \mathsf{prop} \ . \ (p_1 * q) \land (p_2 * q) \rightarrow (p_1 \land p_2) * q$$

is valid in the BI hyperdoctrine S.

Thus: can make logical proofs about precise formulas.

Characterizations, II

- ◆ Traditional: q is *monotone* iff whenever $h \in [q]$ then also $h' \in [q]$, for all extensions $h' \supseteq h$.
- igoplus Prop. q is monotone iff

$$\forall p : \mathsf{prop} \ . \ p * q \rightarrow q$$

is valid in the BI hyperdoctrine S.

igoplus Prop. q is pure iff

$$\forall p_1, p_2 : \mathsf{prop} \ . \ (q \land p_1) * p_2 \leftrightarrow q \land (p_1 * p_2)$$

is valid in the BI hyperdoctrine S.

Applications in Program Proving

- one can use existential quantification over hidden (abstract) resource invariants to reason about programs using abstract data types, c.f. the stack example from the beginning.
- see also examples in Ynot paper [Nanevski et. al.] and in design patterns paper [Krishnaswami et. al.]
- polymorphic types using universal quantification (generic reasoning)

Ongoing / Future Work

- Systematic investigation of relation between assertion and specification logic.
- HOSL for Java / C#.
- Formalizations / Automation
 - finding loop / data structure invariants
 - theorem proving for higher-order logic
 - experiments so far:
 - * HOSL in Isabelle/HOLCF [Varming-LB: MFPS'08] (Cheney's g.c. verified)
 - Ynot in Coq [Nanevski et. al.: ICFP'08] (finite map data structures + design patterns verified)

Strengthening

Theorem Let \mathcal{P} be an indexed preorder, fibres all BI algebras, preserved under reindexing, with *full* subset types. Then the BI structure on each lattice $\mathcal{P}(X)$ is trivial, i.e., for all $\varphi, \psi \in \mathcal{P}(X)$, $\varphi * \psi \leftrightarrow \varphi \wedge \psi$.

- The BI hyperdoctrine for separation logic has subset types, but not full subset types.
- Full subset types:

$$\frac{y: \{x: X \mid \varphi\} \mid \theta \vdash \psi}{x: X \mid \theta, \varphi \vdash \psi}$$

