
Incremental Interactive Verification of the
Correctness of Object-Oriented Software

Smash the State, One Field at a Time

Hannes Mehnert

A dissertation submitted to the PhD school at the IT University of
Copenhagen for the degree of Doctor of Philosophy.

Submitted: July 2013, Copenhagen
Defended: 11th October 2013, Copenhagen
Final version: December 2013, Copenhagen

Advisors:
Peter Sestoft, IT University of Copenhagen, Denmark
Lars Birkedal, Aarhus University, Denmark

Evaluation committee:
Joseph Roland Kiniry, Technical University of Denmark, Denmark
Marieke Huisman, University of Twente, the Netherlands
Bart Jacobs, KU Leuven, Belgium

Acknowledgements

I want to thank my splendid advisor Peter Sestoft, without whom I
would not have started this PhD in the first place. I met Peter during
a summer school on Lipari in 2007, where he lectured about program-
ming languages. I was fascinated by the attitude and openness of Peter,
characteristics of a professor I have not experienced previously. Peter
supported me fully in all possible areas during my PhD.

I also want to thank Lars Birkedal, my second advisor. Lars kept on
pushing me by asking the questions which motivated me to think more
in the right direction. Both my advisors’ offices were always open for
conversations, and I always felt welcome to ask any questions I had in
mind.

My parents Annette and Michael supported me completely during
my studies, for which I am very grateful. My beloved brother Jan also
supported and motivated me whenever we met.

There are numerous people who motivated me to do this PhD. A
major event to get me started was the ICFP conference in 2005 in Tallinn,
Estonia. I was invited to be there due to the programming contest,
where my team, the Dylan Hackers, won the judge’s prize and also
the second prize. At ICFP I met a lot of wonderful people, I will always
keep Bob Harper in mind, who approached us after the award ceremony
with “You cannot argue against success”. The contest was organized by
the PLT Scheme group, especially Robby Findler motivated me at the
conferences where I met him.

Without the comments and suggestions regarding the design from
Anke Riemer, this dissertation would not be as beautiful as it is. I am
very thankful for her valuable suggestions.

I appreciate all my proofreaders who spent hours to give me feed-
back on this dissertation. This includes Jan Ludewig, Peter Sestoft, Lars

vi

Birkedal, Jan Mehnert, David Christiansen, Helge Pfeiffer, Paolo Tell,
Alec Faithfull, Bastian Müller, and Jesper Bengtson.

I want to thank researchers whom I met over the years, especially
Ronald Garcia, Neel Krishnaswami, Edwin Brady, Jan Midtgaard, and
Alex Potanin.

I stayed with Jonathan Aldrich’s group at CMU in Pittsburgh for 6
months. I want to thank Jonathan, and the whole PLAID group, es-
pecialy Robert Bocchino, Ligia Nistor, Cyrus Omar, Karl Naden, Kevin
Bierhoff, and Ciera Jaspan.

This dissertation started in a research project, where I have learned
a lot from my colleagues Jonas Jensen, Jakob Thamsborg, Jesper Bengt-
son, Filip Sieczkowski, and Kasper Svendsen. The grant for the research
project 09-065888 “Tools and Methods for Scalable Software Verifica-
tion” from the Danish Research Council for Technology and Production
(DFF-FTP). The discussions in the project meetings were always fruitful.

I’m especially thankful to my colleagues Andrea, Maxime, Josu,
Paolo, Helge, and David for fruitful discussions. I want to thank also my
fellow PhD students and colleagues at ITU: Christina Neumayer, Elena
Nazzi, Francesco Zanitti, Gian Perrone, Paolo Tell, Rosalba Giuffrida,
Paolo Burelli, Dario Pacino, Alberto Delgado Ortegon, Josu Martinez,
Maxime Beauquier, Jasmine Duchon, Nicolas Pouillard, Daniel Gustafs-
son, Andrea Campagna, Alec Faithfull, David Christiansen, Helge Pfeif-
fer, Kostas Pantazos, Ornela Dardha, Joe Kiniry, and Kasper Østerbye.

Furthermore I want to thank all my current and former flatmates, es-
pecially Johan Kjær Thillemann, who accomodated me selflessly when I
arrived in Copenhagen. I thank My other lovely flatmates Andreas Ras-
mussen, Vidir Valberg Guðmundsson, Aslak Ransby, Philip Lavender,
and Seraina Nett. My deepest thanks go to Ishtar for all the wonderful
espresso she brewed.

I want to thank everyone whom I forgot to mention, especially my
good friends in Berlin and at lots of places in the world (just to name
a few: Wellington, New York, Vadestedet, Montreal, Malmö, San Fran-
cisco, Hamburg, Boston, Zagreb, Lärz, Split, Rome, Vitoria-Gasteiz).

I want to thank my evaluation committee, whose feedback was very
helpful and improved this dissertation.

Last but not least I want to thank emacs, my favorite operating sys-
tem (besides FreeBSD) and development environment in which I spend
a lot of time since more than 10 years.

Abstract

Development of correct object-oriented software is difficult, in particular
if a formalised proof of its correctness is demanded.

A lot of current software is developed using the object-oriented pro-
gramming paradigm. This paradigm compensated for safety and secu-
rity issues with imperative programming, such as manual memory man-
agement. Popularly used integrated development environments (IDEs)
provide features such as debugging and unit testing to facilitate devel-
opment of robust software, but hardly any development environment
supports the development of provable correct software.

A tight integration of a proof assistant into a widely used IDE lowers
the burden for a developer to prove the correctness of her software.

This dissertation introduces Kopitiam, a plugin for the industry-grade
IDE Eclipse to interactively prove the correctness of Java software using
separation logic. Kopitiam extends Eclipse’s Java development perspec-
tive with specifications and proof script annotations, and provides an
Eclipse development environment for the well-known interactive proof
assistant Coq. Kopitiam does not need to be trusted, because the va-
lidity of the constructed correctness proof is checked by Coq. In this
dissertation I describe the requirements of Kopitiam and solutions to
implementation challenges by presenting several generations of Kopi-
tiam. Kopitiam’s usefulness is evaluated qualitatively in an experiment.

I also present a formalised correctness proof of the snapshotable tree
data structure. For efficiency, our implementation uses copy-on-write and
shared mutable data, not observable by a client. I further use this data
structure to verify the correctness of a solution to the point location
problem. The results demonstrate that I am able to verify the correctness
of object-oriented software which is used in the wild.

Contents

Contents ix

I Set and Setting 1

1 Introduction 3
1.1 Motivation . 4
1.2 Thesis . 5
1.3 Research Questions . 5
1.4 Contributions . 6
1.5 Background . 8
1.6 Disclaimer . 22

2 Design Space of Verification Tools 23
2.1 User Interface . 23
2.2 Verification Back-end . 25
2.3 Specification Logic . 26
2.4 Target Language . 27
2.5 Trusted Code Base . 27
2.6 Which Features Does Kopitiam Implement? 28

3 Related Work 31

4 Future Work 33

5 Conclusion 35

x Contents

II Research Papers: Kopitiam 37

6 Kopitiam: Modular Incremental Interactive Full Functional Static Verification of
Java Code 39
6.1 Introduction . 39
6.2 Overview of Kopitiam . 40
6.3 Example Verification of Factorial . 43
6.4 Related Work . 46
6.5 Conclusion and Future Work . 47

7 Kopitiam – a Unified IDE for Developing Formally Verified Java Programs 49
7.1 Introduction . 49
7.2 Using Kopitiam . 53
7.3 Implementation . 62
7.4 Discussion and Future Work . 67
7.5 Related Work . 68
7.6 Conclusions . 71

8 Evolutionary Design and Implementation of Kopitiam 73
8.1 Introduction . 74
8.2 Background . 74
8.3 Software Development and Software Verification Workflow 76
8.4 Requirements . 81
8.5 Implementation Challenges . 85
8.6 Conclusion . 89
8.7 Future Work . 90

9 Empirical Evaluation of Kopitiam 93
9.1 Introduction . 93
9.2 Research Objective . 94
9.3 Methodology of the Evaluation . 95
9.4 Questionnaire . 95
9.5 Participants and Setup . 97
9.6 Results . 98
9.7 Threats to Validity . 100
9.8 Discussion . 101
9.9 Conclusion . 103

Contents xi

III Research Papers: Case Studies 105

10 Formalized Verification of Snapshotable Trees: Separation and Sharing 107
10.1 Introduction . 107
10.2 Case Study: Snapshotable Trees . 109
10.3 Abstract Specification and Client Code Verification 113
10.4 Implementation A1B1 . 119
10.5 On the Verification of Implemented Code 123
10.6 Related Work . 125
10.7 Conclusion and Future Work . 126
10.8 Appendix . 128

11 Functional Verification of a Point Location Algorithm 131
11.1 Introduction . 131
11.2 Point Location Problem . 132
11.3 Solution . 134
11.4 Implementation . 138
11.5 Specification . 145
11.6 Verification . 152
11.7 Related Work . 156
11.8 Conclusion . 156
11.9 Future Work . 158

12 Verification of Snapshotable Trees using Access Permissions and Typestate 161
12.1 Introduction . 161
12.2 Interface Specification and Client Code Verification 166
12.3 Proof Patterns and Verification of the Implementation 168
12.4 Related Work . 176
12.5 Conclusion and Further Work . 177

Bibliography 181

List of Figures

1.1 The syntax of SimpleJava. Keywords are bold. The metavari-
ables x and y range over program variables, f over field
names, m over method names, C over class names, e1, e2 and
r over expressions, s1 and s2 over statements. A program
P is a list of classes C and interfaces I . The metavariables
interface-name, class-name, fname, method-name and a are
identifiers, which have to conform to the usual Java rules. . . 10

1.2 Auxiliary functions for field and method body lookup. 12
1.3 Imperative part of call-by-value big step operational seman-

tics of SimpleJava. 13
1.4 Object-oriented part of call-by-value big step operational se-

mantics of SimpleJava. 14
1.5 Imperative part of Hoare rules for SimpleJava. 15
1.6 Extended SimpleJava syntax extended with method precon-

dition specpre and postcondition specpost, which are logical as-
sertions. 17

1.7 The auxiliary function mSpec. 17
1.8 Hoare rules for static and dynamic method calls. 17
1.9 Hoare rules that account for the use of a heap. 19
1.10 Inference rules for separation logic 20

2.1 Feature diagram of verification tools. The most important
aspects of features are indicated by a filled circle. 24

2.2 Feature diagram of verification tools. The highlighted fea-
tures implemented in Kopitiam. 28

6.1 Java and Coq editor side-by-side; closeup of Coq editor in
Figure 6.2 . 41

List of Figures xiii

6.2 Coq editor and goal viewer of Kopitiam, closeup of Figure 6.1 42
6.3 Coq proof script containing an error and Eclipse’s problems

tab . 42
6.4 Java code implementing factorial, using the single class FacC

containing the single instance method fac. The method calls
to Coq.requires and Coq.ensures form the specification.
The arguments to these method calls are transformed into
Coq definitions, shown in Figure 6.7. 43

6.5 SimpleJava code implementing factorial, translated by Kopi-
tiam from the Java code in Figure 6.4. 44

6.6 Factorial implemented in Gallina, Coq’s pure functional pro-
gramming language. 44

6.7 Specification of the Java factorial in Coq, translated by
Kopitiam from the calls to the static Coq.requires and
Coq.ensures in Figure 6.4. 45

6.8 Coq proof script verifying the correctness of our Java factorial
in Figure 6.4 regarding our Coq implementation in Figure 6.6. 45

7.1 Kopitiam workflow. The user writes an annotated program
in the Java perspective, and a model of the program in the
Coq perspective. Each method is verified one at a time. The
user steps through the statements of the method, using inline
Coq commands to update the proof state where necessary.
Kopitiam automatically produces a certificate of correctness
when all methods have been verified. 53

7.2 A small list library. The library has one inner Node class,
which is used for each list element. The Node class allows
us to differentiate between an empty list (where head is null)
and the null pointer. 54

xiv List of Figures

7.3 Screenshot of the Coq perspective in Kopitiam. To the left, the
package explorer and the Coq theory outline; in the middle,
the theory file and the error window; to the right, the goal
viewer which has the Coq context at the top, and the current
goal at the bottom. The 0 indicates that there is currently only
one subgoal. In the theory file, the green background indi-
cates how far the theory has been processed by Coq. More-
over, the term Zabs has been underlined and marked as an
error since no lemma or tactic with that name exists; by press-
ing Ctrl-Space we obtain a list of possible completions. 55

7.4 Specification of the methods in the list library. Note how
they all use the backtick operator (`), or the /V notation, so
that predicates that normally take values as arguments take
program variables instead. This applies not only to our own
List_rep and Node_rep predicates, but also to functions from the
Coq standard library like cons. The ensures clauses in nodeLength
and length both have the return variable "r", which indicates
that any value returned will be assigned to this variable. . . . 58

7.5 Screenshot of the Java perspective. In the middle, the Java ed-
itor with antiquotes for specifications and proofs. The green
background indicates commands processed by Coq. The blue
background indicates a verified method; its tooltip contains
the lemma statement and its proof, including the calls to the
forward tactic. To the right, the goal viewer, displaying the
Hoare triple of the remaining loop body. 60

7.6 Proof of the reverse method. User guided proofs are required
to prove the loop invariant for loop entry and for the loop
body, and to prove the postcondition. Coq automatically in-
troduces new logical variables for the binders we use. The
logical variables v in the invariant represents xs from the
specification, and x0 in the frame represents h from the defi-
nition of List_rep (page 57). 62

List of Figures xv

7.7 The singleton object CoqTop encapsulates the communication
with coqtop. The method writeToCoq sends a message to the
standard input stream of coqtop. The CoqTop singleton starts a
process and connects the standard output and error streams
to a BusyStreamReader instance each. When a BusyStreamReader in-
stance receives a message, it forwards that to the singleton
object PrintActor. This is the central distributor of messages,
and first parses the received string into a more structured ob-
ject and sends that asynchronously to all subscribers on the
right side. 64

8.1 The common development workflow - edit, compile, run, de-
bug - is extended with the additional step verify. 77

9.1 Timeline of the semester: the first 8 weeks had “Software
Foundations” as their topic, followed by the midterm evalua-
tion. Afterwards one week was spent on different verification
tools, which was followed by a 7 week project. At the end we
gathered feedback with the questionnaire. 97

10.1 Snapshotable tree client code verification 117
10.2 Heap layout of the trees during execution of client code. . . . 119

11.1 Nested regions: the outer region A contains completely the
inner region B. Anything outside of the region A does not
belong to a region. The query point q belongs to the inner
region B. 133

11.2 Partition of Figure 11.1 into five slabs. 135
11.3 Slab trees of Figure 11.2. 136
11.4 Heap layout of the snapshotable trees of Figure 11.3. 137
11.5 Implementation of method Build. 141
11.6 Implementation of method Query. 142
11.7 Four line segments, presented in Figure 11.7a, and their or-

dering. 144

12.1 A typestate example showing a File class. 164

List of Tables

6.1 Comparison of verification tools 46

8.1 Comparison of features of different Kopitiam generations. . . 89

9.1 Perceived usefulness of Kopitiam, for each question U1-U6,
the table shows the arithmetic mean (x), the statistical median
(x̃) and the standard deviation (σ). The data was gathered
with a seven point Likert scale ranging from 1 (extremely
likely) to 7 (extremely unlikely). 99

9.2 Perceived ease of use of Kopitiam, for each question E1-E6,
the table shows the arithmetic mean (x), the statistical median
(x̃) and the standard deviation (σ). The data was gathered
with a seven point Likert scale ranging from 1 (extremely
likely) to 7 (extremely unlikely). 99

9.3 Self-predicted future use of Kopitiam, for both questions F1
and F2, the table shows the arithmetic mean (x), the statis-
tical median (x̃) and the standard deviation (σ). The data
was gathered with a seven point Likert scale ranging from 1
(extremely likely) to 7 (extremely unlikely). 100

9.4 Cronbach’s α of the investigated variables. 101

Part I

Set and Setting

Chapter 1

Introduction

This dissertation is about verifying the correctness of object-oriented
software. First, I will define the meaning of these words.

The Oxford English Dictionary1 (OED) defines the verb verify as make
sure or demonstrate that (something) is true, accurate, or justified. It origi-
nates from the Latin verb verificare, according to Wiktionary2. The verb
verificare was first attested circa 1250. Its etymology is verus (true) and
facio (do, make). The meaning is confirm the truth.

When we apply verification to correctness of software, there is no
obvious truth. The OED defines software as a program used by a computer,
and a program as a series of statements to control the operation of a computer.

What I actually mean by verifying the correctness of software is that
I specify the desired behaviour, model the execution of the software,
and demonstrate that the execution of the software corresponds to the
specified behaviour. Verifying the correctness of software boils down
to convincing a reader that the model is precise, that the specification
expresses the desired requirements, and that the proof is correct.

Human fallibility makes it difficult to trust the correctness of a proof.
An interactive proof assistant is a program that implements formal logic,
and aids in developing and checking mathematical proofs. If the inter-
active proof assistant accepts a proof and the reader trusts the interac-
tive proof assistant, then the reader only needs to be convinced that the
specification and the model are correct.

1http://oxforddictionaries.com/definition/english/verify
2https://en.wiktionary.org/wiki/verifico

http://oxforddictionaries.com/definition/english/verify
https://en.wiktionary.org/wiki/verifico

4 Chapter 1. Introduction

1.1 Motivation

Most contemporary software is buggy. Who has not encountered a
crashing operating system?

Furthermore, there have been several software bugs with lethal con-
sequences. In the 1980s the software controlling the radiation therapy
machine Therac-25 caused overdoses of radiation [76] to patients by se-
lecting an incorrect operating mode. More recently, a similar overexpo-
sure of radiation therapy patients [25] has also been caused by faulty
software. In a survey article Wong et al. [118] describe several catas-
trophic accidents and in which way software was responsible for them.

It is not my goal to scare the reader away and to live in a cave like
in the Stone Age. Rather, I emphasize that software verification is a
useful research area in the contemporary world. In recent decades, a
lot of progress was made, and there were many successful verification
projects. To assess a verification project, we have to bear in mind both
the statement that was proven and the verification tool that was used,
which is also software that might contain bugs. In this dissertation I
mainly use the interactive proof assistant Coq, that is considered to be
a very practical and rigorous form of proving currently available due to
its small trusted kernel and wide use.

In contrast to verification, software testing alone is not sufficient for
equipment that is essential for survival. Already more than 40 years
ago, Dijkstra remarked that “Testing shows the presence, not the absence of
bugs” [38]. Testing yields witnesses that software works correctly for
particular inputs, whereas verification provides a universally quantified
correctness statement. The topic of this dissertation is how to verify the
correctness of object-oriented programs.

I focus on object-oriented software, because a large amount of con-
temporary software is implemented using the object-oriented paradigm.
The object-oriented paradigm extends imperative programming with
encapsulation. An imperative program consists of a series of statements
that modify the program state. Java is a popular object-oriented program-
ming language, of which we formalised a subset for this dissertation.

A challenging property for the verification of correctness of object-
oriented software is to deal with mutable state. The discovery of sep-
aration logic [100] about a decade ago enables us to reason modularly
about software with mutable state.

1.2. Thesis 5

Another aspect of software development is maintenance. Software is
a dynamic system, as Lehman [73] described over 40 years ago. Soft-
ware evolves over time to comply with changing requirements. It is also
refactored, which means that semantics-preserving transformations are
applied for maintainability. Brooks [28] also points out that software
maintenance is an underestimated cost.

Most object-oriented software is developed with the help of an in-
tegrated development environment, which provides several supporting
tools for the programmer, such as navigating, documenting, refactoring,
debugging, profiling, unit testing, and execution of software.

This dissertation presents Kopitiam, which integrates the well-known
proof assistant Coq tightly into the industry-grade integrated develop-
ment environment Eclipse. I use an embedding of higher-order separa-
tion logic into Coq to verify the correctness of object-oriented software.
By tight integration into Eclipse I enable developers to maintain their
proofs.

1.2 Thesis

The thesis of this dissertation is that modular interactive verification of
correctness of object-oriented software is achievable and can be tightly
integrated into the software development workflow. I have a high faith
in the validity of the correctness proofs for a reason: these proofs are
formalised (mechanically checkable) in the well-known proof assistant
Coq.

1.3 Research Questions

The thesis gives rise to several research questions:

1. Can a proof assistant, in particular Coq, be used to verify concrete
programs, in addition to the verification of meta-theoretical prop-
erties of a programming language?

2. Are off-the-shelf proof assistants mature enough to cope with the
size of proofs of real object-oriented software?

6 Chapter 1. Introduction

3. Are object-oriented programs verifiable using separation logic, es-
pecially if they use shared mutable state not observable by a client?

4. Can a verified program be re-used, or does the correctness proof
need to be developed from scratch each time the program is mod-
ified and extended?

5. Can a verification tool be integrated into a software development
environment such that it is usable by developers?

6. What are the desired properties, forming the design space, of ver-
ification tools? How populated is the design space?

These research questions are answered throughout this dissertation.
More specifically, research question 1 is answered by our development
of Charge! [11, 12]. To answer research question 2 I conducted case study
which verifies an implementation of snapshotable trees in Chapter 10.
The same chapter also answers research question 3, with an application
of the data structure in Chapter 11. By re-using the verification of the
snapshotable tree data structure in the proof of the planar point loca-
tion problem in Chapter 11, I answer research question 4. The usability
of verification tools is answered throughout Part II, including design
and implementation challenges, and a preliminary user evaluation in
Chapter 9. Research question 6 is answered by my feature analysis in
Chapter 2.

1.4 Contributions

In Part I (Chapters 1–5) I describe the background and environment of
this dissertation. In Chapter 1 I introduce this dissertation. Related work
of this dissertation is split into two chapters: In Chapter 2 I present a
feature analysis [61] of verification tools, and in Chapter 3 I relate to
other research fields. In Chapter 4 I describe the future work and in
Chapter 5 I conclude this dissertation.

The contribution of this dissertation is twofold: Firstly in Part II
(Chapters 6–9), I present Kopitiam, an plugin for the integrated envi-
ronment Eclipse that tightly integrates Java development and proofs of
correctness in Coq.

1.4. Contributions 7

Secondly in Part III (Chapters 10–12), I show a functional correctness
proof of a solution to the point location problem. This problem resides in
geometry: find for a queried point the smallest containing region, when
given a subdivision of a plane into regions upfront.

1.4.1 Kopitiam

I present an initial implementation of Kopitiam in Chapter 6. A more
mature generation of Kopitiam and a workflow integrating program de-
velopment with correctness proofs are described in Chapter 7. I de-
scribe the evolutionary design and implementation of four generations
of Kopitiam in Chapter 8 by showing the requirements and the intended
workflow for a software developer. Chapter 9 presents a pilot empirical
evaluation of the usability of Kopitiam by using the technology accep-
tance model [40, 71].

1.4.2 Point Location

There are several solutions for the point location problem [41, Chap-
ter 6] that use space linear in the number of line segments and pro-
vide a logarithmic query time. The planar subdivision is given by a set
of non-overlapping line segments which form closed regions. My pre-
sented solution [101] meets these time and space boundaries by using
the snapshotable tree data structure [46].

The snapshotable tree data structure is a standard binary tree aug-
mented with a snapshot operation, that returns a persistent read-only
view of the tree in constant time. The implementation of the data struc-
ture uses shared mutable data between the tree and its snapshots and
applies copy-on-write to lazily unshare subtrees. The sharing is not ob-
servable by a client, which is reflected in our specification. I verified
the full functional correctness of the snapshotable tree data structure in
Chapter 10 implemented in Java using separation logic embedded into
Coq.

In Chapter 11 I present a Java implementation of a solution to the
point location problem using snapshotable trees, and develop a specifi-
cation and outline a proof of the correctness of the query method.

8 Chapter 1. Introduction

I use access permissions and typestate, a lightweight verification ap-
proach, to verify the correct API usage of the snapshotable tree data
structure in Chapter 12.

1.5 Background

The foundation for this dissertation is mathematics, more precisely the
field of formal logic. We use model theory, one branch of formal logic,
to describe the semantics of a programming language. We use proof
theory, another branch of formal logic, to reason about the correctness
of programs.

In this section I describe the object-oriented programming language
used in this dissertation, its operational semantics, and its Hoare rules
for verification. Afterwards, I present how we handle method calls and
where separation logic gets into the game. I show the foundations of
proof assistants and how we formalised the presented programming
language in Coq. Finally, I discuss software engineering with a focus on
software maintenance.

1.5.1 Programming Language

I use a small object-oriented programming language throughout this
dissertation. My programming language, which I refer to as SimpleJava,
is a subset of the widely used programming language Java. The focus
of SimpleJava is object-orientation in a sequential setting.

In my opinion object-orientation is a paradigm which inherits from
procedural programming, an extension to imperative programming. An
imperative program consists of a series of statements that modify pro-
gram state. Procedural programming organizes a series of statements
into a named block, also called procedure or method. A procedure is
an abstraction, which enables modular development of software. In
the object-oriented paradigm a developer combines both data fields and
procedures into objects. One family of object-oriented languages are
class-based languages. Both Java and SimpleJava are class-based. A
program is a combination of classes, which contain data fields and pro-
cedures. A class contains compile time information about a program,
whereas an object is a run time instance of a class.

1.5. Background 9

The unique characteristics of object-oriented programming are not
generally defined, instead I reproduce here its key features as described
by Pierce [98, Chapter 18]. In addition to classes there are interfaces,
which do not contain program code, but describe only operations and
signatures thereof. An interface may have multiple implementations
with different representations. A method invocation involves looking up
the method name at run time in a method table of the object on which
the method was invoked. This process is called dynamic dispatch. Object-
oriented programs use encapsulation to hide the internal representation
of an object from the outside world (other objects). This encapsulation
greatly improves readability and maintainability, because the internal
representation can only be accessed and modified within a small, lo-
calizable region of the program. Instead of requiring a concrete class
as method argument, an interface can be used. With subtyping a class
implementing an interface can be passed to a method where the imple-
mented interface is expected. Most representations behave in a similar
way, this is called behavioural subtyping [77]. Classes can share parts of
their program code from their superclass by inheritance. A method body
can invoke another method of the same object by using open recursion:
a reference to the object is implicitly passed around by using the this
parameter (also called late binding).

I claim that SimpleJava is an object-oriented programming language.
In SimpleJava both interfaces and classes can be defined. The method call
rule implement the dynamic dispatch discipline. A class in SimpleJava is
a list of fields and methods, thus it can be used to encapsulate the in-
ternal representation. Whilst SimpleJava supports subtyping, there is no
support for inheritance (or subclassing). An object method in SimpleJava
receives an implicit this parameter, which is late bound.

In type theory the programming language Featherweight Java [57]
is very popular. SimpleJava has slightly different features than Feather-
weight Java: SimpleJava supports interfaces, and control flow operations
such as assignment, conditional and loop. In contrast, Featherweight
Java does not include interfaces and also no assignment. Featherweight
Java includes inheritance by subclassing. It includes a cast operation,
that claims a certain run time type for an object and possibly fails dur-
ing execution. The syntax of SimpleJava is close to Featherweight Java in
the areas where features are common. Because Featherweight Java does

10 Chapter 1. Introduction

P ::= I C
I ::= interface interface-name extends interface-name {N}
C ::= class class-name implements interface-name {T fname,M}

N ::= K T method-name (T a)
M ::= K T method-name (T a){s; return r}

s ::= s1; s2 | x := y. f | x. f := e | x := e | y := x.m(e) | skip | assert(e)
| x := new C() | while e do {s} | if e then {s1} else {s2}

e ::= e1 aop e2 | e1 bop e2 | !e | x | true | false | this | null | number
aop ::= + | ∗ | −
bop ::= && | ||

T ::= boolean | int | void | C
K ::= static | ε

Figure 1.1: The syntax of SimpleJava. Keywords are bold. The metavariables x and y range over
program variables, f over field names, m over method names, C over class names, e1, e2 and r over
expressions, s1 and s2 over statements. A program P is a list of classes C and interfaces I . The
metavariables interface-name, class-name, fname, method-name and a are identifiers,
which have to conform to the usual Java rules.

not include assignment, and thus does not need a store, the operational
semantics of SimpleJava are different from Featherweight Java.

The popular object-oriented programming language used in the wild
is Java. Java includes a lot of features which are not supported in Sim-
pleJava, such as inheritance, non-local exits, arrays, parametric polymor-
phism, exceptions, methods with variable arity, and more. SimpleJava
is a strict subset of Java, which enables us to use Java development tools
and Java compilers for SimpleJava.

The syntax of SimpleJava is shown in Figure 1.1, which defines a pro-
gram P to be a list of interfaces I and classes C. An interface consists
of a name, a list of superinterfaces and a list of method signatures N .
A class consists of a name, a list of implemented interfaces, and a list of

1.5. Background 11

typed fields T fname and method implementations M. A method sig-
nature N consists of optional modifiers, the type of its return value, the
method name, and a list of arguments T a. A method implementation
M consists of optional modifiers, the type of its return value, its method
name, a list of arguments T a, and the body, which is a list of statements
s and a single return statement. There are several kinds of statements s:
sequential composition, field read, field write, assignment, method call,
skip, assert, allocation, while loop, and conditional. Expressions e do
not access the heap, and are either binary arithmetic operations aop, bi-
nary boolean operations bop, negation of an expression, variable access,
or a literal constant: true, false, this, null, or a literal number. Binary
arithmetic operations aop are addition, multiplication, and subtraction.
The binary boolean operations bop are the logical “and” and the logical
“or”. A type T is either a boolean, an integer, a trivial uninhabited type
void, or a class C. The only supported modifier K is static to indicate
a class method, rather than an instance method. A class method has no
access to fields, cannot call instance methods, and does not receive an
implicit this as argument.

In contrast to Java, SimpleJava does distinguish between expressions
and statements. At certain places, such as arguments of a method call
or guards of conditionals and loops, SimpleJava only supports expres-
sions. This restriction can be eluded by a semantics-preserving program
transformation which introduces temporary variables. In fact, Kopitiam
implements this transformation.

1.5.2 Operational Semantics

Operational semantics describe how a program is executed. I focus on
big-step operational semantics, which describe how the overall results
of a program is obtained. For each statement a rule is defined which
describes the reduction of the statement. I describe the big-step opera-
tional semantics of SimpleJava’s statements.

I define, similar to Featherweight Java, the field and method lookup
auxiliary functions in Figure 1.2. In contrast to the corresponding Feath-
erweight Java definitions, the SimpleJava auxiliary functions do not re-
curse, because all fields and methods are defined in the current class
definition, since SimpleJava does not support subclassing. The function
fields returns the list of field names of a specific class. I use the function

12 Chapter 1. Introduction

class C implements interface-name {T fname,M}
fields(C) = fname

class C implements interface-name {T fname,M}
Tr m(Ta a){s; return r} ∈ M

mBody(m, C) = (a, s; return r)

Figure 1.2: Auxiliary functions for field and method body lookup.

mBody to lookup the pair of argument names and the method body. A
global class table in which defined classes and interfaces are stored is
implicitly assumed.

We use run time type information for dynamic dispatch. SimpleJava
has no static typing rules, because they are very similar to Featherweight
Java and our Coq formalisation uses SimpleJava without static types.

The imperative part of my call-by-value big step operational seman-
tics for SimpleJava is shown in Figure 1.3. The rules only describe the
successful reduction of statements; I do not describe erroneous reduc-
tions. The reduction H,S , s −→ H′,S ′ takes a triple consisting of a
global store, the heap H, a local store, the stack S , and a statement s,
and reduces to a pair consisting of a modified heap H′ and a modified
stack S ′.

The first rule R-Seq handles sequencing of statements: if a statement
s1 reduces to the modified heap H′ and the modified stack S ′, and an-
other statement s2 reduces this heap and stack to a modified heap H′′
and a modified stack S ′′, then the sequence of s1 and s2, written s1; s2,
reduces from the initial heap H and initial stack S to the final heap H′′
and the final stack S ′′.

The heapH represents the global store, and is a partial function from
a pair of address and field name to value:

H : (address, fname) ⇀fin val

I use ι as metavariable to range over addresses. The stack S represents
local storage, and is a partial function from a variable name to its value:

S : var ⇀fin val

1.5. Background 13

H,S , s1 −→ H′,S ′ H′,S ′, s2 −→ H′′,S ′′

H,S , s1; s2 −→ H′′,S ′′
R-Seq

JeKS = v
H,S , x := e −→ H,S [x 7→ v]

R-Assign

H,S , skip −→ H,S
R-Skip

JeKS = true
H,S , assert(e) −→ H,S

R-Assert

JeKS = true
H,S , s −→ H′,S ′ H′,S ′, while e do s −→ H′′,S ′′

H,S , while e do s −→ H′′,S ′′
R-While

JeKS = false
H,S , while e do s −→ H,S

R-WhileEnd

JeKS = true H,S , s1 −→ H′,S ′

H,S , if e then s1 else s2 −→ H′,S ′
R-IfTrue

JeKS = false H,S , s2 −→ H′,S ′

H,S , if e then s1 else s2 −→ H′,S ′
R-IfFalse

Figure 1.3: Imperative part of call-by-value big step operational semantics of SimpleJava.

I use JeKS to notate the evaluation of the expression e using the stack
S . Such an evaluation on the stack is pure, and computes a value. It is
trivial and not shown here.

An assignment R-Assign of an expression e to a stack variable x is
evaluated by first evaluating the expression e on the stack S to its value
v. The original stack S is extended so that the value of the variable x
is v. A skip statement has no effect, as shown by the R-Skip rule. To
reduce an assertion R-Assert, the asserted expression e has to evaluate
to true on the stack S . If it does not, no rule applies and the program
does not execute further. I use two rules for a loop: R-While is invoked
if the guard e evaluates on the stack to true. The loop body s is reduced
once, followed by a reduction of the loop with the modified heapH′ and

14 Chapter 1. Introduction

S(y) = ι H(ι, f) = v
H,S , x := y. f −→ H,S [x 7→ v]

R-FieldRead

S(x) = ι (ι, f) ∈ dom(H) JeKS = v
H,S , x. f := e −→ H[(ι, f) 7→ v],S

R-FieldWrite

mBody(m, C) = (a, s; return r)
H, [a 7→ JeKS], s −→ H′,S ′ JrKS ′ = v
H,S , y := C.m(e) −→ H′,S [y 7→ v]

R-StaticCall

S(x) = ι ι :: C mBody(m, C) = (a, s; return r)
H, [this 7→ ι, a 7→ JeKS], s −→ H′,S ′ JrKS ′ = v

H,S , y := x.m(e) −→ H′,S [y 7→ v]
R-DynCall

ι fresh (ι, _) 6∈ dom(H) fields(C) = fi

H,S , x := new C() −→ H[(ι, fi) 7→ null],S [x 7→ ι]
R-New

Figure 1.4: Object-oriented part of call-by-value big step operational semantics of SimpleJava.

modified stack S ′. If the guard e evaluates to false, in rule R-WhileEnd,
then the reduction of the loop terminates. A conditional statement either
reduces to the consequent s1 in rule R-IfTrue if the guard e evaluates to
true or to the alternative s2 in rule R-IfFalse if the guard e evaluates to
false.

In Figure 1.4 I show the operational semantics of the object-oriented
part of SimpleJava. The dynamic type operation, ι :: C, used in rule R-
DynCall, asserts that reference ι refers to an object of class C. The rule
R-New handles object allocation by assigning the value null to all fields
of the instantiated class. This is safe because SimpleJava is untyped,
thus the values null, 0 and false are freely convertible.

1.5.3 Hoare Logic

Hoare logic [55] is a methodology to reason about imperative programs,
which consist of a series of statements. The main idea is to have a set of

1.5. Background 15

{P} skip {P}
Skip

{P} s1 {Q} {Q} s2 {R}
{P} s1; s2 {R}

Seq

{P ∧ e} s {P}
{P} while e do s {P ∧ ¬e}

While

{P ∧ e} s1 {Q} {P ∧ ¬e} s2 {Q}
{P} if e then s1 else s2 {Q}

If
P ` e

{P} assert(e) {P}
Assert

{P} x := e {∃v.P[v/x] ∧ x = e[v/x]}
Assign

Figure 1.5: Imperative part of Hoare rules for SimpleJava.

assertions, which are logic predicates, and applying for each statement
in the series its corresponding Hoare rule. I use an intuitionistic logic in
this dissertation, which means that an assertion is considered true only if
a proof of it can be constructed. The conclusion of a Hoare rule consists
of a Hoare triple {P} s {Q}: a precondition {P}, the statement s for
which this rule is applicable, and a postcondition {Q}. The precondition
{P} describes the assertions which must be valid before the statement s
can be executed. After execution of the statement the assertions of the
postcondition {Q} holds. I define Hoare rules for partial correctness:
only if a statement terminates, its Hoare triple has to be valid. My
Hoare rules for SimpleJava are derived from the operational semantics
presented in the last section. Furthermore, the rules are formulated in
a way that simplifies formalised reasoning about them. An example is
that the amount of side conditions is minimized, which can be seen in
the FieldRead rule later.

In Figure 1.5 I define the Hoare rules for the imperative part of Sim-
pleJava. The first rule is Skip, which is read as: assuming nothing, if the
assertion P holds, then after skip is executed P still holds. The second
rule Seq is used for sequencing statements: if the rule for a statement s1

gives rise to Q being valid, assuming that P was valid before execution,
and another statement s2 requires the same Q being valid as precon-
dition and ensures that R is valid as postcondition, then the execution

16 Chapter 1. Introduction

of s1; s2 in sequence requires the validity of the precondition P and en-
sures the validity of the postcondition R. For a loop we define the rule
While: the loop body s is only executed if the guard e was true, thus
its precondition requires P∧ e to be valid. The postcondition of the loop
body ensures that P is valid, because we have no information about the
guard. This gives rise to the triple: the precondition P has to be valid,
and after execution of the loop the postcondition P ∧ ¬e is valid. If
the guard e would have been valid, the loop would have executed once
more. The rule for a conditional If with a guard e under the assumption
that the precondition of the consequent s1 requires P ∧ e to be valid and
ensures that the postcondition Q is valid, and the precondition of the
alternative s2 requires P ∧ ¬e to be valid and its postcondition ensures
that Q is valid, the precondition of the conditional requires P to be valid
and the postcondition ensures Q to be valid. An assertion Assert has a
precondition that requires P gives rise to e being valid, and ensures the
validity of the same postcondition P. I do not consider the case that the
assertion is not valid, because I am only considering partial correctness.
The last rule Assign is used for assignment: the precondition requires P
to be valid, the postcondition ensures the validity of the assigned value
v, which is substituted for every x in P and an assertion that x = e[v/x],
which substitutes all x for v in the expression e.

An important rule in Hoare logic is rule of consequence, which al-
lows to strengthen the precondition and to weaken the postcondition of
a Hoare triple.

P ` P′ {P′} s {Q′} Q′ ` Q

{P} s {Q}
Consequence

There are two challenges we need to address next: the first is method
calls and the second is shared mutable data. To reason about method
calls, we extend the syntax of SimpleJava to include pre- and postcon-
ditions for method definitions. I use separation logic, an extension
of Hoare logic, to reason about object-oriented features of SimpleJava
which mutate the heap like instantiation, field read, and field write.

1.5.4 Method Calls

I extend the syntax for method definitions to include a pre- and post-
condition, as shown in Figure 1.6. Both the pre- and the postcondition

1.5. Background 17

M ::= requires : specpre

ensures : r.specpost

K T method-name (T a){s; return r}

Figure 1.6: Extended SimpleJava syntax extended with method precondition specpre and postcondition
specpost, which are logical assertions.

class C implements interface-name {T fname,M}
requires : P, ensures : r.Q, Tr m(Ta a){s; return r} ∈ M

mSpec(m, C) = {P} _ {r.Q}

Figure 1.7: The auxiliary functionmSpec.

. mSpec(C, m) = {P} _ {r.Q} mBody(C, m) = (p, s)
{P[e/p]} y := C.m(e) {∃v.Q[y, e[v/y]/r, p]}

StaticCall

. mSpec(C, m) = {P} _ {r.Q} mBody(C, m) = (p, s)
{x :: C ∧ P[x, e/p]} y := x.m(e) {∃v.Q[y, x[v/y], e[v/y]/r, p]}

DynCall

Figure 1.8: Hoare rules for static and dynamic method calls.

are logical assertions. The postcondition r.specpost is a unary predicate,
which receives the actual return value r of the method. For a trivial
return value (of type void) we omit it, instead we use solely specpost.

The function mSpec is defined in Figure 1.7, which returns the Hoare
triple of a given method m and a given class C. The return value r of the
method is in scope of the postcondition Q.

I use the auxiliary function mSpec to define the Hoare rules for dy-
namic and static method calls in Figure 1.8. The rule StaticCall for
a static method call substitutes the actual parameters e for the formal
parameters p in the precondition P by [e/p]. In the postcondition Q the
binding y to the returned value is substituted with the concrete returned

18 Chapter 1. Introduction

value, in addition to the actual parameters for formal parameters sub-
stitution. The substitution in the rule DynCall for a dynamic method
call is a bit more complicated, because it has to deal with the implicit
this argument passed around.

Methods in most object-oriented programming languages may call
each other or themselves recursively, due to late binding this behaves
well and is also well defined. From a verification perspective we have a
problem: we cannot simply postulate the correctness of a method with-
out verifying it, and we also cannot linearize the order of the methods
in which to verify their correctness, due to circularity and self-recursion.
I use the later operator (.) from Gödel-Löb logic to support recursion.
The intuition behind it is that assuming a formula P is valid in a future
world, the fact that it is true can already be used now. This is a common
trick to handle recursion [4].

. P ` P

` P
Löb

1.5.5 Separation Logic

Separation logic [100] was discovered by Reynolds and O’Hearn. It is an
extension to Hoare logic that integrates the concept of a heap. A heap is
modelled as a partial function from a pair of an address and field name
to a value. I use the points-to relation ι. f 7→ v to express the assertion
that field f of object ι points to value v in the heap.

The separating conjunction connective P ∗ Q expresses the validity
of both P and Q, each for a disjoint heap. It gives rise to the frame rule:

{P} s {Q} ∀x ∈ fv R. s does not modify x

{P ∗ R} s {Q ∗ R}
Frame

The frame rule allows local reasoning: if a triple {P} s {Q} is valid
for small heaps P and Q, it is also valid for bigger heaps P ∗ R and Q ∗
R, as long as the extension R is disjoint from the small heaps and s does
not modify any free variable of R. Thus, the frame rule enables modular
reasoning. A proof for a class can be reused in another program if the
class is encapsulated in such a way that no other parts of the program
can directly access and modify the heap used by the class.

1.5. Background 19

P ` y. f 7→ e
{P} x := y. f {∃v.P[v/x] ∧ x = e[v/x]}

FieldRead

{x. f 7→ _} x. f := e {x. f 7→e}
FieldWrite

{true} x := new C() {∀∗ f ∈ fields(C). x. f 7→null}
New

Figure 1.9: Hoare rules that account for the use of a heap.

In Figure 1.9 I define the Hoare rules for the remaining statements of
SimpleJava: field read, field write and allocation. The rule FieldRead

requires that the object y with field f points to some value e, which is
then used as the new value of x by substitution in the postcondition.
Writing to a field (FieldWrite) requires that the object x with field f
points to something (_). This something is replaced by the assigned
expression e in the postcondition. The rule for allocation New uses
the iterating separating conjunction (∀∗) to express that all fields of the
freshly allocated object x point to null.

To deal with abstraction and interfaces some extensions were pro-
posed by Parkinson et al. [94, 95]. To reason about data abstraction
via quantification over resource invariants I use a higher-order separation
logic, as proposed by Biering et al. [20]. A higher-order separation logic
allows for quantification over predicates in both the assertion logic (the
logic of pre- and post-conditions) and the specification logic (the logic
of Hoare triples).

In this dissertation I use an intuitionistic version of separation logic.
In intuitionistic separation logic the truth of assertions is closed under
heap extension, which is appropriate for a garbage-collected language
such as Java, rather than a language with manual memory management,
such as C.

I show the inference rules of intuitionistic separation logic in Fig-
ure 1.10: ∗ is commutative and associative, the relationship between the

20 Chapter 1. Introduction

P ∗ Q ` Q ∗ P (P ∗ Q) ∗ R ` P ∗ (Q ∗ R)
P ∗ Q ` R
P ` Q −∗ R

P ` Q −∗ R
P ∗ Q ` R

P ` Q
P ∗ R ` Q ∗ R P ∗ emp ` P P ` P ∗ emp

Figure 1.10: Inference rules for separation logic

separating implication −∗ and ∗, that a fresh heap R can be added, and
that the empty heap emp can be added or removed.

1.5.6 Proof Assistants

The correspondence discovered by Curry and Howard [56] is that proofs
are programs. More precisely, constructive logic can be seen as the typed
lambda calculus. A theorem can be seen as a type, and evidence of
its correctness as data. There is a one-to-one correspondence between
introduction and elimination rules, and cut elimination corresponds to
normalization. Furthermore, implications are functions, a sum type rep-
resents a disjunction, a product type a conjunction, a universal quan-
tification corresponds to a dependent function (Π type), an existential
quantification can be seen as the dependent pair (Σ type).

This correspondence is used by proof assistants: verifying a proof
is equivalent to type checking a program, using an expressive enough
type system. Coq, the proof assistant that we use in this dissertation, is
an LCF-style proof assistant. This means that only a small kernel has to
be trusted, while further theories, like set theory and natural numbers,
are built on top of the kernel.

To be convinced that a proof is correct, there are only a few com-
ponents which have to be trusted: the kernel of the proof assistant, the
programming language compiler which compiled the proof assistant to
assembly, the operating system executing the proof assistant and the
hardware on which the operating system is executed. None of these
components are specific to the concrete proof. All of them come off-the-
shelf, fulfill a more general purpose, and can be tested extensively on
other tasks. In contrast to a proof written on paper, which has to be

1.5. Background 21

reviewed by mathematicians, the just-mentioned components are tested
on a daily basis by a huge number of people around the world.

1.5.7 Charge!

The presented operational semantics for SimpleJava and higher-order
separation logic is formalised in the Charge! framework [11, 12] in the
proof assistant Coq. Charge! is roughly 10000 lines of Coq code, which
was developed by Jesper Bengtson, Jonas Jensen and Filip Sieczkowski.
Charge! and Kopitiam were developed side by side within the research
project “Tools and Methods for Scalable Software Verification” (Grant
09-065888 from the Danish Research Council for Technology and Pro-
duction (DFF-FTP)). While Charge! enables interactive reasoning about
SimpleJava programs, Kopitiam serves as the frontend for a devel-
oper. An interesting aspect of Charge! in contrast to other formalisa-
tion projects is that Charge! allows to reason about programs written in
SimpleJava, rather than verifying only metatheoretical properties of Sim-
pleJava. While Charge! supports abstract predicates to reason abstractly
about interfaces, this is not supported by Kopitiam yet. An interface in
Charge! is represented as a Coq definition in the specification logic.

1.5.8 Software Engineering

More than 30 years ago, Lehman [73] described that most software de-
velopment time is spent in maintenance. Software documentation is im-
portant for its maintenance. Knuth developed literate programming [65]
to integrate development of programs with documentation. Several con-
temporary programming languages and integrated development envi-
ronments supporting their development promote documentation facili-
ties embedded into the source code as comments, such as Javadoc. The
rise of such integrated documentation systems ensure us a lot of soft-
ware with up to date documentation.

Verification of the correctness of software is also important, further-
more it suffers from the same problem: to enable well maintained proofs
we need integration of verification and software development into the
same tool. In Chapter 8 I motivate a tight integration and present a
solution by adapting the programming workflow.

22 Chapter 1. Introduction

1.6 Disclaimer

This dissertation contains several research papers previously published.
The chapters for which this is the case mention venue and collaborators
just below the title of the chapter. Only minor modifications, such as
spelling fixes, adjustments to the layout, and unification of the citations
were applied. Dated footnotes in this dissertation constitute updates to
the published papers.

Chapter 2

Design Space of Verification Tools

There is a large variety of verification tools, which differ in certain as-
pects. While there are tools available which apply lightweight verifi-
cation technologies, such as checking for the absence of null pointer
dereferences, checking for the absence of out of array bounds accesses,
or checking for the compliance to a specified API protocol, we focus on
full functional verification tools. Furthermore, we only take tools which
statically verify the correctness into consideration. We do not study ver-
ification tools which emit run time checks to achieve correctness proofs.

We conducted a feature analysis, a method for discovering and rep-
resenting commonalities amongst related software [61], of verification
tools for imperative programming languages. By conducting this fea-
ture analysis we discovered five important aspects of verification tools:
the user interface, the verification mechanisms they use, the specifica-
tion logic, the supported programming language, and the trusted code
base. Figure 2.1 shows a feature diagram [103] based on our analysis.
In the following we describe the different features in more detail and
present verification tools with these features.

2.1 User Interface

We distinguish two fundamentally different approaches towards verifi-
cation of programs: fully automated or interactive. A verification tool
with full automation receives the program to be verified and a specifica-
tion thereof as input, and applies techniques to verify the specifications.

24 Chapter 2. Design Space of Verification Tools

Verification
Tool

Trusted
Code Base

Specification
Logic

Verification
back-end

Target
Language

User
Interface

LCF

SMT

Custom
rules

InteractiveAutomated

Complete
IDE

Generation
of proof

obligations

Embedding
into proof
assistant

Algorithms
proven

Custom
prover

LCF

CJava
(imperative)

Arrays

GenericsInheritance

Callbacks
(higher order)

Dynamic
Frames

Multi-sorted
FOL

Custom Separation
logic

First-orderHigher-order

Figure 2.1: Feature diagram of verification tools. The most important aspects of features are indicated
by a filled circle.

These techniques include symbolic execution, proof search, entailment
checking, and inference of anti-frames. Examples of fully automated
tools are Spec# for C# [7] and ESC/Java2 for Java [36]. Some automated
tools also use separation logic, like Smallfoot [13], SLAyer [14], Space
Invader [32], Infer [30], and jStar [45].

We distinguish between three types of interactive verification: either
(1) proof obligations are generated, which have to be proven in a sepa-
rate proof assistant, or (2) the verification tool is tightly integrated into a
proof assistant, or (3) the verification tool provides a complete integrated
development environment.

2.2. Verification Back-end 25

The first approach has the disadvantage that when software evolves,
the proofs have to be done again. This approach is used by Jahob [70]
and Loop [113]. Loop translates JML-annotated Java programs to proof
obligations for the interactive proof assistant PVS. Jahob uses both inter-
active and automated theorem provers to discharge its proof obligations.
It uses the interactive proof assistants Coq and Isabelle, and the auto-
mated theorem provers SPASS, CVC3 and Z3.

The second approach, integration into a proof assistant, has the dis-
advantage that a custom programming language is integrated into a
proof assistant. First the software for which correctness is verified has
to be developed in that custom programming language and furthermore
the equivalence of the original software with the translated software has
to be shown. This approach is used by Ynot [35] and Bedrock [34].
Both extend the proof assistant Coq with an imperative programming
language.

The third approach, a complete IDE, has been used for designing
development environments such as KeY [1], VeriFast [58], Why3 [23],
Mobius PVE [9] and Dafny [74]. These verification tools differ in the
features of the IDE not related to verification, as compilers, debuggers,
unit testers, profilers, etc. Also, these verification tools differ in other
aspects of our feature model.

2.2 Verification Back-end

We distinguish verification tools by the back-end they use. The back-
end can be a LCF-style interactive proof assistant, an SMT solver, or a
solver which can be extended by a developer with custom proof rules.
The powerfulness of verification back-ends is different, while using an
interactive proof assistant a developer can use a higher-order logic, SMT
solvers can only discharge first-order logic assertions. Also, other fea-
tures of our feature analysis are affected by the verification back-end:
an interactive proof assistant requires an interactive user interface, and
the trusted code base of a solver extended with custom proof rules is
enlarged by those custom proof rules, unless they are proven sound.

Several verification tools use a LCF-style interactive proof assistant:
the verification tools which integrate into a proof assistant (Ynot [35] and
Bedrock [34]) and also several other as Jahob [70], Why3 [23], JACK [8].

26 Chapter 2. Design Space of Verification Tools

The satisfiability modulo theories (SMT) problem is a decision prob-
lem for logical formulae, which use theories expressed in (classical) first-
order logic with equality. Fast automatic solvers for SMT are available,
like Z3. The advantage is that the solving is completely automated, no
manual interaction is required. Tools like VeriFast [58] and Dafny [74]
use a SMT solver to discharge proof obligations.

The verification tool jStar [45] lets a user extend the proof rules which
are used. This implies the problem that these user-defined rules can be
unsound, since there are no checks for their soundness.

2.3 Specification Logic

A wide variety of logics, which vary in expressiveness, are used to write
specifications. We distinguish between custom logics, which might not
have formalised semantics, first-order logics, which can only express
first-order predicates, dynamic frames, and separation logic. Parkin-
son and Summers [93] recently described the relationship between first-
order separation logic and implicit dynamic frames, which can be trans-
lated into each other. Both separation logic and dynamic frames model
the concept of storage, the heap. While some tools use a first-order
separation logic, other tools use a higher-order separation logic.

The tool Jahob [70] uses a multi-sorted first-order logic to express
specifications.

First-order separation logic is used in verification tools such as Ver-
iFast [58], jStar [45], Infer [30], SLAyer [14], Smallfoot [13], and Space
Invader [32]. The advantage of first-order separation logic is that deci-
sion procedures can be used for reasoning, whereas the disadvantage is
that higher-order programs cannot be specified easily.

Higher-order separation logic is more expressive than first-order sep-
aration logic, but automated reasoning about higher-order logic is unde-
cidable. Thus, a verification tool using higher-order logic needs manual
interaction to discharge proof obligations. One example for a tool using
higher-order separation logic is Ynot [35].

Dynamic Frames [62] are a mechanism to express pre- and post-
condition with reasoning about the heap. The verification tools Veri-
Cool [106] and Dafny [74] use dynamic frames.

2.4. Target Language 27

Some tools use custom logics, like ESC/Java2 for Java [36], which
uses JML and code contracts [7, 48]. While these are powerful, there is
no formalised meaning of these custom logics such as JML.

2.4 Target Language

We distinguish between two sorts of programming languages: either
low-level imperative programming languages that allow pointer arith-
metics, such as C, or object-oriented programming languages like Java.
Both programming language families have different challenges: while in
C support for reasoning about pointer arithmetics is crucial, modularity
by interfaces is important in Java.

The verification tool VeriFast [58] targets both C and Java programs.
Infer [30] is automated and targets C programs.

A huge number of verification tools target an imperative object-
oriented Java-like programming language, with fewer or more advanced
features like arrays, inheritance, generics, and callbacks. Jahob [70],
VeriCool [106] and jStar [45] target Java programs. Dafny [74] targets
a custom imperative programming language with arrays and generics.

2.5 Trusted Code Base

The trusted code base describes how much software needs to be trusted
to consider a program to be correct. If the verification tool itself does
not have any formalisation, its complete implementation is part of the
trusted code base of proofs accomplished with the tool. Some verifica-
tion tools are implemented inside of LCF-style proof assistants, others
have the correctness of their core algorithms verified inside of a LCF-
style proof assistant.

Smallfoot [13] is an example of a verification tool where the correct-
ness of its core algorithms are proven [107] with a proof assistant. The
core algorithms of VeriFast have also been proven correct [115] in Coq.

Other verification tools rely on a custom developed prover, whose
correctness is shown either on paper or has to be trusted. Examples of
this kind are VeriCool [106] and Dafny [74].

Some verification tools emit proofs which can be checked by a LCF-
style proof assistant. The trusted code base of these tools is very small,

28 Chapter 2. Design Space of Verification Tools

Verification
Tool

Trusted
Code Base

Specification
Logic

Verification
back-end

Target
Language

User
Interface

LCF

SMT

Custom
rules

InteractiveAutomated

Complete
IDE

Generation
of proof

obligations

Embedding
into proof
assistant

Algorithms
proven

Custom
prover

LCF

CJava
(imperative)

Arrays

GenericsInheritance

Callbacks
(higher order)

Dynamic
Frames

Multi-sorted
FOL

Custom Separation
logic

First-orderHigher-order

Figure 2.2: Feature diagram of verification tools. The highlighted features implemented in Kopitiam.

since only the core of the LCF-style proof assistant has to be trusted.
Without the verification tool itself, but only by using the proof assis-
tant, the validity of proofs of correctness of software can be checked.
Ynot [35] and Bedrock [34] are examples of this kind of tools, among
others.

2.6 Which Features Does Kopitiam Implement?

The Kopitiam tool presented in this dissertation fits as follows in Fig-
ure 2.2 into the landscape of verification tools. The different aspects
are: it is an interactive tool which is integrated into the industry-grade

2.6. Which Features Does Kopitiam Implement? 29

IDE Eclipse. In the back-end the proof assistant Coq is used to dis-
charge proof obligations interactively. Using Coq has several advan-
tages: the trusted code base is small, the theories developed in Coq can
be used, the modularization and abstraction features of Coq are imme-
diately available in Kopitiam. This shows some unique characteristics
of Kopitiam; other verification tools implement a custom prover which
sometimes needs to be extended with abstraction features, and its code
base still has to be trusted. Kopitiam uses Charge! [11, 12], a higher-
order separation logic embedding into Coq. Charge! implements nested
triples [104], which allows to embed Hoare triples into the assertions
and gives rise to reason about first-class functions. So far we have not
used Charge! and Kopitiam to reason about callbacks and delegates, but
that should be straightforward using Svendsen et al.’s work [110]. The
target language of Kopitiam is Java with inheritance, so far neither ar-
rays nor generics are supported, which . Kopitiam’s trusted code base is
the LCF-style proof assistant Coq, because Kopitiam emits proofs which
can be checked using only the proof assistant Coq with Charge!. Charge!
contains an operational semantics for Java, which is part of the trusted
code base. Additionally, Kopitiam’s translation of Java programs into
Coq definitions has to be trusted. The target group of Kopitiam are
developers which have a background in formal methods.

Chapter 3

Related Work

In Chapter 2 we presented a feature analysis of verification tools, which
should be considered to be part of the related work of this dissertation.

Shape Analysis Shape analysis attempts to discover the shapes of data
structures in the heap. This analysis works reasonably well for sim-
ple data structures which are known upfront, like linked lists or binary
search trees. There is also work on using separation logic with shape
analysis [44, 31].

A very interesting approach using shape analysis, separation logic
and real-world data structures [72] reasons about the correctness of a
data structure found in the Linux scheduler. This data structure com-
bines a tree to insert tasks with a priority queue to schedule tasks by
using several references in a task object.

Data structure fusion [54] is a slightly different approach: instead of
a data structure with shared mutable state only a basic implementation
is specified in a relational algebra. A fuse operation, working on rela-
tional indexes, specifies where the physical data structure has sharing.
The advantage of this approach is that a basic data structure implemen-
tation is easier to verify correct, and the fuse operation is correct by
construction.

Permissions Boyland [26] developed fractional permissions, which are
used by a variety of research groups to track access to objects. The idea
is to provide exclusive access to an object using 1, and shared access with
fractions thereof. With exclusive access both read and write operations

32 Chapter 3. Related Work

are safe, whereas a permission with a fraction smaller than 1, but greater
than 0, can safely access the object read only. A fraction of 0 gives no
access to the object. Annotations, which are either keywords (“shared”,
“unique”, “immutable”) or actual fractions, allow developer to annotate
references with their access.

Access permission moves the burden to the developer and allow lots
of automated tools to do automatic verification, as long as the data struc-
tures are straightforward enough. In a higher-order logic fractional per-
missions can be embedded, thus fractional permissions are less powerful
than higher-order logics.

In a different line of research [24] I integrated access permissions into
the type system of a functional language (SML and F#) in order to make
the program automatically concurrency safe. The main idea is that if
there is unique access to a cell, this can be done concurrently without
leading to race conditions.

Another area of research, so called object propositions [91], use ac-
cess permissions and linear logic to verify the correctness of programs
in an automated way. I extended object propositions to verify the com-
posite pattern. During the verification I discovered some shortcomings
of an earlier verification of the composite pattern [19] using typestate.

Dynamic Frames Dynamic frames were initially developed by Kas-
sios [62] to reason about imperative programs. More recently, Parkin-
son [93] compares separation logic and implicit dynamic frames. Dy-
namic frames and a first-order separation logic with fractional permis-
sions are isomorphic, if considering a total heap in the separation logic.
In separation logic, reasoning is usually done on a partial heap. Several
verification tools use implicit dynamic frames to reason about object-
oriented software.

Immutability If a reference is declared as immutable, similarly to final
in Java, this information allows compiler optimizations. Also, reason-
ing about immutable data structures is easier. An interesting approach
is taken by using immutability for verification [39], which allows im-
mutability annotations of predicates, and verifies those first. In a second
phase, the mutatable predicates are verified.

Chapter 4

Future Work

I cannot predict the future. Nevertheless, the research papers of this
dissertation contain ideas for future work, which are briefly summarized
in this chapter.

The Eclipse plugin Kopitiam, which is presented in this dissertation,
requires some improvements regarding usability. Once it is more use-
ful and developers of Coq theories can use it for incremental compila-
tion, navigation, dependency management, etc., it will be released and
announced to a wider public. The Danish research council already ac-
cepted a grant proposal (FTP, number 12-132607, grant holder is Jesper
Bengtson) to fund a research assistant for two years to develop Kopi-
tiam further, in combination with funding a postdoc for three years to
improve Charge!, our Coq formalisation. The preliminary evaluation of
Kopitiam’s usefulness should be extended by further evaluating the use
of Kopitiam by teaching future courses using Kopitiam. In Section 8.7 I
present several ideas for future work for Kopitiam.

Once our separation logic embedding Charge! is capable of handling
callbacks and generics, the verification of the solution to the point lo-
cation can be formalised. This will show the practicality of our paper-
based verification approach and if successful, it will result in a proof
with a high confidence. Another challenge is to develop a cost model
for our Java semantics and then, using this, to verify the time and space
complexity of the solution to the point location problem.

In this dissertation I have looked into sequential data structures
which contain non-observable sharing. The snapshotable tree data struc-
ture in Chapter 10 is a case study for such a sequential data structure

34 Chapter 4. Future Work

with non-observable sharing. There are more advanced implementa-
tions of the same data structure available, which we did not yet prove.
To achieve correctness proofs of non-observable sharing, I looked into
approaches to verification of concurrent algorithms. One extension for
future work is to enrich our Java semantics with concurrency and adapt
the verification approaches that I used successfully for sequential pro-
grams.

Verification of the correctness of object-oriented programs is still a
challenging research area. I do not believe that someone can grab object-
oriented programs off-the-shelf and enhance them with proofs of their
correctness. Rather, these programs have first to be refactored, so that
they have a clearer structure and contain less mutable state. Evidence
for this is described in Chapter 11. An alternative approach to reason-
ing about imperative programs is to reimplement them in another pro-
gramming language with dependent types, like Agda or Idris. These
programming language have a powerful type system which can be used
to carry proofs of programs.

A highly related topic to this dissertation is integrated development
environments for dependently typed programming languages. Coq is
a dependently typed programming language, but the types are mostly
used for proofs, rather than programming. There is much more static in-
formation available from dependently typed programs, due to more pre-
cise types. In the future I aim to look into using this information to write
excellent integrated development environments for dependently typed
programming languages, such as Idris. These environments should not
only support the development of a program, but also the maintainence
of a program over its entire lifetime.

Chapter 5

Conclusion

I have implemented several generations of Kopitiam, which is a plugin
for the industry-grade integrated development environment Eclipse that
integrates the well-known proof assistant Coq to support verification of
the correctness of software. I also conducted a qualitative evaluation
about the usefulness of one recent generation with positive results. Al-
though there are still issues to address, I am confident that Kopitiam is
a robust foundation for future verification tools.

Furthermore, I conducted case studies on full functional verification
of data structures which share parts of the heap in a non-trivial way.
The correctness of one implementation of snapshotable trees is fully for-
malised in Coq using Charge!. I laid the basis for verifying the correct-
ness of a solution to the point location problem. By working towards
full functional verification of the point location problem I learned to
smash the state, e.g. for the comparator of line segments, before writing a
specification and proof for a program. The favorable programming style
if one aims to verify the correctness of her program is to use mutable
state only when necessary. Programs have to be either designed and
implemented with verification in mind, or refactored with this aim.

I confirm the main thesis of this dissertation: modular incremen-
tal interactive verification of correctness of object-oriented software is
achievable and can be tightly integrated into the software development
workflow. Kopitiam is a research prototype which provides evidence for
this thesis. The case studies I conducted with Charge! provide evidence
that it is mature enough to verify the correctness of data structures with
non-trivial shared state.

Part II

Research Papers: Kopitiam

Chapter 6

Kopitiam: Modular Incremental Interactive
Full Functional Static Verification of Java
Code
Originally published in: NASA Formal Methods 2011 [79]

Abstract

We are developing Kopitiam, a tool to interactively prove full
functional correctness of Java programs using separation logic by
interacting with the interactive theorem prover Coq. Kopitiam is
an Eclipse plugin, enabling seamless integration into the workflow
of a developer. Kopitiam enables a user to develop proofs side-by-
side with Java programs in Eclipse.

6.1 Introduction

It is challenging to reason about object-oriented programs, because these
contain implicit side effects, shared mutable data and aliasing. Reason-
ing with Hoare logic always has to consider the complete heap, which
does not preserve the abstractions of the programming language. Sepa-
ration logic [100] extends Hoare logic to allow modular local reasoning
about programs with shared mutable state.

Coq [15] is an interactive theorem prover based on the calculus of
constructions with inductive definitions. Kopitiam generates proof obli-

40 Chapter 6. Kopitiam: Modular Incremental Interactive Full Functional Static Verification of Java

gations from specifications written in Java, which the user needs to dis-
charge by providing Coq proof scripts. A proof script is a sequence of
tactics.

The contribution is Kopitiam, a tool combining the following verifi-
cation properties:

• Modular Extensions of a verified Java library can rely on the spec-
ification of the library, without reverifying the library.

• Incremental While parts of the code can be verified and proven,
other parts might remain unverified, and development of proofs
and code can be interleaved, as in Code Contracts [48].

• Interactive Automated proof systems like jStar [45] are limited in
what they can prove. We use an interactive approach where the
user discharges the proof obligations using provided tactics, thus
Kopitiam does not limit what a user can prove.

• Full functional Given a complete, precise formal specification the
proof shows that the implementation adheres to its specification.

• Static The complete verification is done at compile time, without
execution of the program. Other code verification approaches, like
design by contract [83], may depend on run time checks. Especially
in mission critical systems, compile time verification is indispens-
able, since a failing run time check would be disastrous.

The structure of the paper is: we give an overview of Kopitiam in
Section 6.2, demonstrate a detailed example in Section 6.3, relate Ko-
pitiam to similar tools in Section 6.4, and in Section 6.5 conclude and
present future work.

6.2 Overview of Kopitiam

Kopitiam provides an environment that is familiar to both Java pro-
grammers and Coq users. Coq developers use Proof General (based
on Emacs) or CoqIDE (a self-hosted user interface). Many Java pro-
grammers use an IDE for development, the major Java IDEs are Eclipse
and IntelliJ. To integrate seamlessly into the normal development work-
flow we develop Kopitiam as a plugin for Eclipse, so a developer does

6.2. Overview of Kopitiam 41

Figure 6.1: Java and Coq editor side-by-side; closeup of Coq editor in Figure 6.2

not have to switch tools to prove her code correct. We base Kopitiam
on Eclipse because it is open source, popular and easily extendible via
plugins. While an Eclipse integration for Coq [33] already exists, Kopi-
tiam provides a stronger integration of Java code and Coq proofs. This
is achieved by a single intermediate representation for both code and
proofs. A change to either code or proof directly changes this interme-
diate representation.

In Figure 6.1 Kopitiam is shown. It consists of a standard Eclipse
Java editor on the left and a specially developed Coq proof editor on
the right. The content of the Java editor is the method fac, a recursive
implementation of the factorial function. The Java code contains a call
to Coq.requires and a call to Coq.ensures, whose arguments are the
pre- and postcondition of the method. The right side shows the Coq
lemma fac_valid, stating that factorial fulfills its specification, together
with parts of the proof script (full code in Section 6.3). Due to the single
intermediate language, Kopitiam reflects every change to the content of
one editor to the other editor, e.g. a change to the specification on the
Java side changes the Coq proof obligation.

Kopitiam consists of a Java parser, with semantic analysis, a trans-
former to SimpleJava (presented in Section 6.2.2), a Coq parser, and com-
munication to Coq via standard input and output. All these parts are ex-
pressible in a functional way, so we chose Scala [92] as the implementa-
tion language of Kopitiam. Scala is a type-safe functional object-oriented
language supporting pattern matching. It compiles to Java bytecode, al-
lowing for seamless integration with Eclipse (every Scala object is a Java
object and vice versa). Kopitiam is open source under the Simplified
BSD License and available at https://github.com/hannesm/Kopitiam.

https://github.com/hannesm/Kopitiam

42 Chapter 6. Kopitiam: Modular Incremental Interactive Full Functional Static Verification of Java

Figure 6.2: Coq editor and goal viewer of Kopitiam, closeup of Figure 6.1

Figure 6.3: Coq proof script containing an error and Eclipse’s problems tab

6.2.1 Coq Editor and Goal Viewer

To develop proofs, Kopitiam provides a Coq editor and a goal viewer,
shown in Figure 6.2. The Coq code on the left side states the lemma
fac_step: for all n, n greater than 0 implies that n ∗ fac(n - 1) equals
fac(n) (lines 1-3). All except the last 2 lines of the Coq code that have
been processed by Coq (highlighted in blue in Kopitiam, the unpro-
cessed ones are black). The goal viewer on the right side shows the
current state of proof assumptions, proof obligations and subgoals. The
current state is after doing induction over n and discharging the base
case using the intuition tactic. The remaining proof obligation is the
induction step.

As in other Coq user interfaces, there are buttons (not shown) to step
forward and backward through the proof.

If Coq signals an error while processing, this error is highlighted in
Kopitiam. Figure 6.3 shows on the left side the erroneous Coq proof
script next to Eclipse’s corresponding problems tab. Errors are indi-
cated by red wiggly lines, similar to the way programming errors are
displayed in Eclipse.

6.2.2 The SimpleJava Programming Language

We formalized SimpleJava, a subset of Java, and implemented it us-
ing a shallow embedding in Coq [12]. SimpleJava syntax is a prefix
(S-expression) notation of Java’s abstract syntax tree. Dynamic method
dispatch is the core ingredient of object oriented programming, and sup-

6.3. Example Verification of Factorial 43

class FacC {
int fac (int n) {

3 Coq.requires("ege n 0");
Coq.ensures("ret ·=· facZ n");
int x;

6 if (n > 0)
x = n * fac(n - 1);

else
9 x = 1;

return x;
}

12 }

Figure 6.4: Java code implementing factorial, using the single classFacC containing the single instance
method fac. The method calls to Coq.requires and Coq.ensures form the specification. The
arguments to these method calls are transformed into Coq definitions, shown in Figure 6.7.

ported by SimpleJava. A SimpleJava program consists of classes and in-
terfaces. An interface contains a set of method signatures and a set of in-
terfaces, that it inherits from; a class consists of a set of implemented in-
terfaces, a set of fields, and a set of method implementations. A method
body consists of a sequence of statements (allocation, conditional, loop,
call, field read, field write and assignment) followed by a single return
statement. Automatic transformation of unstructured returns to a sin-
gle return would impose method-global control flow changes; and the
SimpleJava code would distract the Java programmer while proving.

6.3 Example Verification of Factorial

An example program is the factorial, shown in Figure 6.4. Figure 6.5
shows the SimpleJava code, automatically translated by Kopitiam. A call
(lines 3-5) consists of the return value binding (x), the receiver (this), the
method (fac), the argument list and the receiver class (TClass "FacC").

In Figure 6.6 the fixpoint fac is defined, which is the common fac-
torial function on natural numbers. Our Java code uses integers, so we
additionally need facZ, which extends the domain of fac to integers.

The specification of a program consists of specifications for all classes
and interfaces. An example specification of method fac is shown in

44 Chapter 6. Kopitiam: Modular Incremental Interactive Full Functional Static Verification of Java

(cif (egt (var_expr "n") 0)
(cseq

3 (ccall "x" "this" "fac"
((eminus (var_expr "n") 1))
(TClass "FacC"))

6 (cassign "x"
(etimes

(var_expr "n")
9 (var_expr "x"))))

(cassign "x" 1))

Figure 6.5: SimpleJava code implementing factorial, translated by Kopitiam from the Java code in Fig-
ure 6.4.

Fixpoint fac n :=
match n with

3 | S n => (S n) * fac n
| 0 => 1

end.
6

Definition facZ :=
fun (n:Z) =>

9 match ((n ?= 0)%Z) with
| Lt => 0
| _ => Z_of_nat(fac(Zabs_nat n))

12 end.

Figure 6.6: Factorial implemented in Gallina, Coq’s pure functional programming language.

Figure 6.7, whose code is automatically generated by Kopitiam from
the Java code (Figure 6.4). The precondition (line 3 of both Figures)
requires that the parameter n must be equal or greater (ege) than 0. The
postcondition (line 4 of both Figures) ensures that the returned value
(ret) is equal to facZ n. The bottom block of Figure 6.7 defines Spec,
which connects the specification fac_s to the actual program, class FacC,
method fac.

Figure 6.8 shows the hand-written proof that the Java implementa-
tion of factorial satisfies its specification. The proof uses the forward tac-
tic [3]. This extracts the first Hoare triple; the resulting proof obligation

6.3. Example Verification of Factorial 45

Definition fac_s :=
Build_spec unit (fun _ =>

3 (ege "n" 0,
((("ret":expr) ·=· (facZ ("n":expr))):asn))).

6 Definition Spec := TM.add
(TClass "FacC")
(SM.add "fac" ("n" :: nil, fac_s) (SM.empty _))

9 (TM.empty _).

Figure 6.7: Specification of the Java factorial in Coq, translated by Kopitiam from the calls to the static
Coq.requires and Coq.ensures in Figure 6.4.

Lemma fac_valid : |=G {{spec_p Fac_spec.fac_spec ()}}
Fac.fac_body {{spec_qret Fac_spec.fac_spec () "x"}}.

3 Proof.
unfold_valid. forward. forward.
call_rule (TClass "FacC") ().

6 - substitution. unentail. intuition.
- reflexivity. substitution.
forward. unentail. intuition. subst. simpl.

9 rewrite Fac_spec.facZ_step; [reflexivity | omega].
forward. unentail. intuition. subst.
destruct (Z_dec (val_to_int k) 0).

12 assert False; [|intuition]. destruct s; intuition.
rewrite e. intuition.

Existential 1:=().
15 Qed.

Figure 6.8: Coq proof script verifying the correctness of our Java factorial in Figure 6.4 regarding our
Coq implementation in Figure 6.6.

(Hoare triple) is the original precondition combined with the extracted
postcondition, the remaining statement sequence, and the original post-
condition. If the extracted precondition cannot be discharged trivially,
the user has to do it. After applying forward twice (line 4, for cif and
cseq), the proof obligation for the call is discharged by the call_rule

tactic (line 5).

46 Chapter 6. Kopitiam: Modular Incremental Interactive Full Functional Static Verification of Java

Name T Language Specification logic Automation
Krakatoa sta Java; While multi-sorted FOL several provers
Ynot sta HO imp separation logic Coq tactics
jStar sta Java; Jimple separation logic proof rules, SMT
Spec# dyn C# C#/Java run time assertions
Dafny inc imp + generics Boogie Z3 (SMT-solver)
Kopitiam inc Java; SimpleJava separation logic Coq tactics

Table 6.1: Comparison of verification tools

6.4 Related Work

Several currently available proof tools are compared in Table 6.1. Only
Krakatoa [49], jStar [45] and Kopitiam target Java. Krakatoa uses Why,
which uses a simple While language where mutable variables cannot
be aliased. The automated proof system jStar targets Jimple [112], a
Java intermediate language built from Java bytecode. Kopitiam directly
translates from a subset of Java source code to SimpleJava.

Different code contracts [83] implementations focus on C# (Code
Contracts [48]) and Java (JML [29]). Code contract implementations
translate some non-trivial specifications to run time checks, while we
focus on static verification. The integration of code contracts in an IDE
is beneficial, as the developer can incrementally develop code and proofs
in the same environment. An example for an industrial grade IDE with
code contracts is the KeY tool [1], based on UML and OCL. Code Con-
tracts [48] do not focus on full functional correctness, while some JML
tools such as Mobius [9] do. In contrast to those tools, we use separation
logic, thus a user does not need to specify frame conditions.

Dafny [74] is a proof tool for an imperative programming language
supporting generics and algebraic data types, but not subtyping. Dafny
is well integrated into Microsoft Visual Studio and also allows incremen-
tal proofs. It provides a multi-sorted first-order logic as specification
logic.

Ynot [35] uses a shallow embedding in Coq for a higher-order imper-
ative programming language without inheritance. Thus to verify code
with Ynot the program has to be reimplemented in the Ynot tool.

The jStar [45] tool is fully automated and does a proof search on
available proof rules, which are extensible by the user. A user can in-
troduce unsound proof rules, since these are treated as axioms and are

6.5. Conclusion and Future Work 47

not verified. Moreover it is difficult to guide the proof search in jStar,
since the order of rules matters. Both Ynot and Kopitiam use the proof
assistant Coq, in which proof rules have to be proven before usage.

6.5 Conclusion and Future Work

We are developing Kopitiam, an Eclipse plugin for interactive full func-
tional static verification of Java code using separation logic. Our im-
plementation is complete enough to prove correctness of factorial and
in-place reversal of linked lists. We currently do not handle the complete
Java language, e.g. unstructured returns and switch statements. Class
to class inheritance is also not supported. Kopitiam does not support
more advanced Java features like generics and exceptions.

We plan to integrate more automation: We will provide context
aware suggestions, a technique widely used in Eclipse for code com-
pletion, for specifications, whose syntax we also plan to improve. We
will provide separation logic lemmas and tactics for Coq, allowing the
user to focus on the non-trivial proof obligations. We also want the user
to discharge separation logic proof obligations instead of exposing the
Coq layer.

We are also working on more and larger case studies ranging from
simple object-oriented code (Cell and ReCell from [95]), to the com-
posite pattern and other verification challenges [116], to real-world data
structures like Linked Lists with Views [60] and Snapshotable Trees [46],
to the C5 collection library [66], the extensive case study of our research
project.

Acknowledgement

We want to thank Peter Sestoft, Jesper Bengtson, Joe Kiniry and the
anonymous reviewers for their valuable feedback.

Chapter 7

Kopitiam – a Unified IDE for Developing
Formally Verified Java Programs
Originally published in: ITU Technical Report 167, May 2013 [81]

Joint work with: Jesper Bengtson; ITU Copenhagen

Abstract

We present Kopitiam, an Eclipse plugin for certifying full func-
tional correctness of Java programs using higher-order separation
logic. Kopitiam extends the Eclipse Java IDE with an interactive
environment for program verification, powered by the general-
purpose proof assistant Coq. Moreover, Kopitiam includes a de-
velopment environment for Coq theories, where users can define
program models, and prove theorems required for the program
verification.

7.1 Introduction

It is difficult to design software that is guaranteed to work. For most
software, correctness is inferred by extensive and costly testing, but this
can only prove the presence of errors, not their absence. For safety criti-
cal systems this is unsatisfactory. The ideal is to specify the desired be-
haviour of a program using logics and mathematics, and then formally
prove that the program satisfies its specification; this guarantees that all
cases have been covered and that no stone has been left unturned. For-
mal methods have had a renaissance in recent years, and they are being

50 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

incorporated into tools that are used in different parts of the software
development cycle, but they are typically highly specialised and focus
on ensuring that a program satisfies a key property such as deadlock
freedom, memory safety, or termination.

In this paper we present Kopitiam, an extension to the Java devel-
opment environment of Eclipse that allows programmers to prove full
functional correctness of Java programs. Kopitiam is designed according
to the following set of design philosophies:

1. Users should be able to develop programs, their models, their
specifications and their proofs of correctness incrementally and
side by side.

2. The program logic must be expressive enough to reason about fea-
tures such as mutable state, shared data structures and pointer
aliasing.

3. The specification language must be expressive enough to describe
the behaviour of all programs that we want to certify

4. All proofs that users write must be checked automatically.

5. No bug in the tool itself may break soundness – a buggy tool may
fail to certify a program, but it must never claim that a defective
program is correct.

6. The integrated development environment (IDE) must include the
tools that software developers are accustomed to, such as compil-
ers, profilers, unit testers, and debuggers.

Software development is an incremental process, and it is important
that programs are kept synchronised with their proofs of correctness.
This is ensured by point 1. The danger is otherwise that a proof proves
properties about an outdated version of the program.

Point 2 requires that we support some dialect of separation
logic [100]. Since its conception, separation logic has been used to great
success for modular reasoning about programs written in languages us-
ing shared data, pointers, aliasing, and destructive updates, including
object-oriented languages [20, 94, 95, 114]. By modular reasoning we mean

7.1. Introduction 51

that the specification of a program can constrain itself to the state that
the program actually acts upon, and not the entire proof state.

Point 3 requires that the proofs are developed interactively as the
heuristics required to find them will generally be undecidable. In prac-
tice, this requires that the user has access to an interactive proof assistant
such as Coq [111], Isabelle [90], or HOL [52]. These theorem provers
support a higher-order logic that is expressive enough to reason not
only about specification languages but also about the semantics of pro-
gramming languages. Combined, this allows them to certify theorems
that prove that programs satisfy their specifications with respect to the
semantics of the programming language. Another distinct advantage of
the interactive proof assistants is that they have a kernel that automat-
ically certifies the proofs produced by the user, as required by point 4.
Moreover, this kernel is very small and is the most complicated piece of
code that actually has to be trusted (apart from a few minor parsing and
output routines). This provides the reliability required by point 5. The
kernel will reject a proof that is incorrect, even if it was produced by the
theorem prover or by another part of the tool, due to a bug.

Finally, it is important that the developer has access to a state of
the art development environment for the actual software development,
as required by point 6. Even though our ultimate goal is to prove the
absence of bugs in our programs, the process of formal verification is
currently prohibitive and testing and debugging are very useful tools to
get a program in such a shape that it can reasonably be assumed to be
bug free before undertaking the verification effort.

Kopitiam

Kopitiam is an Eclipse plugin that integrates the Java development envi-
ronment of Eclipse with the general-purpose interactive proof assistant
Coq. The software verification process is split into two distinct parts;
proofs about the program specification, which are done in a Coq per-
spective, and proofs about the actual program, which are interleaved
with the program itself in the Java IDE. Program verification is inter-
active. The user steps through the program, in the style of a debugger,
proving that all prerequisites are met for every statement. The workflow
is described in Figure 7.1.

52 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

As a back-end, Kopitiam uses Charge! [11, 12], a framework for veri-
fying Java programs using an intuitionistic higher-order separation logic
in Coq. Charge! provides tactics that automatically discharge commonly
occurring proof obligations, allowing the user to focus on the interesting
rather than the tedious aspects of program verification.

Contributions

Our main contribution is that we provide one uniform framework for
formal verification of Java programs that integrates an industry-grade
IDE with a general-purpose interactive proof assistant. More specifi-
cally, Kopitiam includes:

• An extension to the Eclipse Java development environment that allows
users to annotate their code with specifications for each method
(§7.2.2, 7.3.2). The user steps through the program one statement at
a time, executing each symbolically and observing how the proof
state changes. All steps are verified by Charge!. If necessary, these
steps are interleaved with Coq code to prove that the current proof
state satisfies the conditions required to make the next step.

• A development environment for Coq theories (§7.2.2, 7.3.1). This per-
spective allows users to state theorems in Coq, and construct
proofs of their correctness interactively, much like Proof General,
or CoqIDE. This mode is used to define the model of the program,
and prove all necessary properties needed for verification.

• Support for passing Java program variables as arguments to predicates
defined in the Coq standard library (§7.2.2 p. 59). This allows models
and specifications to use predicates and terms that have not been
designed with software verification in mind.

• Support for proof certificates. Once a program has been verified with
Kopitiam, we produce a proof certificate (§7.2.2 p. 61), which con-
tains the program and a theorem and corresponding proof that the
program is correct. This proof certificate is checkable by Coq using
Charge!.

To the best of our knowledge, no other tool integrates an industry-
grade IDE like Eclipse with an interactive proof assistant this closely.

7.2. Using Kopitiam 53

Eclipse IDE

Model

Annotated
Program

User Interface
Output

Verify Method

Edit program or model

Step or edit proof Proof Certificate

finished

Figure 7.1: Kopitiam workflow. The user writes an annotated program in the Java perspective, and a
model of the program in the Coq perspective. Each method is verified one at a time. The user steps
through the statements of the method, using inline Coq commands to update the proof state where
necessary. Kopitiam automatically produces a certificate of correctness when all methods have been
verified.

There are other tools that target software verification, but those that
use interactive proof assistants either verify the programs completely
in a proof assistant or generate theory files from annotated code (and
thus lose the ability to keep code and proofs synchronised). Another
approach is to build the entire development and verification environ-
ment from scratch, which invariably leads to fewer features than those
available when building on already well-established IDEs and proof as-
sistants. An extensive comparison with related work is presented in
Section 7.5.

Kopitiam is released under the BSD license. Examples and instal-
lation instructions are available at http://itu.dk/research/tomeso/

kopitiam/.

7.2 Using Kopitiam

We demonstrate program verification in Kopitiam by certifying a small
library for linked lists with two classes: an inner class Node for the list
elements and the class List for the lists themselves. The public API of
the List class consists of a length method, which defers its work to the
auxiliary recursive nodeLength method in the Node class, an add method
that adds an element to the head of the list, and finally a method reverse
for in place list reversal. The source code is presented in Figure 7.2.

To verify this library, we need a model for each class, and a speci-
fication for each method. The models, and the proofs about them, are

http://itu.dk/research/tomeso/kopitiam/
http://itu.dk/research/tomeso/kopitiam/

54 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

class List {
static class Node {

3 int value;
Node next;

6 public int nodeLength() {
int r = 1;
Node n = next;

9 if (n != null) {
r = n.nodeLength();
r = r + 1;

12 }
return r;

}
15 }

Node head;
18

public int length() {
Node h = head; int r = 0;

21 if (h != null) r = h.nodeLength();
return r;

}
24

public void add (int n) {
Node x = new Node(); x.value = n;

27 Node h = head; x.next = h;
head = x;

}
30

public void reverse () {
Node old = null; Node lst = head;

33 while (lst != null) {
Node tmp = lst.next; lst.next = old;
old = lst; lst = tmp;

36 }
head = old;

}
39 }

Figure 7.2: A small list library. The library has one inner Node class, which is used for each list element.
The Node class allows us to differentiate between an empty list (where head is null) and the null pointer.

7.2. Using Kopitiam 55

Figure 7.3: Screenshot of the Coq perspective in Kopitiam. To the left, the package explorer and the
Coq theory outline; in the middle, the theory file and the error window; to the right, the goal viewer
which has the Coq context at the top, and the current goal at the bottom. The 0 indicates that there is
currently only one subgoal. In the theory file, the green background indicates how far the theory has
been processed by Coq. Moreover, the term Zabs has been underlined and marked as an error since no
lemma or tactic with that name exists; by pressing Ctrl-Space we obtain a list of possible completions.

developed in the Coq perspective. The specifications, and the proofs of
the actual source code, are developed in the Java perspective. We discuss
each in turn.

7.2.1 Coq Perspective

The Coq perspective is a development environment for Coq theories
in Eclipse. It highlights the command currently being processed, as
well as the commands that have been processed by Coq, with a yellow
and a green background respectively. If the proof script contains an
error, the faulty code is highlighted with a red squiggly line, and the
error is presented in the error window. A goal viewer shows the current
proof obligation and further subgoals. Kopitiam also supports keyboard

56 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

shortcuts for common tasks, such as stepping through the proofs, and
syntax highlighting. We also support features not commonly found in
theorem prover interfaces such as folding of proofs, an outline for Coq
theories, and code completion that suggests commands and lemmas,
including the ones developed by the user. The perspective is powerful
enough to develop standard Coq theories, and is not limited to program
verification. A screenshot is presented in Figure 7.3.

Defining the Program Model

The theoretical foundation of Kopitiam is the Charge! framework, which
verifies Java-like programs in Coq using a higher-order intuitionistic
separation logic. Separation logic allows users to reason about the shape
and contents of the heap. For this exposition, we only require two con-
struct specific to separation logic: the points-to predicate (7→) and the
separating conjunction (∗). The predicate c. f 7→v states that an object
instance referenced by c has a field f that currently contains the value v;
the predicate p ∗ q states that the predicate p holds for one part of the
heap and the predicate q holds for another disjoint part of the heap. The
∗-operator gives rise to the characteristic frame rule of separation logic

{p} c {q}
{p ∗ r} c {q ∗ r} c does not mention r

which states that a command c that runs in the state p and terminates in
q, can run in an environment where a disjoint r is present as long as no
command in c modifies r. In general, the Hoare-triple {p} c {q} states
that if the command c starts from state p and terminates, it will satisfy
the state q.

The semantics of Java in Charge! is untyped. A single type val in
Coq represents Java types. Separation logic predicates have the type asn.
There is also a typeof predicate, where typeof p C states that the dynamic
type of the object reference p is the class C.

For our list library, we define one model for the inner Node class, and
one for the List class. Throughout the paper, we use standard mathemat-
ical notation in Coq code, and not the ASCII code used by Charge!.

Fixpoint Node_list (p : val) (lst : list val) : asn :=

match lst with

7.2. Using Kopitiam 57

| nil ⇒ p = null
| x :: xs ⇒ typeof p Node ∧ p.value 7→x ∗

∃v : val. p.next 7→v ∗ Node_list v xs
end.

Lists are modelled using the lists from the Coq standard library. The
predicate Node_list p lst is defined recursively over lst and creates one in-
stance of Node on the heap for every element in lst, where every instance
points to the next respective element in the list.

The predicate List_rep p lst states that p has the dynamic type List and
that the head field of p points to an object modelled by the Node_list predi-
cate.

Definition List_rep (p : val) (lst : list val) : asn :=

typeof p List ∧ ∃h : val. p.head 7→h ∗ Node_list h lst

Proof Development

The Coq perspective is also used to develop the meta-theoretical proper-
ties that we require for the program model. For this list library, we need
a lemma that states that the only list that can model the null-pointer is
the empty list.

Lemma lst_ptr_null: ∀k lst. k = null −→ (Node_list k lst ` lst = [])

Proof.

· · ·
Qed.

This lemma states that if k is null and k is modelled by a list lst, then lst
must be the empty list. This lemma is proven in Coq by case analysis on
lst.

7.2.2 Java Perspective

The Java perspective of Kopitiam is an extension of the Java editor. We
have extended the syntax with antiquotation brackets <% and %>, be-
tween which Kopitiam-specific code is placed. These brackets and their

58 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

<% lvars: xs : list val %>
<% requires: `List_rep "this"/V `xs %>
<% ensures: `List_rep "this"/V (`cons "n"/V `xs) %>
public void add (int n) { . . . }

<% lvars: xs : list val %>
<% requires: `List_rep "this"/V `xs %>
<% ensures: `List_rep "this"/V `(rev xs) %>
public void reverse () { . . . }

<% lvars: v : val, xs : list val %>
<% requires: "this"/V.`next 7→ `v ∗ `Node_rep `v `xs
<% ensures: "r", "this"/V.`next 7→ `v ∗ `Node_rep `v `xs ∧

"r"/V == `((length xs) + 1)%>
public int nodeLength () { . . . }

<% lvars: xs : list val %>
<% requires: `List_rep "this"/V `xs %>
<% ensures: "r", `List_rep "this"/V `xs ∧

"r"/V == `(length xs) %>
public int length () { . . . }

Figure 7.4: Specification of the methods in the list library. Note how they all use the backtick
operator (`), or the /V notation, so that predicates that normally take values as arguments take
program variables instead. This applies not only to our own List_rep and Node_rep predicates, but
also to functions from the Coq standard library like cons. The ensures clauses in nodeLength and
length both have the return variable "r", which indicates that any value returned will be assigned
to this variable.

contents are ignored by the rest of Eclipse and all of its standard func-
tionality is maintained. We use the Java perspective to write programs
and their specifications, and ultimately prove that the programs satisfy
their specifications.

Specifications

Specifications of methods have the form

7.2. Using Kopitiam 59

<% lvars: x1 : T1, . . . , xn : Tn %>

<% requires: P x1 . . . xn %>

<% ensures: Q x1 . . . xn %>

where x1 to xn are logical variables universally quantified over P and Q,
T1 to Tn are their types, P is the precondition and Q is the postcondition
of the method. Here T1 to Tn are standard Coq types, and P and Q are
Coq predicates in our assertion logic; typically the model of each class
will contain the building blocks required to construct these predicates.

Specifications can also mention the program variables that each
method takes as arguments, and the this pointer, but making this com-
patible with the predicates we defined for the program model is not
entirely straightforward. Program variables are strings, and their values
are stored on the stack. The List_rep predicate has the type val→ list val→
asn. We would like to be able to declare an assertion List_rep "p" xs stat-
ing that the program variable p points to a list xs, but this will not type
check in Coq as "p" has the type string and not val. In Charge! this prob-
lem is solved using an environment monad [11] that allows assertions
to be parametrised by a stack, and all program variables to be evaluated
before being used in a predicate. We will not go into the exact details
here, but by prefixing any Coq predicate and its arguments with a back-
tick (`), we allow these predicates to use the stack to look up the value
of any program variable. We also have the expression "p"/V that returns
a function that, given a stack, looks up the program variable "p" on the
stack. The List_rep predicate is then written as `List_rep ("p"/V) (`xs), where
the parentheses can be omitted. Note that `xs is evaluated to xs since xs
contains no program variables, but the backtick is still required to make
the term type check. One important observation is that we can apply
the environment monad to any Coq type, which allows us to use the
standard built-in libraries of Coq with our specifications, even though
they were not originally designed with program variables in mind.

The specifications for all methods in our list library are presented
in Figure 7.4. The specification for nodeLength uses the Node_rep predicate
directly since this method is defined in the Node class. The other meth-
ods are defined in the List class, and use the List_rep predicate for their
specifications. A user of this library would only need to know about the
List_rep predicate.

60 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

Figure 7.5: Screenshot of the Java perspective. In the middle, the Java editor with antiquotes for specifi-
cations and proofs. The green background indicates commands processed by Coq. The blue background
indicates a verified method; its tooltip contains the lemma statement and its proof, including the calls
to the forward tactic. To the right, the goal viewer, displaying the Hoare triple of the remaining loop
body.

Formal Verification

Classes are verified method by method. By right-clicking on a method
and selecting Verify Method from the menu, we enter a mode that lets us
prove formally that the method satisfies its specification. A screenshot
is presented in Figure 7.5. Charge! includes a semantics for Java that
comes with an inference rule for every statement type. Methods are
proved correct by stepping through them one statement at a time, using
a tactic named forward, which is inserted automatically for each state-
ment. The forward tactic checks whether the precondition is satisfied, and
if so executes the next command symbolically and updates the program
state. If the precondition is not satisfied, the user can insert standard

7.2. Using Kopitiam 61

Coq code in antiquotes between statements to change the state in such
a way that the next step is enabled.

The Java perspective uses the same goal viewer as the Coq perspec-
tive, and displays a Hoare triple {P} c {Q} where c is the remaining
statement, and the precondition P is the current program state. The
predicate Q is most often the postcondition of the method, but it is also
used at the end of loops and conditional branches.

Loops are annotated with two predicates. The first is an invariant,
which is a predicate that must hold on loop entry and on all iterations
of the loop. The second is a frame, which is a predicate that is part of
the current proof state and which is not required to prove the loop body,
but which is required to prove the remaining code of the method. The
frame is only available outside of the loop. This is achieved by using to
the frame rule from page 56.

The proofs of the different methods in the list library vary in com-
plexity. The simplest one is the add method, which requires only its
specification and a single sl_simpl annotation. The proofs for the node-
Length and length methods are relatively straightforward. At each method
call, the precondition of nodeLength must be established, but the fact that
the method is recursive makes no difference to the complexity of the
proof. The most complex proof is the one for the reverse method, which
is presented in Figure 7.6. This proof nicely demonstrates the way soft-
ware is verified using Kopitiam. Manual proofs are required in key
places, but these can often be kept small and concise. In particular, any
properties pertaining to the model should be proved as separate lemmas
in the model file.

Proof Certificate

For each method a validity theorem is produced, which states that
the implementation fulfills its specification. Once this theorem is dis-
charged, the method in question is marked with a green checkmark and
light blue background, as shown Figure 7.5.

Once all methods of a class have been verified, Kopitiam generates
a proof certificate. This certificate contains the Java program code as
Coq definitions for all methods and classes. The theorem that the entire
program is correct is derived automatically from the theorems that state

62 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

void reverse () {
Node old = null; Node lst = this.head;
<% invariant: ∃ys zs. `Node_list `"old" `ys ∗

`Node_list `"lst" `zs ∧
`(v = ((rev ys) ++ zs))

frame: "this"/V.`head 7→ `x0 ∧ `typeof "this"/V `List %>
while (lst != null) {

//Proof of the loop invariant for loop entry follows
<% up_exists (@nil val); sl_simpl. %>
<% destruct x3; [sl_contradict; congruence |]; triple_nf. %>
Node tmp = lst.next; lst.next = old; old = lst; lst = tmp;

}
<% ... Proof of the loop invariant for the loop body

(3 lines) ...%>
this.head = old;
<% ... Proof of the postcondition (3 lines) ...%>

}

Figure 7.6: Proof of the reverse method. User guided proofs are required to prove the loop invariant
for loop entry and for the loop body, and to prove the postcondition. Coq automatically introduces new
logical variables for the binders we use. The logical variables v in the invariant represents xs from the
specification, and x0 in the frame represents h from the definition of List_rep (page 57).

that each individual method is correct. Ultimately, we obtain one the-
orem of program correctness which can be checked completely by the
Coq kernel using Charge! independently of Kopitiam.

7.3 Implementation

Kopitiam is not a stand-alone application, but an Eclipse plugin. Eclipse
is written in Java, and thus runs on the JVM. Kopitiam is developed in
Scala, a functional object-centered language which also runs on the JVM.
In this section, we discuss two important aspects of our development.
The first is how Kopitiam communicates with Coq and stays responsive
while Coq is working on a proof. The second is how we extend Java’s
syntax with antiquotes while maintaining support of the Eclipse tools
that work on regular Java projects. We will also briefly discuss parsing
of Coq code, how we translate Java into Coq definitions, what measures

7.3. Implementation 63

we take to increase performance, and finally how the Verify Method action
is implemented.

7.3.1 Coq Interaction

Coq does not provide a standard API. All communication is handled via
the coqtop binary, which in turn communicates solely via the standard
input, output and error streams. Thus all data must be sent and received
as strings.

The main obstacle to overcome when interfacing with Coq is to
achieve a responsive and reliable communication. Coq often takes a
long time to process commands and it is important that Kopitiam does
not freeze while Coq is working. Moreover Coq only responds to com-
plete commands, and care has to be taken to avoid a state where Coq
waits for more input, while Kopitiam waits for a response from Coq.

We solve these problems by designing an asynchronous publish/
subscribe system using Scala actors, shown in Figure 7.7. This allows
users to send commands without the IDE being blocked while waiting
for a response. Kopitiam has the central message distributor PrintActor
that maintains a set of subscribers. The PrintActor receives a message as a
string from Coq, parses it to a more structured form, and redistributes
this parsed message to all subscribers. Kopitiam encapsulates communi-
cation with Coq within the CoqTop singleton object. This object provides
a single method writeToCoq, which takes a string and transforms it to
a complete command (by adding the terminating ’.’ if necessary) before
sending the command to Coq.

The subscribers of the message distributor are shown on the right of
Figure 7.7, we describe them in ascending order. The DocumentState object
tracks Coq’s state. Coq maintains a unique number for each successful
state update, and DocumentState stores a mapping from a position in the
source file to Coq’s state. This makes it possible to step back an arbi-
trary number of commands to a previous state. The GoalViewer updates
the goal viewer in the Coq and Java perspectives; the CoqEditor colors the
background of the processed Coq commands and manages error report-
ing. The ContentAssistant stores names of proven lemmas in the current
file and uses them to suggest completions to the user. The ContentAssis-
tant also uses Coq’s SearchAbout command to find possible completions

64 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

CoqTop

BusyStreamReader

������

BusyStreamReader

writeToCoq

PrintActor
GoalViewer

CoqEditor

ContentAssistant

DocumentState

User

standard input

standard output

standard error

Figure 7.7: The singleton object CoqTop encapsulates the communication with coqtop. The method
writeToCoq sends a message to the standard input stream of coqtop. The CoqTop singleton starts
a process and connects the standard output and error streams to a BusyStreamReader instance each.
When a BusyStreamReader instance receives a message, it forwards that to the singleton object PrintAc-
tor. This is the central distributor of messages, and first parses the received string into a more structured
object and sends that asynchronously to all subscribers on the right side.

from other files. Finally, users interact with CoqTop every time they step
through a proof or program.

This design for interaction with Coq is extensible. The Java perspec-
tive in Kopitiam has a lot in common with the Coq perspective; the user
performs actions such as stepping through code, writing proof scripts,
and retracting proof state. Nearly all code for communicating with Coq
has been reused between the two perspectives. The only perspective-
specific code handles the positioning information in the DocumentState ob-
ject, since the syntax of Coq files and Java files differ.

7.3.2 Antiquotes

We use antiquotes to extend the Java syntax to handle method specifi-
cations, which are written before method definitions, and proof scripts,
which are written inside method bodies and interleaved with Java state-
ments.

In order to integrate these antiquotes with the Java syntax we extend
the Java lexer and parser in Eclipse. Since neither the lexer, nor the
parser, provide an off-the-shelf extension mechanism, we use aspect-
oriented programming to modify the bytecode of Eclipse at load-time.
Our extension creates a dummy node for each antiquote in the abstract
syntax tree of the Java programs. The developer can still use all standard
Eclipse tools like debuggers, compilers, profilers, and unit testers, since

7.3. Implementation 65

the dummy nodes are ignored by Eclipse. The extensions to the Eclipse
parser and lexer are available as a separate Eclipse plugin1.

We evaluated three other possible approaches to embed specifica-
tions and proof script inside of programs: annotations, comments, and
static method calls.

Java annotations are only allowed before methods, not inside method
bodies, and would only support method specifications. Type annota-
tions are a recent development that allow annotations at type occur-
rences, but since they also can not be placed inside the method bodies
they do not solve the problem.

Java comments are allowed anywhere, making them a good candi-
date. However, the Eclipse Java lexer throws comments away2. If we
used comments, we would have to modify the internal behaviour of the
Java lexer (to keep the embedded statements) and parser (to make sense
of these embedded statements). This would make our implementation
prone to breakage with respect to future releases of Eclipse.

In an earlier version of Kopitiam [79] we represented method speci-
fications and proofs in the Java source code as strings in calls to dummy
static methods on a dummy Coq class. This was cumbersome and all
commands had to be passed as strings. Moreover, method calls are not
allowed outside method bodies, where specifications are written.

7.3.3 Parsing of Coq Code

Kopitiam needs to parse Coq code to support features like syntax high-
lighting, an outline, and proof folding. The folding hides proof script of
a lemma between the Proof and Qed keywords, similarly to how method
bodies are folded in Eclipse.

Rather than having a complete parser for Coq’s grammar, we first
split Coq code into sentences of complete commands. Each sentence is
then parsed individually to check for the keywords that are required by

1https://github.com/hannesm/KopitiamAspects
2Update from July 2013: This paragraph is not entirely correct. There is no di-

rect access to the comments via the ASTNode API (especially the statements method on
a method body does not return comments), but the Eclipse AST contains comments,
retrievable via ASTVisitor for example. The main argument against using comments is
that they are unstructured and therefore do not enable further usability features, such
as highlighting and completion.

https://github.com/hannesm/KopitiamAspects

66 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

the highlighter, the outline, and the folder. Parsing the entire Coq code
is not realistic as Coq allows users to dynamically change its grammar
on the fly using a powerful notation mechanism. Since even compiled
Coq binaries can include such changes, creating an external parser for
complete Coq commands is impractical. Our solution allows us to only
check each command for the keywords that we require to build the func-
tionality we need. We leave the complete parsing of each individual
command required for proof checking to Coq.

7.3.4 Java Translation

Kopitiam translates Java into the subset of Java formalized in Charge!.
This support includes read and write operations for fields and variables,
static and dynamic method calls (including recursion), while loops, con-
ditionals, and object allocation. The latter creates a new instance of an
object and allocates memory for its fields on the heap.

The translation is implemented using the visitor pattern on the
Eclipse abstract syntax tree. During the traversal, Kopitiam issues warn-
ings about missing specifications and Java code which it cannot translate
to our core subset.

7.3.5 Verify Method

The Verify Method action in the Kopitiam user interface requires that the
theory file containing the program model has been compiled, and that
Coq definitions have been created for all method specifications. After
these things are done, a validity theorem for the method is generated
and the user is prompted to interactively verify the correctness of the
method.

To increase responsiveness Kopitiam is optimised to load theories,
including the program model, only when needed and unloading them
only when they are modified. Moreover, Kopitiam adopts a local trans-
lation technique that translates modified code and splices it into the
already translated program. The whole code is retranslated only when
major revisions are made.

7.4. Discussion and Future Work 67

7.4 Discussion and Future Work

The most challenging aspects of developing Kopitiam are done. The
difficult part has been figuring out how to integrate the Java IDE of
Eclipse with Coq, but that aspect is complete and working well. We
improve significantly on our previous release [79] where Kopitiam only
supported translation of Java code into Coq definitions which had to
be verified completely in the Coq perspective. For this release, the Java
perspective is entirely new and we are able to conduct proofs directly
within the Java editor. The Coq perspective has also gained several key
features such as proof completion, syntax highlighting and the proof
outline.

There are things we wish to improve, both on the IDE side (for us-
ability reasons) and in the back-end Charge! (for performance and ex-
pressiveness reasons). Currently, programs must fit into one file. The
subset of Java we support is defined in Section 7.3.4. Additionally, these
further restrictions are imposed on the language: only a single return
statement at the end of the method body is supported; the primitive
types must be integers, booleans, and object references; finally, class-to-
class inheritance and interfaces are not supported.

Adding more language features is a two-step process. Charge! has to
be developed to include the theoretical results required, and Kopitiam
must be extended to allow easy access to these results. We have de-
veloped theories to reason about inheritance using interfaces [12], and
we plan to add support for this in the near future. We are also making
Charge! modular by adding support for unimplemented specifications
and program composition. This will allow classes to be verified inde-
pendently and then combined to form a complete program.

There are three aspects of the user interface that require attention.
The first is the way we write specifications, frames, and loop invariants.
Currently, they are passed as raw data to Charge!. We plan to support
a domain specific language in the antiquotes, with proper syntax high-
lighting, that hides implementation details from the users, such as the
environment monad, as seen in Figure 7.6, namely fresh names, back-
quotes and /V. Secondly, Kopitiam generates fresh names when quan-
tifiers are moved to the Coq context. These names are typically not
the ones chosen by the user, but ones generated by Charge!, which can
also be seen in Figure 7.6. Charge! uses higher-order abstract syntax

68 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

to handle binders, which makes it impossible to get a handle on their
names in Coq. Two ways around this are either to change how binders
are modelled in Charge! or to extend the functionality of Coq to al-
low these bound names to be retrieved. Finally, we plan to redesign
the goal viewer in the Java perspective. Currently, both the Coq and
the Java perspectives use the same goal viewer, and the user sees the
goal as a complete Hoare triple, which is the internal representation of
the program in Charge! (see Figure 7.5). The ideal is to only see the
precondition of the triple, which is the current program state, properly
split into views describing the heap, and views describing the stack.
This will make working in Kopitiam much like using a debugger, where
users step through the program and are presented with a clear view of
the program state.

We still have a few performance issues. These are mostly related
to the Coq back-end. Charge! handles the symbolic execution of com-
mands as the user steps through the program in the Java editor, and this
can be slow if the next command has a precondition that is difficult to
prove. We plan to rewrite our heuristics using reflective tactics, similar
to the ones used by Chlipala in his Bedrock framework [34], and this
will speed up proof search considerably.

The largest case study we have verified using Charge! is the snap-
shotable trees library from the C5 library [82]. Currently, this formalisa-
tion only exists as a Coq theory and a next logical step is to certify the
library using Kopitiam.

We are currently using Kopitiam in a master course on software ver-
ification based on the Software Foundations book [99]3 by Pierce et al. So
far, student feedback has been very positive and the Coq perspective of
Kopitiam is proving capable of dealing with all material and exercises
presented in the book.

7.5 Related Work

Several tools for program verification of varying complexity have ap-
peared in the last decades. Like in Kopitiam, source code is typically
annotated with specifications, after which the tools check if these speci-
fications are satisfied.

3http://www.cis.upenn.edu/~bcpierce/sf/

http://www.cis.upenn.edu/~bcpierce/sf/

7.5. Related Work 69

Many tools strive for automation, which by necessity limits their
expressivity. Typically, they produce a large number of lemmas that
are automatically discharged by an automatic theorem prover, such as
Z3 [85] or SPASS [117]. Examples of such tools are Spec# for C# [7]
and ESC/Java2 for Java [36]. A few tools also use separation logic, like
Smallfoot [13], Space Invader [32], SLAyer [14], and jStar [45].

To verify full functional correctness of programs, interactive tech-
niques are required. The options that have been explored have followed
one of three paths. The first is to generate proof obligations from anno-
tated programs, feed them to an interactive proof assistant and have the
user discharge the proof obligations manually. The second is to write
the program, its specifications, and the proof of correctness entirely in
an interactive proof assistant. Finally, a development environment for
verified software can be developed from the ground up, possibly hook-
ing into external proof assistants as required.

The first approach is used by tools like Jahob [70] and Loop [113].
Loop translates JML-annotated Java programs to the proof assistant PVS,
which is then used interactively to discharge the goals. Jahob uses its
own specification language and uses both interactive proof assistants
(Isabelle and Coq) and automatic theorem provers (e.g. SPASS, CVC3,
and Z3) to discharge the goals. The disadvantage to this approach is that
it is difficult to keep the proof script synchronised with the program –
once the script has been generated, any changes to the program will not
automatically propagate to its proof and there is a danger that proofs
refer to old instances of the programs. Also, neither tool uses separa-
tion logic, making it difficult to reason modularly about programs with
mutable state.

The second approach (programming directly in a proof assistant)
has had great success. Two notable examples are the verified L4 micro-
kernel by Klein et al. [64] and the verified optimising C compiler Com-
pCert by Leroy [75]. These two projects have set the standard for state-
of-the-art formally verified software today, but each also required a Her-
culean effort to complete. Both projects verify around 7000 lines of code,
yet their proof sizes are orders of magnitude larger (around 50000 lines
of code for CompCert and 200000 for the L4 kernel); the L4 kernel re-
quired around 25 man years to complete, CompCert around 10. For the
L4 kernel, the Simpl library by Schirmer [102] was used to translate C

70 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

code to Isabelle. The CompCert compiler is written in the functional
language Gallina, which is used inside Coq, and then extracted to an
executable OCaml program.

The third approach (building the development environment from
scratch) has been used for designing development environments such
as KeY [1], Verifast [58] and Why3 [23]. KeY and Verifast have both
been used successfully to verify Java and JavaCard programs [84, 97].
They both use first-order logics (Dynamic logic for KeY and separation
logic for Verifast), and they both use custom-made IDEs and interac-
tive verification environments. Verifast integrates Z3 to discharge many
proof obligations automatically. Why3 certifies programs written in the
functional programming language WhyML, which can be extracted to
executable OCaml code. It is the only one of these three tools that hooks
into a general-purpose interactive proof assistant (Coq) to allow users to
discharge proof obligations interactively. Why3 also hooks into a wide
range of automatic theorem provers to help discharge proof obligations
automatically. The advantage of this approach is that a lot of work is
done automatically by the tool. The disadvantage is that these external
provers are treated as trusted oracles which dramatically increases the
size of the code base we have to trust as we have to assume that these
tools are bug-free, as opposed to trusting only the Coq kernel. The
Sledgehammer tool for Isabelle by Blanchette et al. [21] is designed to
hook automatic theorem provers into interactive ones in a safe manner
by providing techniques for the interactive proof assistant to replay the
proofs generated by the automatic ones, but these techniques have not
yet been implemented in Coq.

The work that mostly resembles ours comes from the Mobius project
and Mobius PVE [9], which integrates several verification environments
for Java with Eclipse. It includes the JACK [8] framework that takes
JML-annotated Java code, generates proof obligations using a weakest
precondition calculus, and discharges these proof obligations either with
automatic or interactive proof assistants, including Coq. Mobius PVE
comes with the ProverEditor (previously called CoqEditor) perspective
for Eclipse that, like Kopitiam, allows users to develop Coq theories [33].
By using this perspective, JACK keeps the whole development cycle in
Eclipse.

7.6. Conclusions 71

Comparison

Kopitiam sets itself apart from all other tools in that it is based on sep-
aration logic, it is hooked up to a general-purpose interactive proof-
assistant, and it allows programs to be written and verified in an
industry-grade IDE. All these points are important. Tools not based
on separation logic are unlikely to scale to larger programs; moreover,
extending general-purpose well maintained frameworks like Coq and
Eclipse, both of which are arguably leaders in their respective fields, is
preferable to building custom-made versions of our own; designing any
of these two systems from scratch would be full fledged research and
engineering projects in their own right.

Of the interactive tools listed above, only Verifast is based on sepa-
ration logic. Jahob, JACK and Loop all generate proof obligations for
general-purpose proof assistants but these are all stored in separate files
and not actively kept synchronised with the code. Only JACK uses
Eclipse, whereas Verifast, KeY and Why3 use their own custom-built
IDEs.

7.6 Conclusions

Kopitiam provides the closest integration to date between an industry-
grade IDE and a general-purpose proof assistant. The ability to step
through the source code of a program when developing its proof is in-
structive, and provides an intuitive interface for programmers and proof
developers alike. Moreover, Kopitiam provides a development environ-
ment for Coq theories where users can define program models, postu-
late lemmas and theorems, and prove these directly in Eclipse. Kopitiam
also generates certificates, checkable by Coq, for each verified program.
Finally, since we use an expressive higher-order separation logic we are
able to model both the semantics of the Java programming language as
well as the Java programs themselves in Coq. This means that the proof
certificates are unified theorems, checkable by the Coq kernel, that guar-
antee that a verified program follows its specifications with respect to
the operational semantics of our model of Java. This ensures that the
trusted code base is kept very small. The only two things we have to
trust are the model of Java in Charge! and the Coq kernel.

72 Chapter 7. Kopitiam – a Unified IDE for Developing Formally Verified Java Programs

Acknowledgement

Thanks to Peter Sestoft, Joseph Kiniry, Lars Birkedal, Fabrizio Montesi,
Jasmin Blanchette, and Filip Sieczkowski for their valuable feedback on
this paper. We want to thank David Raymond Christiansen, Alec Faith-
full, Daniel Dam Freiling and Mads Hartmann Jensen for contributions
to the Kopitiam source code. Thanks to Stephan Herrmann for helping
out with the Eclipse parser and lexer internals.

Chapter 8

Evolutionary Design and Implementation of
Kopitiam

Abstract

We present the design and implementation of Kopitiam, an
Eclipse plugin for integrating development of Java programs with
the development of full functional proofs of their correctness us-
ing the proof assistant Coq. First, we motivate the workflow of a
potential user of Kopitiam and the requirements imposed by the
intended workflow. While literature commonly treats design and
implementation statically, we review and critically analyse the evo-
lution of Kopitiam from a software engineering perspective. We
focus on the lifecycle of Kopitiam itself, which consists of design,
implementation, detection of shortcomings, adjustment of design,
adjustment of implementation, finding of more shortcomings, and
so on.

Furthermore, we will describe the impact that the external soft-
ware dependencies, Eclipse and Coq, had on Kopitiam. In particu-
lar, we will analyse how new features of Eclipse or Coq permitted
or required adjustment of Kopitiam’s design.

74 Chapter 8. Evolutionary Design and Implementation of Kopitiam

8.1 Introduction

The ultimate goal of the research project “Tools and Methods of Scalable
Software Verification”1 is to support mechanized full functional verifi-
cation of Java programs. To bridge the gap between developing Java
programs and their proofs of correctness, we have designed and incre-
mentally developed Kopitiam.

Kopitiam is a plugin for Eclipse to interactively prove correctness of
Java programs using separation logic and the proof assistant Coq. Proofs
are written side-by-side with developing Java programs in Eclipse, al-
lowing seamless integration into the developer’s workflow.

In this paper we describe the design and implementation among the
different stages undergone by Kopitiam during this research project. We
distinguish four generations of Kopitiam’s design and implementation,
each of which consists of multiple releases. The first generation (0.0.*) of
Kopitiam is described in more detail in an earlier paper [79]. Details of
the second generation (0.1.*) have not been reported in a scientific pub-
lication as it had poor performance, which were addressed in the third
generation (0.2.*). The more recent design and implementation of the
third generation is presented in a technical report [81]. The remainder
of this paper will present the current stage of Kopitiam, which is the
fourth generation (0.3.*).

In Section 8.2 we recapitulate Lehman’s classification of soft-
ware [73]. In Section 8.3 we propose a software development workflow
which integrates verification. We also describe the workflow for devel-
oping proofs in Coq. In Section 8.4 we describe the main contribution
of this paper, and in Section 8.5 a set of requirements for Kopitiam and
solutions to implementation challenges. We conclude in Section 8.6 and
describe future work in Section 8.7.

8.2 Background

To understand software evolution, we recapitulate a classification of
software, which Lehman [73] developed more than 30 years ago. This
classification distinguishes three kinds of programs, so called S, P, and
E programs.

1http://www.itu.dk/research/tomeso/

http://www.itu.dk/research/tomeso/

8.2. Background 75

An S program is a program whose functionality is formally defined
by and derivable from a specification. Examples of S programs are sort-
ing a collection or reversing a list. The implementation of an S program
is finished if it complies to the specification. Modifications for mainte-
nance, such as improving code clarity can be applied, but modifications
that alter the behaviour cannot. S programs are the building blocks of
bigger programs.

The real world contains uncertainties and unknowns, which gives
rise to P programs. These can no longer be clearly specified without
considering the world and the context of use. P programs contain an
intrinsic feedback loop: the acceptance of a solution of a P program is
determined by the environment in which it is embedded. The crucial
difference between S and P programs is that judgements about the cor-
rectness of S programs relate to the specification, whereas in P programs
such judgement is obtained in its real-world context. An example of a
P program is a weather forecast program: deeper understanding of the
weather results in more accurate algorithms for the forecast, to which
the P program needs to adapt. P programs must also change when
the world around them changes. All useful P programs undergo never-
ending changes, and are never “finished”.

The last class of programs are E programs, which mechanize a hu-
man or societal activity. The program itself becomes part of the world
it models. An example is an operating system; given that technology
improves and new hardware is manufactured, this new hardware has
to be supported. Additionally, advertising influences society, and peo-
ple’s expectations of the new hardware and operating system rises. P
and E programs are closely related; the difference is that an E program
influences its own requirements.

Kopitiam uses parts of the constantly changing world, because it
builds on other software. We consider Kopitiam to be either a P or E
program. Considering Kopitiam being an E program is due to the fact
that user expectations feed back on its requirements. Kopitiam under-
goes never-ending changes, because use gives rise to suggestions for
improvement.

Although Kopitiam supports modification of specifications and pro-
grams, the programs that have been developed and verified in Kopitiam
to date are of type S. There is no inherent technical limitation in Kopi-
tiam which prevents users from verifying those parts of P or E programs

76 Chapter 8. Evolutionary Design and Implementation of Kopitiam

which can be formally modeled, but so far no case study has been con-
ducted with a P or E program. It is difficult to capture a full specification
of both P and E programs, because mathematical models are not suitable
to describe these.

8.3 Software Development and Software Verification Workflow

From the previous discussion it is clear that software development con-
sists to a large extent of software maintenance. Already Lehman [73]
discovered that more than 70% of the software development budget
is spent on maintenance, whereas only 30% is spent on development.
Brooks [28] gives more evidence that a huge amount of time is spent on
maintaining software, rather than developing software.

To understand how software is maintained, we consider the common
programming workflow. A common programming workflow is that a
developer first writes a program (edit), then uses a compiler to translate
it into machine code (compile), afterwards executes it (run) and finally
debug it (debug). The program itself is most likely a library, and the exe-
cution thereof is rather the execution of unit tests. If the requirements for
the program change or it needs modifications for maintenance, the pre-
sented programming workflow is followed to adapt the program to meet
the modified requirements. Additionally, most object-oriented software
is developed with the help of an integrated development environment
like Eclipse, which provides tools such as compiler, debugger, profiler,
navigation, documentation, unit testing.

To be maintainable and reusable by others than the initial author,
a program needs to be documented well and its documentation must
be up to date. When a program is modified, its documentation should
reflect these modifications. If the documentation lives in a separate lo-
cation, such as a technical report or powerpoint presentation, the prob-
ability that it gets updated is very low. To ease the burden on the devel-
oper, Knuth invented literate programming [65], in which the developer
writes documentation and embeds the program in it. The big advan-
tage is that the program and its documentation are synchronized and
maintained together. Compilation of the program requires to first split
it off from the documentation. A less radical approach is represented by
Javadoc, a documentation system for Java where the documentation is

8.3. Software Development and Software Verification Workflow 77

Edit

Compile

Run

DebugVerify

Figure 8.1: The common development workflow - edit, compile, run, debug - is extended with the
additional step verify.

embedded into a Java program using specific comments. The advantage
of Javadoc over literate programming is that the program can be com-
piled and analyzed with off-the-shelf tools. Furthermore, Javadoc uses
static information to produce hyperlinked documentation files, which
are easily readable with a web browser.

We believe that, similar to documentation, correctness proofs of pro-
grams are important, and they also need to be maintained together with
the program. Only if we integrate verification into the software de-
velopment workflow and the software development tools, we will get
maintained verified software. We add verify as another step to the pro-
gramming workflow, as shown in Figure 8.1. To support this modified
workflow, we present Kopitiam, an Eclipse plugin which integrates de-
velopment of Java programs with verification of their correctness. The
burden on a developer is reduced: she does not need to switch the en-
vironment to adjust correctness proofs or modify the program code.

We describe the detailed workflow to interact with the proof assistant
Coq, which is followed by a detailed description of the workflow to
develop correctness proofs of Java programs.

8.3.1 Workflow: Coq Interaction

The interaction of developing proofs in Coq is similar to programming
in BASIC or Pascal. Definitions must be provided before they are used,
and lemmas can only be used after they have been proven. A Coq file is
processed one command at a time, from top to bottom. This is in con-
trast to many modern programming languages, which do not require a
developer to write definitions in dependency order. A Coq file consists
of definitions in the purely functional programming language Gallina,

78 Chapter 8. Evolutionary Design and Implementation of Kopitiam

and proofs. A proof is a lemma statement followed by application of
tactics, the so-called proof script. The proof script produces a proof term
with holes. Each hole corresponds to one proof obligation. A user inter-
face element displaying the current proof obligations and their contexts
is necessary for a user who interactively discharges proof obligations.

To interactively develop the proof, a user steps forward and back-
ward in the proof script and looks at the proof obligations, which are
updated after each command. The user needs some visual feedback in
the editor to see which parts of the proof script have already been pro-
cessed, and errors in the proof script, both syntactic and semantic, need
to be reported. If a user modifies an earlier, already proven lemma, the
user interface needs to retract to the earlier definition and re-prove the
lemma.

When interfacing with Coq, we have to keep in mind that the time
that Coq needs to process a single command is hard to predict, and
can be high (loading a theory can easily take several seconds). To keep
the user interface responsive, interaction with Coq must not block the
user interface, and the number of commands sent to Coq should be
minimized.

There are two actively used development environments for Coq:
Proof General [5], which is a mode for the editor Emacs; and the GTK-
based user interface CoqIDE, which is distributed together with Coq.
Kopitiam’s unique characteristic is a tight integration of the proof and
software development environments, and we chose Eclipse as our Java
integrated development environment. Thus we needed to develop also
a Coq development environment as an Eclipse plugin.

8.3.2 Workflow: Java Proof Development

Now that we have described the Coq proof development, we are ready to
describe the workflow required to prove correctness of a Java program.
We first develop a model for the Java program inside of Coq’s pure func-
tional programming language Gallina. Then we develop representation
predicates, which bind the model to the Java program. A representation
predicate receives a reference from the Java world and a corresponding
model. It emits a formula, which describes the heap shape. The for-
mula consists of separation logic predicates, using standard logic opera-
tors: conjunction, separating conjunction (∗), and the points-to predicate

8.3. Software Development and Software Verification Workflow 79

(7→). We use these representation predicates to write method specifica-
tions in Hoare style with a pre- and postcondition. Finally we verify
interactively that each method conforms to its specification by using our
formalised Java semantics [12].

Let us consider a Java program, the class List, which implements a
singly linked list containing Node elements (lines 2–4). The single method
add (lines 9–15) inserts a Node with the given integer value at the front:

public class List {

static class Node {

3 int value;

Node next;

}

6

Node head;

9 public void add (int n) {

Node x = new Node();

x.value = n;

12 Node tmp = head;

x.next = tmp;

head = x;

15 }

}

Next we need to develop a mathematical model of lists. The model
has to be convincing to a reader, because all we verify is that the Java
implementation corresponds to the model. We can also develop lem-
mas that describes properties of the model, which are used for the Java
correctness proof.

The model for our List class is an inductive list data structure in
Gallina. It consists of two constructors, nil and cons. Our model is a
finite sequence, whereas the Java class Node could potentially be cyclic.
The Java insertion method (add) prevents a user from constructing such
a cyclic list.

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

80 Chapter 8. Evolutionary Design and Implementation of Kopitiam

To continue our example, we define the representation predicate
Node_list for the Node class and the representation predicate List_rep for
the List class.

The Node_list predicate is defined recursively, as a Coq fixpoint. If the
model lst is nil, the reference pmust be null (line 3). In the recursive case, p
has the dynamic type Node (line 4). The reference to the head of the Java
list, p.value, points to a value which is equal to the head of the model, x
(line 4). The next field points to some v, for which the Node_List predicate
holds (line 5), with the tail xs of the modelled list.

Fixpoint Node_list (p : val) (lst : list val) : asn :=

match lst with

3 | nil ⇒ p = null
| cons x xs ⇒ typeof p Node ∧ p.value 7→x ∗

∃v : val. p.next 7→v ∗ Node_list v xs
6 end.

The List_rep representation predicate receives a reference p of type val,
and a list of values lst. The dynamic type of p is "List", there exists a
reference h, and the head field of p points to h. The Node_list predicate
holds for h and the given model lst. The reason to have both a list
representation predicate and a node representation predicate is that they
have each a corresponding class in the Java program, and it allows us to
distinguish the empty list from the reference null.

Definition List_rep (p : val) (lst : list val) : asn :=

typeof p List ∧ ∃h : val. p.head 7→h ∗ Node_list h lst

We use the representation predicates to formulate the method spec-
ifications by writing pre- and postconditions. A precondition contains
the assumptions, which are the predicates that must hold when this
method is called. The postcondition contains the promises which hold
when the method returns. Together they form a contract [83]: before the
method can be called, the precondition must hold. When the method
returns, the postcondition holds.

Our example contains only a single method, add. The contract is that
for any list xs, the assumption List_rep this xs holds. The postcondition

8.4. Requirements 81

promises that n will have been prepended to the list. We write this
using a Hoare triple:

∀xs. { List_rep this xs } add(int n) {List_rep this (cons n xs) }

Finally, the correctness of each method is proven separately. The
currently valid predicates describe a symbolic heap. The method pre-
condition is assumed initially: thus, the symbolic heap consists of the
precondition. For each statement of the method body, the correspond-
ing semantic rule is applied. The semantic rules are defined in Bengtson
et al. [12] and each consists of a Hoare triple: the precondition, the
statement itself, and its postcondition. To apply a rule, the current sym-
bolic heap has to satisfy the statement’s precondition. Predicates not
used by the rule can be ignored using the frame rule of separation logic.
The postcondition of the rule specifies the modifications to the symbolic
heap. At the end of the method body, we need to verify that the sym-
bolic heap satisfies the method postcondition.

Once we have verified that all methods conform to our specification,
we have proven the program correct.

8.4 Requirements

We faced three additional requirements for development of Kopitiam:
(1) we have limited developer resources; (2) proofs developed with Ko-
pitiam should be accepted by the verification community; and (3) it must
work on any major platform (Windows, MacOSX and Linux).

To address (1) and (3) we reuse available and actively developed soft-
ware, Coq and Eclipse, instead of implementing our own proof assistant
and integrated development environment for Java.

We addressed (2) by using an off-the-shelf trusted proof assistant.
A common approach for proof assistants, named LCF, is to be based
on a small trusted core, which is generally accepted. We are using the
interactive proof assistant Coq [111]. Coq is based on the calculus of
inductive constructions, is available as open source software, has ex-
isted for decades, has a large user community and is actively developed.
Several large projects use Coq, for example CompCert [75], which is a
semantics-preserving optimizing compiler for C programs, written and

82 Chapter 8. Evolutionary Design and Implementation of Kopitiam

verified in Coq. Gonthier used Coq to prove the four color theorem [50],
and more recently also the odd order theorem [51].

In our research project we developed Kopitiam side-by-side with
Charge! [12, 11], a formalisation of higher-order separation logic and
an encoding of semantics for a subset of Java within Coq.

To address (1) and (3) we are building Kopitiam on top of Eclipse, an
open source integrated development environment initially developed
for Java programming. Eclipse has a powerful plugin mechanism, a
massive and well-documented API for extensions, a large user commu-
nity, and is actively developed. Using Eclipse has several advantages:
the common features of Eclipse, such as compilation, testing, execution,
debugging, and profiling are already available; developers familiar with
Eclipse do not have to learn a new development environment; and en-
hancements to Eclipse are immediately available in Kopitiam.

Kopitiam is designed to accommodate all steps of the presented
workflow of verification of the correctness, and a user should not need
to switch to a separate environment to complete a proof because some
feature is missing. The common user expectations of development envi-
ronments should be met; also the common expectations that programs
should be robust and responsive. Kopitiam should always allow the
user to edit programs and cancel running jobs.

The verification steps described in the workflow for proving correct-
ness of Java programs can be classified into two categories: the interac-
tive Coq development, in which the model and the representation pred-
icates are developed; and the Java integration, where the Java program
is extended with method specifications and proof scripts, which is also
done interactively.

Both categories have different requirements, which we consider sep-
arately. They are also separate perspectives of Eclipse: while we de-
veloped the Coq perspective from the ground up, we only needed to
extend the already existing Java perspective of Eclipse to accommodate
method specifications and proof scripts.

The Coq perspective needs to meet users’ expectations for a proof
assistant frontend, similar to Proof General or CoqIDE. Among these
expectations are:

• A user interface element that displays the current proof obliga-
tions.

8.4. Requirements 83

• Visual feedback in the editor for the commands that are already
processed.

• Visual feedback for the commands that Coq is currently process-
ing.

• A set of buttons and keyboard shortcuts to invoke actions, such as
stepping forward, backward and to the current cursor position.

• Errors and warnings from Coq should be reported.

• The possibility to interrupt Coq while it is processing a command.

• When the user edits an already processed command, Kopitiam
must retract the processed region to before the command, in order
to keep the state in Coq and in the editor in sync.

• Code completion, which is more common in integrated develop-
ment environments than in proof assistants, should be supported.
If a user starts to type, possible completions are suggested. Sim-
ilarly, during development of Coq code, the available and usable
tactic names should be displayed dynamically.

• An outline view for easy navigation within a single file is necessary
to keep track of larger developments.

• Automatic builders and dependency management, which attempt
to re-prove dependent theories on successful modification of an-
other one.

The resulting perspective does meet these, and can be used also for
general Coq proof development, not necessarily related to Java proofs.

The Java extensions should allow a user to develop a correctness
proof of the Java program. This leads to several requirements:

• A user should be able to annotate Java programs with specifica-
tions.

• Annotating Java programs with proof script should be supported.

• Stepping through the proof script has to be possible.

• The symbolic heap should be visible when proving a method.

84 Chapter 8. Evolutionary Design and Implementation of Kopitiam

• Error reporting of either specifications or proof script should be
precise.

Behind the scenes, Kopitiam has to translate the Java program into
a Coq representation of Java’s abstract syntax, and update these defi-
nitions whenever the Java program is modified. To react properly to
modifications of a method specification, Kopitiam has to use the call
dependency graph, and invalidate the proofs of callers of the modified
method specification.

8.4.1 Requirements for the Implementation Language

The main constraint on Kopitiam’s implementation is the need to run
on the Java virtual machine (JVM) and integrate with Eclipse, which is
written in Java.

Java itself is very verbose, in part because it does not include any
type inference. Also, Java has several non-intuitive design decisions:
type erasure, checked exceptions, and a non-unified type system. We
looked for more succinct alternatives, and chose Scala, a functional pro-
gramming language on top of the JVM. Scala cleans up some of Java’s
design decisions and adds a number of other features which allow us to
write more concise and expressive source code.

Java integration is easy with Scala. The concurrency model with
actors and immutable messages was also an attractive factor, as was the
ability to do pattern matching.

Scala [92] provides a type system with local type inference, which
reduces the typing burden. Scala also integrates higher-order functions
and anonymous functions with a concise syntax. Scala provides pow-
erful implicit conversions to develop type conversions whose scope can
be contained.

Scala also provides traits, which are basically Java interfaces that can
contain program code, but allow multiple inheritance. This turned out
to be very useful for sharing functionality between the Java and the Coq
perspectives. An example is the Coq interaction.

8.5. Implementation Challenges 85

8.5 Implementation Challenges

In this section we describe several challenges and how we approached
these. Being a P program, both the requirements and the potential so-
lutions change over time, because we also use other software. In the
following, we will discuss problems with implemented and discarded
solutions in Kopitiam. In particular we will see how newer releases of
the software used by Kopitiam, Eclipse and Coq, included some useful
features which led to redesign of Kopitiam. Some Coq releases changed
the behaviour slightly, and we had to adapt Kopitiam to cope with these
changes.

Some solutions looked good in theory, but were impractical due to
too high processing time. We focus on some challenges in this section,
each of which we overcame using different approaches.

8.5.1 Communication with Coq

Kopitiam uses Coq as an interactive proof assistant. The commands are
sent to Coq, which in turn sends back the current proof obligations with
contexts or reports an error.

Coq is written in OCaml, and unfortunately there is no documented
API to interface with Coq. In 2010 we looked into two approaches:
either call OCaml code from the JVM natively, or to use the same way
Proof General [5] interfaces Coq. Proof General runs the binary coqtop

as a separate process and screen-scrapes its output streams.
There are some bridges to call OCaml code from Java2, but when

using these, the OCaml type information is lost.
Coq does not contain an API and furthermore is not available as a

shared library, and, in contrast to Java and the JVM (and thus Kopi-
tiam), OCaml code is platform-dependent. So, in order to call Coq code
directly, we would have to distribute custom builds of Coq with Kopi-
tiam. Thus, we would need to maintain a customized branch of Coq.
As mentioned in section 8.4, our development resources were limited.
We could also stick to a specific Coq version, and not upgrade past that
version, but this approach would make it harder to evolve Kopitiam.
Another issue with a non-standard Coq would be fewer trust.

2for example http://ocamljava.x9c.fr/ and http://forge.ocamlcore.org/
projects/camljava/

http://ocamljava.x9c.fr/
http://forge.ocamlcore.org/projects/camljava/
http://forge.ocamlcore.org/projects/camljava/

86 Chapter 8. Evolutionary Design and Implementation of Kopitiam

We were left with the second approach, to screen-scrape the output
streams of coqtop, in the same manner as Proof General. The binary
coqtop has support for an -emacs option, which outputs some numeric
state identifiers. These state identifiers simplify the distinction between
successful and erroneous commands.

Before Coq 8.4 these were the only possibilities. In the first three
generations of Kopitiam the output of coqtop is screen-scraped. The
screen-scraping code in the third generation of Kopitiam is almost al-
ways robust. However, sometimes due to buffering, remaining parts of
the proof obligations are treated as unknown output instead of being
part of the proof obligation.

Output from Coq is interleaved on the standard output stream
and the standard error stream in an unspecified manner. Therefore,
we screen-scrape both standard output and standard error in separate
threads. We cannot reliably match a response to a specific request,
because we do not know about timing behaviour. We use a publish-
subscribe system to distribute the output of Coq to all interested com-
ponents. Due to this, we have a technical restriction of a single coqtop

process for Kopitiam. This restriction implies that when the user focuses
a different editor and wants to conduct a proof inside of that editor, we
have to carefully retract the current state of Coq.

Another problem is that the output produced by Coq is not exactly
the same in all versions of Coq. In some versions hardcoded strings
change, so we need to keep our code up to date with new Coq releases.

Coq version 8.4 supports a more robust interaction method. When
coqtop is run with the -ideslave option, it accepts structured input
and output in XML format. The XML format is not documented, but
the OCaml code, that implements it is readable and the protocol syntax
has not changed in recent releases (Coq 8.4, 8.4pl1 and 8.4pl2 use the
same syntax). There are two big advantages to this structured format:
only one stream is used, so we do not need multiple threads which read
different streams, and we can easily match the response to a previous
request. The XML interface is used by recent versions of CoqIDE as well.
We developed Kopitiam (generation 0.3.*) to use the structured XML
interface. Since its fourth generation Kopitiam interacts with multiple
Coq processes at once, using one for each editor.

8.5. Implementation Challenges 87

The evolution of Coq, towards a structured input and output format,
is evidence that Kopitiam is a P program, and its evolution is largely
driven by changes in the world, rather than in Kopitiam itself.

8.5.2 Embedding Specifications and Proofs in Java

Kopitiam integrates program and proof development. To keep the pro-
gram and the proof in sync, it must embed the proof into the program.
All existing Eclipse tools, such as execution of the program, unit testers,
debuggers, profilers, and so on, have to work flawlessly with the pro-
gram that has a proof embedded.

Both the method specification and arbitrary proof scripts must be
embeddable into the Java program. To enhance readability of method
specifications, they should be close to the method definition. The proof
scripts should be interleaved with statements in a method body, to be
directly connected to the statement whose proof obligation the proof
script discharges.

We considered the following five different approaches to embed
specifications and proof script:

1. Write them inside of comments

2. Calls to static methods.

3. A combination of comments and calls to static methods.

4. Write them as Java annotations.

5. Invent custom antiquotes.

Out of these five, we started to implement the second in Kopitiam’s
first generation. The specification and proof script was passed as a Java
string, which did not allow for customized completions, syntax high-
lighting, and so on. Our experience showed that we want the embed-
dings to be more structured, but neither the comments nor the calls to
static methods allowed to be more structured.

We evaluated Java annotations (Option 4) again, but the places where
annotations are allowed in Java code are too limited for proof scripts,
which are allowed between statements.

88 Chapter 8. Evolutionary Design and Implementation of Kopitiam

Since its second generation, Kopitiam implements antiquotes. We
extend Eclipse’s lexer and parser to accept <% and %>, between which
we embed the specifications and proof scripts. Eclipse does not provide
an API to extend its lexer and parser, so we instead use aspect-oriented
programming to modify the code at load time. These antiquotes are
present in Eclipse’s abstract syntax tree, but the common tools like com-
pilers, debuggers, profilers, unit testers, and so on, ignore these un-
known nodes.

The approach of using aspect-oriented programming turned out to
be robust and fast. A major upgrade from Eclipse Helios (version 3.6)
to Juno (version 4.2) did not require any modification to the aspect-
oriented code.

Although other software evolves around Kopitiam, a program of
type P, it survived even major software upgrades. This will not univer-
sally be the case, but we designed Kopitiam to contain only a minimal
amount of internal knowledge about external software.

8.5.3 Java Parser

Kopitiam needs to convert the Java program into a Coq representation.
To achieve this, Kopitiam parses the Java program and emits a simplified
syntax based on s-expressions. This simplified syntax does not handle
complete Java code, such as nested field accesses, but many Java pro-
grams are easily refactored to the Java subset that our Coq formalisation
supports.

There are two practical ways to get a parse tree of a Java program:
either write a new Java parser, or use the existing one in Eclipse. In
the first two generations we used the former approach, based on Scala’s
parser combinators, so that we could restrict the abstract syntax to pre-
cisely the subset of Java representable in our Coq formalisation.

Therefore, the entire Java code was first parsed to an abstract syn-
tax tree, which we tried to transform to our precise AST by introducing
temporary variables. If the transformation failed, we asked the user to
simplify the original code. It is crucial that the structure of the orig-
inal Java code and the transformed code stays structurally equivalent,
because the user should recognize the code when reasoning about it.

However, the custom parser turned out to have a high impact on
the time that a user must wait for the first time she attempts to verify

8.6. Conclusion 89

Gen Active Java Proof Inte- Coq Inter- Kloc Coq Eclipse
Until Parser gration action version version

0.0.* Jun ’12 custom SM stdout 7.9 8.2 3.6
0.1.* Oct ’12 custom AOP stdout 9.5 8.2-8.3 3.6-3.7
0.2.* Mar ’13 Eclipse AOP stdout 5.5 8.2-8.4 3.6-3.7
0.3.* active Eclipse AOP XML 4.8 ≥8.4 ≥4.2
0.4.* future Eclipse EMF XML n/a ≥8.4 ≥4.2

Table 8.1: Comparison of features of different Kopitiam generations.

a method. The Scala compiler generated over 1100 classes from the
combinator-based parser, which involves many anonymous functions,
translated to classes. The JVM class loader is not designed to load such
a large number of classes in a short time.

Since the third generation Kopitiam uses the Eclipse Java AST, which
we use to check whether an AST is understandable by our Coq formal-
isation. We also use the Eclipse Java AST to output the Coq abstract
syntax representing the Java program. This code is much faster since
the AST is already parsed by Eclipse, and all classes are loaded upfront
by Eclipse.

8.6 Conclusion

Table 8.1 summarizes the main features of all Kopitiam generations,
and also shows the planned future generation. The first column re-
ports the generation and the second until when it was actively devel-
oped. The third column describes the Java parser we are using: ei-
ther our custom combinator parser (custom) or the parser provided by
Eclipse (Eclipse). The fourth column presents the proof script and spec-
ification integration, either calls to static methods (SM), antiquotes by
using aspect-oriented programming to change Eclipse’s built-in lexer
and parser (AOP), or the Eclipse modeling framework (EMF), which is
planned for the future. The fifth column describes the Coq interaction,
either screen-scraping from output streams (stdout) or the structured
XML interface, only available since Coq 8.4. The sixth column pro-
vides the number of source lines of Kopitiam, in thousands of lines.
We used wc to count the lines of the latest release of each generation.

90 Chapter 8. Evolutionary Design and Implementation of Kopitiam

The supported Coq versions and Eclipse versions are shown in the last
two columns.

We can clearly see that eliminating our custom combinator-parser
reduced the code size, as did adopting the structured XML interface of
Coq.

Kopitiam is still a work in progress, but we now have a much bet-
ter idea what we want to achieve and how to get there. Kopitiam
will continue to adapt to new features of both Coq and Eclipse, and
workarounds that had to be developed due to limitations of these exter-
nal software will be removed at a later point.

The core functionality is robust and in place now, which serves as
a solid basis for more advanced features. Evidence for this statement
is that Kopitiam survived with only minor adjustments the updating
of major releases of Scala, Coq and Eclipse. The latest generation of
Kopitiam (0.3.*) has a significantly reduced amount of global state and is
now using one coqtop process for each editor. We schedule the sending
of commands to the Coq processes in background threads so that the
user interface is responsive.

We evaluated the 0.2.* generation by using it for teaching a master’s-
level course. This course was based on Pierce et al.’s Software Founda-
tions [99] book, which we taught in the first 8 weeks. We asked the
participants to fill out a survey about Kopitiam, the results of which are
very promising.

8.7 Future Work

We briefly describe the future directions of the development of Kopi-
tiam. Kopitiam can be thought of as containing two main separate com-
ponents, the Coq development mode and the extension to the Java de-
velopment environment.

The Coq development mode should be extended with common
features from development environments for other programming lan-
guages:

• We want to support dependency tracking: whenever the user mod-
ifies the Coq development, automated builder jobs should be run
in the background to recompile the dependent files.

8.7. Future Work 91

• We will also look into navigation within Coq projects. A user
should be able to jump to the definition of a lemma or data type.

• Refactoring of Coq code, like renaming a definition, extraction of
helper lemmas from within a proof.

• To accomplish being a complete Coq environment, we want to deal
with Coq’s notation feature.

In the Java extension, we want to include features to produce useful
documentation from a verified program, and also to simplify proofs by
providing better tools to the user.

• Verifyied programs should produce documentation which states the
proven correctness lemmas integrated into Javadoc output.

• We want to develop a concise visualization of the symbolic heap
and stack, instead of providing only the textual output of Coq’s
proof obligations. This will improve the user experience.

• Context-sensitive suggestions for developing specifications and proof
script should be provided, like completions of local variables and
field names.

• The specification syntax should be improved. We will likely switch
to using a modeling framework like EMFText3 for our customized
syntax.

• We will possibly adopt an already existing specification language
like JML. This would allow us to apply more case studies based on
the case studies done with JML.

• Integration into the Java program refactoring: for example, when a
field is renamed, the specifications refering to this field should be
updated automatically.

• Implement local transformations of Java programs, such as nested
field access, to support more Java programs.

3http://www.emftext.org/

http://www.emftext.org/

92 Chapter 8. Evolutionary Design and Implementation of Kopitiam

• Kopitiam supports only a subset of Java, which should be extended
with more features like generics and arrays. This requires exten-
sions to Charge! as well.

We have presented a roadmap of possible future features of Kopi-
tiam. At the moment a full-time programmer is working on Kopitiam,
along with a MSc student, who focuses on the specification language
integration.

Chapter 9

Empirical Evaluation of Kopitiam

Abstract
In this paper we present an empirical evaluation of Kopitiam

based on the technology acceptance model. Kopitiam is an Eclipse
plugin that integrates the proof assistant Coq with development
of Java code. After we taught a group of M.Sc. students Coq, we
asked them to fill out a questionnaire, whose results are presented
in this empirical evaluation.

9.1 Introduction

Kopitiam is an Eclipse plugin to integrate proof development in Coq
with program development in Java. In this paper we focus solely on
the Coq development environment, rather than the Java integration. We
taught a one semester (16 weeks) course at the master’s level based on
material from Pierce et al’s book Software Foundations [99]. To evaluate
Kopitiam’s usefulness, we conducted an empirical evaluation of the cur-
rent version (at the beginning of February 2013) of Kopitiam, which was
the 0.2.* generation. The 0.2.* generation of Kopitiam supports Coq 8.2
and above, and uses screen scraping of the standard output to commu-
nicate with Coq. A detailed comparison between the Kopitiam gener-
ations is given in Chapter 8. We analyze the data collected at the end
of the semester in this paper. The research framework chosen for this
analysis is Davis’s technology acceptance model [40] from 1989, which
is a theory that models how users come to accept and use a technology.

94 Chapter 9. Empirical Evaluation of Kopitiam

In this paper, we will present our research objective in Section 9.2,
the methodology we used in Section 9.3, our concrete questionnaire in
Section 9.4, the participants in Section 9.5, the results of the question-
naire in Section 9.6, threats to validity in Section 9.7. In Section 9.8 we
discuss the implications of these results and we conclude the paper in
Section 9.9.

9.2 Research Objective

Our primary goal in this study was to investigate the usability of Kopi-
tiam by students at the master’s level. To achieve this goal we designed
a pilot evaluation investigating the perceived usefulness, perceived ease
of use, and self-predicted future use by the study participants. Further-
more, we are interested whether the participants propose to use Kopi-
tiam in the future for teaching, ways to make it easier to get started
with Kopitiam, Kopitiam’s robustness, and desired features. To address
these matters, we used a questionnaire based on an adapted version of
the technology acceptance model [71]. The key research questions that
were addressed by our study are:

• RQ1: Do users perceive Kopitiam as useful, not useful or are they
indifferent?

• RQ2: Do users perceive Kopitiam as easy to use, difficult to use or
are they indifferent?

• RQ3: Would users adopt Kopitiam in the future?

• RQ4: Do users of Kopitiam suggest that we continue using Kopi-
tiam in future courses?

• RQ5: What is the main source of confusion, Kopitiam, Coq or
Eclipse?

• RQ6: What would make it easier to get started with Kopitiam?

• RQ7: Is Kopitiam robust?

• RQ8: How does Kopitiam compare to other verification tools?

• RQ9: What are desired features of Kopitiam?

9.3. Methodology of the Evaluation 95

9.3 Methodology of the Evaluation

The technology acceptance model [40] aims at assessing user beliefs
about the usefulness and ease of use of a technology by using a ques-
tionnaire. The questionnaire focusses on both perceived usefulness and
perceived ease of use. Davis [40] defines the term “usefulness” as “the
degree to which a person believes that using a particular system would
enhance his or her job performance” and the term “perceived ease of
use” as “the degree to which a person believes that using a particular
system would be free of effort”.

In this study we use an extended version of the technology accep-
tance model, which was proposed by Laitenberger and Dreyer [71], and
also evaluates self-predicted future use.

The first three variables (RQ1, RQ2, and RQ3) were measured with
a seven-point Likert scale, which allows positive, negative, and neutral
evaluation to be captured. The Likert scale ranges from 1 to 7, where
1 corresponds to “extremely likely”, 2 to “quite likely”, 3 to “slightly
likely”, 4 to “neither”, 5 to “slightly unlikely”, 6 to “quite unlikely” and
7 to “extremely unlikely”.

The proposed usage of Kopitiam (RQ4) variable was measured with
two possible answers: yes and no. This methodology allows only posi-
tive and negative evaluation to be captured.

The source of confusion variable (RQ5) was measured with three
possible answers: Coq, Eclipse, and Kopitiam. This methodolgy assigns
confusion to a single component.

The remaining variables (RQ6 – RQ9) in the questionnaire were mea-
sured with open-ended questions (text fields): what would make Kopi-
tiam easier to get started, the robustness of Kopitiam, how Kopitiam
compares to other verification tools, and what the desired features of
Kopitiam are.

9.4 Questionnaire

In the following we present the questionnaire used for each variable,
where the first two are taken from the technology acceptance model [40],
and the third from the extension for self-predicted future use [71].

96 Chapter 9. Empirical Evaluation of Kopitiam

Perceived Usefulness

• U1: Using Kopitiam in my job would enable me to accomplish
tasks more quickly.

• U2: Using Kopitiam would improve my job performance.

• U3: Using Kopitiam in my job would increase my productivity.

• U4: Using Kopitiam would enhance my effectiveness on the job.

• U5: Using Kopitiam would make it easier to do my job.

• U6: I would find Kopitiam useful in my job.

Perceived Ease of Use

• E1: Learning to operate Kopitiam would be easy for me.

• E2: I would find it easy to get Kopitiam to do what I want it to do.

• E3: My interaction with Kopitiam would be clear and understand-
able.

• E4: I would find Kopitiam to be flexible to interact with.

• E5: It would be easy for me to become skillful at using Kopitiam.

• E6: I would find Kopitiam easy to use.

Self-predicted Future Use

• F1: Assuming Kopitiam would be available on my job, I predict
that I will use it on a regular basis in the future.

• F2: I would prefer using Kopitiam to paper-based techniques for
performing proofs.

Proposed Future Use (answer possibilities: “Yes” or “No”)

• PF1: Would you suggest to use Kopitiam in future courses?

• PF2: Would you expect your fellow students to be able to use Ko-
pitiam?

9.5. Participants and Setup 97

Software
Foundations

Verification
Tools Project Questionnaire

8 w 1 w 7 w

Midterm
Evaluation

Figure 9.1: Timeline of the semester: the first 8 weeks had “Software Foundations” as their topic,
followed by the midterm evaluation. Afterwards one week was spent on different verification tools,
which was followed by a 7 week project. At the end we gathered feedback with the questionnaire.

Source of Confusion (answer possibilities: “Coq”, “Eclipse” or “Kopi-
tiam”)

• C1: What is the main source of confusion while proving?

Robustness and Suggestions (open-ended questions)

• G1: What would it make easier to get started?

• G2: Did Kopitiam crash in your experience? If so, were you able
to recover from the crash or got support?

• G3: Have you ever been lost while using Kopitiam? If so, please
recall the circumstances. How did you continue?

• G4: What are possible future extensions for Kopitiam? In which
area should Kopitiam improve the most?

• G5: We briefly looked at other verification tools. Please elaborate
what in your opionion the main difference between Kopitiam and
other verification tools is.

• G6: General feedback

9.5 Participants and Setup

We recruited participants from the master’s course that we taught dur-
ing the Spring Semester 2013 (16 weeks, 2 lectures with 2 hours each
week). The master’s course is mandatory for students of the program-
ming languages specialization in ITU’s software engineering master’s
program. A student can choose between several different specializations

98 Chapter 9. Empirical Evaluation of Kopitiam

in the software engineering program. The background of a student start-
ing a master in software engineering at ITU is a completed B.Sc. degree
in any subject. In the course in spring 2013 a zoologist and an architect
participated, together with several software engineers. Some had some
functional programming background, the majority did not. None of the
students had done formal proofs before, some have been taught logical
foundations before. The timeline of the semester is shown in Figure 9.1.
We started teaching Pierce et al’s Software Foundations [99] during the
first eight weeks. The usual midterm course evaluation was just after
the eighth week. In the ninth week, the students were asked to present
other verification tools in groups. They chose VeriFast [58], Spec# [7]
and the dependently typed programming language Idris [27]. In the
last seven weeks, the students had to work in groups on a project where
they implement and verify some data structure or extend an existing
formalization. One group chose to use VeriFast for the project, while
the remaining four groups used Coq for their projects.

The students were asked to use Kopitiam for all mandatory exercises
and the project. However, some students decided to use CoqIDE instead
of Kopitiam.

At the end of the course, all students were asked to fill out the
questionnaire, which was available online. The answers were recorded
anonymously. Six out of thirteen students who participated in the
course filled out the questionnaire. All recorded answers were from
students who used Kopitiam, rather than CoqIDE.

In order to preserve anonymity with a small respondent group we
did not record any demographic information for the questionnaire.

9.6 Results

We present the aggregate results of the self-reported quantitative data
in this section, and evaluate the answers to the open-ended questions in
the discussion (Section 9.8). In general, Kopitiam received good results
from the evaluation.

Perceived Usefulness is presented in Table 9.1. Kopitiam is perceived
to be appropriate for performing tasks more quickly (U1) and more eas-
ily (U5). The participants are less convinced, but still between “slightly”

9.6. Results 99

x x̃ σ
U1 2.17 2.00 0.37
U2 2.50 2.50 0.50
U3 2.50 2.50 0.50
U4 2.67 3.00 0.47
U5 2.33 2.00 0.47
U6 2.50 2.50 0.50

Table 9.1: Perceived usefulness of Kopitiam, for each question U1-U6, the table shows the arithmetic
mean (x), the statistical median (x̃) and the standard deviation (σ). The data was gathered with a seven
point Likert scale ranging from 1 (extremely likely) to 7 (extremely unlikely).

x x̃ σ
E1 1.83 2.00 0.69
E2 2.00 2.00 0.58
E3 2.00 2.00 0.58
E4 3.17 3.00 0.69
E5 2.17 2.00 0.69
E6 2.17 2.00 0.69

Table 9.2: Perceived ease of use of Kopitiam, for each question E1-E6, the table shows the arithmetic
mean (x), the statistical median (x̃) and the standard deviation (σ). The data was gathered with a seven
point Likert scale ranging from 1 (extremely likely) to 7 (extremely unlikely).

and “quite” likely, of the improved performance (U2), productivity (U3),
and general usefulness (U6). The participants are tending towards
“quite likely” for the effectiveness (U4) enhancements.

Perceived Ease of Use is presented in Table 9.2. The participants found
Kopitiam to be extremely easy to learn (E1). They perceived the navi-
gation as quite easy (E2), and the user interface as clear (E3). Their
experience was that they became quite skilled (E5) and their overall im-
pression is that Kopitiam is quite easy to use (E6). The participants were
not completely positive regarding the flexibility of Kopitiam (E4).

Self-Predicted Future Use is presented in Table 9.3. The participants
extremely prefer the verification tool Kopitiam over paper-based proofs
(F2), whereas they are not too sure that they will use Kopitiam on a
regular basis (F1).

100 Chapter 9. Empirical Evaluation of Kopitiam

x x̃ σ
F1 2.50 2.00 0.50
F2 1.50 2.50 0.76

Table 9.3: Self-predicted future use of Kopitiam, for both questions F1 and F2, the table shows the
arithmetic mean (x), the statistical median (x̃) and the standard deviation (σ). The data was gathered
with a seven point Likert scale ranging from 1 (extremely likely) to 7 (extremely unlikely).

Proposed Future Use The unison answer of all participants to the pro-
posed future use questions (PF1 and PF2) was “Yes”.

Source of Confusion 5 out of the 6 participants (83%) found Coq to be
the main source of confusion (C1), whereas a single participant found
Eclipse the main source of confusion.

Robustness and Suggestions The results of the open-ended questions
are evaluated in Section 9.8.

9.7 Threats to Validity

Participants’ Affiliation All participants were master’s students from
IT University of Copenhagen who were enrolled in our course. This po-
tentially imposes a bias, but the participants chose voluntarily to answer
the questionnaire. It was clearly communicated to the participants that
the results would be recorded anonymously and it was not mandatory
to fill out the questionnaire.

Participants’ Training The participants were trained in the usage of
Kopitiam during one semester (16 weeks). They were not trained in
other verification tools, and they have not seen an interactive proof as-
sistant before. The comparison to other verification tools is shallow,
since these were only briefly presented.

Participants’ Partiality The participants were taught by us for a
semester, and are graded by us, which might impose a bias. Filling
out the questionnaire was not mandatory, and we recorded the answers
anonymously. Roughly half of the course participants filled out the
questionnaire, which shows that it was completely voluntary.

9.8. Discussion 101

α
Usefulness 0.87
Ease of use 0.91
Future use 0.83

Table 9.4: Cronbach’s α of the investigated variables.

Validity of Results This is a pilot experiment; thus, the number of par-
ticipants was limited. The results are not generalizable or scalable due
to the small participating group. We analyzed the reliability of the eval-
uation by looking into the internal consistency of the three investigated
variables of the technology acceptance model [40]. To accomplish that,
we computed Cronbach’s alpha coefficient [37], by using the method-
ology presented by Bland and Altman [22]. Our results are shown in
Table 9.4. The threshold for acceptable results is 0.7, as presented by
Bland and Altman [22]. In our case, the perceived usefulness and self-
predicted future use show good internal consistency (value is greater
than 0.8). The perceived ease of use has an extremely good internal
consistency (value greater than 0.9). The results of the experiment are
not generalizable, but the α gives good confidence in the internal con-
sistency of the gathered results.

9.8 Discussion

The purpose of Kopitiam is to provide a development environment for
Coq proofs. We presented the aggregated results of the quantitative data
using the technology acceptance model in Section 9.6. Those results are
promising for the future use and development of Kopitiam.

Before our questionnaire at the end of the semester, a standard course
evaluation was conducted in the middle of the semester, as shown in Fig-
ure 9.1. Already in this course evaluation, motivating comments about
Kopitiam were present: “The Kopitiam plugin [...] works very well” and
“Kopitiam makes Coq easier to comprehend”.

The answers to how to get easier started with Kopitiam (G1) in-
cluded “better keyboard shortcuts” and “better compatibility with dif-
ferent Eclipse versions”. The keyboard shortcuts are configurable by a
user, but we failed to mention this. Kopitiam supports different Eclipse

102 Chapter 9. Empirical Evaluation of Kopitiam

versions, but we were too conservative and had a dependency that was
too tight on a specific Eclipse version. This tight dependency was loos-
ened in the fourth generation.

The answers to whether Kopitiam crashed (G2) varied a lot, from
“It did not crash, but I had to restart Coq plenty of times.” to “Yes,
Kopitiam did crash. [...] the crashes happened more frequently the
more lines of code I put into a single file”.

During the semester we fixed only one issue in Kopitiam: the parsing
of comments lead to a stack overflow on Windows. The last comment
indicates that an old release without the fix for the issue was used, and
no upgrade was performed by the student.

One participant replied extensively by observing that “Kopitiam [...]
stalled [...] in the following cases:”

• “The .v [source] file was changed outside of Eclipse”.

• “The .vo [object] file was changed while it was loaded and you
continued [to interact]”.

• “If you used ’step to cursor’ on a point that was far behind the
current cursor”.

• “Sometimes, stepping forward over trivial tactics would take large
amount of time [...]”.

In a new Kopitiam generation the communication interface with Coq
is rewritten, and uses the newly available structured input and output of
Coq. This structured communication interface results in fewer crashes
and more reliable error reporting from Coq.

There were only two affirmative answers to whether the participant
felt at any time lost at any time (G3). One mentioned the issue of the
communication protocol with Coq, which has been solved in the fourth
generation “If your assumption-list grows to large, it overflows the box,
and spills into the console. [...] I continued by using another approach
that did not produce such large assumption-lists.”. The other answer
was “Yes, but an update solved the problem.”.

The proposed future extensions (G4) ranged over “Just eliminate the
bugs and improve the hotkeys.” and “When selecting different goals, it
would be a huge improvement if the context changed as well.”. Another

9.9. Conclusion 103

proposal was “[...] better syntax highlighting [...], code completion for
tactics, adding external Coq libraries [...] from within the Eclipse en-
vironment”. “An integrated build system [...]” was mentioned several
times, we are working on this.

The comparison to other verification tools (G5) is biased due to their
extensive training with Kopitiam, and only a shallow introduction into
other verification tools. The answers were “Compared to a tool like
VeriFast, Kopitiam makes it a lot clearer what proof obligations you
have and what you have in the context” and “Compared to the way
you currently do verification and implementation in Idris, the interface
of Kopitiam seems once again to provide a much cleaner presentation
of proof obligations and context than the command-line tools of Idris”.
One answer compared Kopitiam to other courses: “It is more thorough
but also a bit more theoretical than practical with regards to ’regular’
software development.”.

The general feedback (G6) is promising for future development:
“Quite a decent plugin. Not a fan of Eclipse in general, but Kopitiam
worked quite well, and was very easy to use.” “[...] All in all, I think
Kopitiam is a great tool to work with, although it does crash a bit too
often.”

9.9 Conclusion

We continue the development of Kopitiam, and are eager to evaluate
the next generation of Kopitiam, after addressing the issues identified.
It would be very interesting to have a comparative study of Kopitiam
and other verification tools, but it is not easily possible to teach multiple
verification tools in depth in a single semester. We teach the students
Kopitiam and Coq in one semester, and teaching them another verifica-
tion tool, being it a different proof system or another Coq development
environment (e.g. Proof General or CoqIDE), would take much more
time. It is crucial to understand the differences between the verification
a user can do in different tools and the subtle differences between these
tools, and this cannot be taught within a small period of time.

Part III

Research Papers: Case Studies

Chapter 10

Formalized Verification of Snapshotable
Trees: Separation and Sharing
Originally published in: VSTTE 2012 [82]

Joint work with: Filip Sieczkowski, Lars Birkedal, and Peter Sestoft; ITU Copenhagen

Abstract

We use separation logic to specify and verify a Java program
that implements snapshotable search trees, fully formalizing the
specification and verification in the Coq proof assistant. We achieve
local and modular reasoning about a tree and its snapshots and
their iterators, although the implementation involves shared muta-
ble heap data structures with no separation or ownership relation
between the various data.

The paper also introduces a series of four increasingly sophis-
ticated implementations and verifies the first one. The others are
included as future work and as a set of challenge problems for
full functional specification and verification, whether by separation
logic or by other formalisms.

10.1 Introduction

This paper presents a family of realistic but compact challenge case stud-
ies for modular software verification. We fully specified and verified the
first case study in Coq, using a domain-specific separation logic [68] and
building upon our higher-order separation logic [12]. As future work we

108 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

plan to verify the other implementations with the presented abstract in-
terface specification. We believe this is the first mechanical formalization
of this approach to modular reasoning about implementations that use
shared heap data with no separation or ownership relation between the
various data.

The family of case studies consists of a single interface specifica-
tion for snapshotable trees, and four different implementations. A snap-
shotable tree is an ordered binary tree that represents a set of items and
supports taking readonly snapshots of the set, in constant time, at the ex-
pense of slightly slower subsequent updates to the tree. A snapshotable
tree also supports iteration (enumeration) over its items as do, e.g., the
Java collection classes. The four implementations of the snapshotable
tree interface all involve shared heap data as well as increasingly subtle
uses of destructive heap update.

For practical purposes it is important that the same interface specifi-
cation can support verification of multiple implementations with vary-
ing degrees of internal sharing and destructive update. Moreover, the
specification must accommodate any number of data structure (tree) in-
stances, each having any number of iterators and snapshots, each of
which in turn can have any number of iterators. Most importantly, we
show how we can have local reasoning (a frame rule) even though the
tree and its snapshots share mutable heap data.

We welcome other solutions to the specification and verification of
this case study; indeed R. Leino has already made one (unpublished)
using Dafny [74].

The Java source code of the case studies of all four implementations
and the Coq source is available at http://www.itu.dk/people/hame/

snapshots.tgz.
Section 10.2 presents the interface of the case study data structure,

shows an example use, and outlines four implementations. Section 10.3
gives a formal specification of the interface using separation logic and
verifies the example code. Sections 10.4 and 10.5 verify the first imple-
mentation.

http://www.itu.dk/people/hame/snapshots.tgz
http://www.itu.dk/people/hame/snapshots.tgz

10.2. Case Study: Snapshotable Trees 109

10.2 Case Study: Snapshotable Trees

The case study is a simplified version of snapshotable treesets from the
C5 collection library [66].

10.2.1 Interface: Operations on Snapshotable Trees

Conceptually, a snapshot of a treeset is a readonly copy of the treeset.
Subsequent updates to the tree do not affect any of its snapshots, so
one can update the tree while iterating over a snapshot. Taking a snap-
shot must be a constant time operation, but subsequent updates to the
tree may be slower after a snapshot has been taken. Implementations
(Section 10.2.3) typically achieve this by making the tree and its snap-
shots share parts of their representation, gradually unsharing it as the
tree gets updated, in a manner somewhat analogous to copy-on-write
memory management schemes in operating systems.

All tree and snapshot implementations implement the same ITree
interface:

public interface ITree extends Iterable<Integer> {

public boolean contains(int x);

public boolean add(int x);

public ITree snapshot();

public Iterator<Integer> iterator();

}

These operations have the following effect:

• tree.contains(x) returns true if the item is in the tree, otherwise
false.

• tree.add(x) adds the item to the tree and returns true if the item
was not already in the tree; otherwise does nothing and returns
false.

• tree.snapshot() returns a readonly snapshot of the given tree.
Updates to the given tree will not affect the snapshot. A snapshot
cannot be made from a snapshot.

110 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

• tree.iterator() returns an iterator (also called enumerator, or
stream) of the tree’s items. Any number of iterators on a tree or
snapshot may exist at the same time. Modifying a tree will invali-
date all iterators on that tree (but not on its snapshots), so that the
next operation on such an iterator will throw a ConcurrentModifi-
cationException.

We include the somewhat complicated iterator() operation because it
makes the distinction between a tree and its snapshots completely clear:
While it is illegal to modify a tree while iterating over it, it is perfectly
legal to modify the tree while iterating over one of its snapshots. Also,
this poses an additional verification challenge when considering imple-
mentations with rebalancing (cases A2B1 and A2B2 in Section 10.2.3)
because tree.add(item) may rebalance the tree in the middle of an it-
eration over a snapshot of the tree, and that should be legal and not
affect the iteration.

Note that for simplicity, items are here taken to be integers; using
techniques from [110] it is straightforward to extend our formal specifi-
cation and verification to handle a generic version of snapshotable trees.

10.2.2 Example Client Code

To show what can be done with snapshots and iterators (and not with-
out), consider this piece of client code. It creates a treeset t, adds three
items to it, creates a snapshot s of the tree, and then iterates over the
snapshot’s three items while adding new items (6 and 9) to the tree:

ITree t = new Tree();

t.add(2); t.add(1); t.add(3);

ITree s = t.snapshot();

Iterator<Integer> it = s.iterator();

boolean lc = it.hasNext();

while (lc) {

int x = it.next();

t.add(x * 3);

lc = it.hasNext();

}

10.2. Case Study: Snapshotable Trees 111

10.2.3 Implementations of Snapshotable Trees

One may consider four implementations of treesets, spanned by two or-
thogonal implementation features. First, the tree may be unbalanced
(A1) or it may be actively rebalanced (A2) to keep depth O(log n). Sec-
ond, snapshots may be kept persistent, that is, unaffected by tree up-
dates, either by path copy persistence (B1) or by node copy persistence
(B2):

Without rebalancing With rebalancing
Path copy persistence A1B1 A2B1
Node copy persistence A1B2 A2B2

The implementation closest to that of the C5 library [66, section 13.10]
is A2B2, which is still somewhat simplified: only integer items, no com-
parer argument, no update events, and so on. In this paper we formalize
and verify only implementation A1B1; the verification of the more so-
phisticated implementations A1B2, A2B1 and A2B2 will be addressed in
future work.

Nevertheless, for completeness and in the hope that others may con-
sider this verification challenge, we briefly discuss all four implementa-
tions and the expected verification challenges here.

With path copy persistence (cases AxB1), adding an item to a tree will
duplicate the path from the root to the added node, if this is necessary
to avoid modifying any snapshot of the tree. Thus an update will create
O(d) new nodes where d is the depth of the tree.

With node copy persistence (cases AxB2), each tree node has a spare
child reference. The first update to a node uses this spare reference,
does not copy the node and does not update its parent; the node remains
shared between the tree and its snapshots. Only the second update to a
node copies it and updates its parent. Thus an update does not replicate
the entire path to the tree root; the number of new nodes per update is
amortized O(1). See Driscoll [46] or [66].

To implement ordered trees without rebalancing (cases A1By), we
use a Node class containing an item (here an integer) and left and right
children; null is used to indicate the absence of a child. A tree or snap-
shot contains a stamp (indicating the “time” of the most recent update)
and a reference to the root Node object; null if the tree is empty.

112 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

To implement rebalancing of trees (cases A2By), we use left-leaning
red-black trees (LLRB) which encode 2-3 trees [2, 105], instead of gen-
eral red-black trees [53] as in the C5 library. This reduces the number of
rebalancing cases.

To implement iterators on a tree or snapshot we use a class TreeIter-
ator that holds a reference to the underlying tree, a stamp (the creation
“time” of the iterator) and a stack of nodes. The stamp is used to de-
tect subsequent updates to the underlying tree, which will invalidate
the iterator. Since snapshots cannot be updated, their iterators are never
invalidated. The iterator’s stack holds its current state: for each node in
the stack, the node’s own item and all items in the right subtree have yet
to be output by the iterator.

Case A1B1 = no rebalancing, path copy persistence In this imple-
mentation there is shared data between a tree and its snapshots, but the
shared data is not being mutated because the entire path from the root
to an added node gets replicated. Hence no node reachable from the
root of a snapshot, or from nodes in its iterators’ stacks, can be affected
by an update to the live tree; therefore no operation on a snapshot can
be affected by operations on the live tree. Although this case is there-
fore the simplest case, it already contains many challenges in finding a
suitable specification for trees, snapshots and iterators, and in proving
the stack-based iterator implementation correct.

Case A2B1 = rebalancing, path copy persistence In this case there
is potential mutation of shared data, because the rebalancing rotations
seem to be able to affect nodes just off the fresh unshared path from a
newly added node to the root. This could adversely affect an iterator
of a snapshot because a reference from the iterator’s node stack might
have its right child updated (by a rotation), thus wrongly outputting
the items of its right subtree twice or not at all. However, this does not
happen because the receiver of a rotation (to be moved down) is always
a fresh node (we’re in case B1 = path copy persistence) and moreover
we consider only add operations (not remove), so the child being rotated
(moved up) is also a fresh node and thus not on the stack of any it-
erator – the rebalancing was caused by this child being “too deep” in
the tree. Hence if we were to support remove as well, then perhaps the
implementation of rotations needs to be refined.

10.3. Abstract Specification and Client Code Verification 113

Case A1B2 = no rebalancing, node copy persistence In this case, there
is mutation of shared data not observable by the client. For example, a
left-child update to a tree node that is also part of a snapshot will move
the snapshot’s left-child value to the node’s extra reference field, and
destructively update the left child as required for the live tree. There
should be no observable change to the snapshot, despite the change to
the data representing it. The basic reason for correctness is that any
snapshot involving an updated node will use the extra reference and
hence not see the update; this is true for nodes reachable from the root
of a snapshot as well as for nodes reachable from the stack of an iterator.
When we need to update a node whose extra reference is already in use,
we leave the old node alone and create a fresh copy of the node for use
in the live tree; again, existing snapshots and their iterators do not see
the update.

Case A2B2 = rebalancing, node copy persistence In this case there is
mutation of shared data (due both to moving child fields to the extra
reference in nodes, and due to rotations), not observable for the client.
Since the updates caused by rotations are handled exactly like other
updates, the correctness of rebalancing with respect to iterators seems
to be more straightforward than in case A2B1.

10.3 Abstract Specification and Client Code Verification

We use higher-order separation logic [100, 20] to specify and verify the
snapshotable tree data structure. We build on top of our intuitionistic
formalization of HOSL in Coq [12] with semantics for an untyped Java-
like language.

To allow implementations to share data between a tree, its snapshots,
and iterators and still make it possible for clients to reason locally (to
focus only on a single tree / snapshot / iterator), we will use an idea
from [68] (see also the verification of Union-Find in [67]). The idea is to
introduce an abstract predicate, here named H, global to each tree data
structure consisting of a single tree, multiple snapshots, and multiple
iterators. This abstract predicate H is parameterized by a finite set of
disjoint abstract structures. We have three kinds of abstract structures:
Tree, Snap, and Iter. The use of H enables a client of our specification to

114 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

consider each abstract structure to be separate or disjoint from the rest
of the abstract structures and thus the client can reason modularly about
client code using only those abstract structures she needs; the rest can be
framed out. Since the abstract predicate H is existentially quantified, the
client has no knowledge of how an implementation defines H (see [20,
94] for more on abstract predicates in higher-order separation logic).
The implementor of the tree data structure has a global view on the tree
with its snapshots and iterators, and is able to define which parts of the
abstract structures are shared in the concrete heap. Section 10.4 defines
H for the A1B1 case from Section 10.2.3.

The Tree abstract structure consists of a handle (reference) to the tree
and a model, which is an ordered finite set, containing the elements of
the tree. The Snap structure is similar to Tree. The Iter structure consists
of a handle to the iterator and a model, which is a list containing the
remaining elements for iteration. Because H is tree-global, exactly one
Tree structure must be present (“the tree”), while the number of Snap
and Iter structures is not constrained.

10.3.1 Specification of the ITree Interface

We now present the formal abstract specification of the ITree interface in-
formally described in Section 10.2.1. The specification also contains five
axioms, which are useful for a client and obligations to an implementor
of the interface. The specification is parametrized over an implemen-
tation class C and the above-mentioned predicate H, and each method
specification is universally quantified over the model τ, a finite set of
integers and a finite set of abstract structures φ.

10.3. Abstract Specification and Client Code Verification 115

interface ITree {
H({Tree(this, τ)}] φ) contains(x) ret = x ∈ τ∧

H({Tree(this, τ)}] φ)

H({Snap(this, τ)}] φ) contains(x) ret = x ∈ τ∧
H({Snap(this, τ)}] φ)

H({Tree(this, τ)}] φ) add(x) ret = x 6∈ τ∧
H({Tree(this, {x} ∪ τ)}] φ)

H({Tree(this, τ)}] φ) snapshot() H({Snap(ret, τ), Tree(this, τ)}] φ)

H({Snap(this, τ)}] φ) iterator() H({Iter(ret, [τ]), Snap(this, τ)}] φ)∧
ret <: Iterator

(a) H({Tree(t, τ)}] φ) ` t : C
(b) H({Snap(s, τ)}] φ) ` s : C
(c) τ = τ′ ∧ H({Tree(t, τ)}] φ) ` H({Tree(t, τ′)}] φ)

(d) H({Snap(s, τ)}] φ) ` H(φ)

(e) H({Iter(it, α)}] φ) ` H(φ)
}

These specifications can be read as follows:

• contains requires either a Snap or Tree structure (written as sepa-
rate specifications) for the this handle and some set τ. The struc-
ture is unmodified in the postcondition, and the return value ret

is true if the item x is in the set τ, otherwise false.

• add requires a Tree structure for the this handle and some set τ.
The postcondition states that the given item x is added to the set τ.
The return value indicates whether the tree was modified, which
is the case if the item was not already present in the set τ.

• snapshot requires a Tree structure for the this handle and some
set τ. The postcondition constructs a Snap structure for the re-
turned handle ret and the set τ. So the Tree and the Snap structure
contain the same elements.

• iterator requires a Snap structure for the this handle and some
set τ. The postcondition constructs an Iter structure with the re-
turn handle and the set τ converted to an ordered list, written [τ].

116 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

The returned handle conforms (written <:) to the Iterator specifi-
cation shown in Section 10.3.2.

The five axioms state that (a) the static type of the tree is the given
class C; (b) the static type of a snapshot is C; (c) the model τ of the
tree can be replaced by an equal model τ′ 1; and we can forget about
snapshots (d) and iterators (e).

In contrast to the description in Section 10.2.1 we leave iterators over
the tree for future work. We could use the ramification operator [68] to
express that any iterators over the tree become invalid when the tree is
modified.

The abstract separation can be observed, e.g., in the specification of
add: it only modifies the model of the Tree structure and does not affect
the rest of the abstract structures (φ is preserved in the postcondition).
Hence the client can reason about calls to add locally, independently of
how many snapshots and iterators there are.

In our Coq formalization we do not have any syntax for interfaces at
the specification logic level [12], but represent interfaces using Coq-level
definitions. Appendix 10.8 contains the formal representations (ITree,
Iterator, Stack).

10.3.2 Iterator Specification

Our iterator specification is also parametrized over a class IC and a pred-
icate H, and each method specification is universally quantified over a
list of integers α and a finite set of abstract structures φ.
interface Iterator<Integer> {

H({Iter(this, α)}] φ) hasNext() ret = (|α| 6= 0)∧
H({Iter(this, α)}] φ)

H({Iter(this, x :: α)}] φ) next() ret = x ∧ H({Iter(this, α)}] φ)
}

The specification of the Iterator interface requires an Iter structure
with the this handle and some list α. The return value of the method
hasNext captures whether the list α is non-empty. The Iter structure in
the postcondition is not modified. The method next requires an Iter

1This is explicit for technical reasons: in our implementation H is defined inside a
monad [12], and the client should not have to discharge obligations inside the monad.

10.3. Abstract Specification and Client Code Verification 117

1: t.add(2);t.add(1);t.add(3);{
H({Tree(t, {1, 2, 3})})

}
2: ITree s = t.snapshot();{

H({Snap(s, {1, 2, 3}), Tree(t, {1, 2, 3})})
}

3: Iterator<Integer> it = s.iterator();}{
H({Iter(it, [1, 2, 3]), Tree(t, {1, 2, 3}), Snap(s, {1, 2, 3})})

}
4: boolean lc = it.hasNext();{

lc = true∧ H({Iter(it, [1, 2, 3]), Tree(t, {1, 2, 3}), Snap(s, {1, 2, 3})})
}

5: while (lc) \{
invariant: ∃α, β.α@β = [1, 2, 3] ∧ lc = (|β| 6= 0)∧

H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α}), Snap(s, {1, 2, 3}), Iter(it, β)})
6: int x = it.next();{

α@β = [1, 2, 3] ∧ lc = (|β| 6= 0) ∧ β = x :: β′∧
H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α})Snap(s, {1, 2, 3}), Iter(it, β′)})

}
7: t.add(x * 3);{

α@β = [1, 2, 3] ∧ lc = (|β| 6= 0) ∧ β = x :: β′∧
H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α} ∪ {3x}), Snap(s, {1, 2, 3}), Iter(it, β′)})

}
8: lc = it.hasNext();{

α@β = [1, 2, 3] ∧ lc = (|β′| 6= 0) ∧ β = x :: β′∧
H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α} ∪ {3x}), Snap(s, {1, 2, 3}), Iter(it, β′)})

}
9: }{

H({Tree(t, {1, 2, 3, 6, 9})}, Snap(s, {1, 2, 3})})
}

Figure 10.1: Snapshotable tree client code verification

structure with a non-empty list (x :: α). The list head is returned and the
model of the Iter structure is updated to the remainder of the list.

10.3.3 Client Code Verification

To verify the client code from Section 10.2.2 we assume we are given a
class C such that ITree C H holds for some H and then verify the client
code under the precondition {H({Tree(t, {})})}.

Figure 10.1 gives a step-by-step proof of the client code from Sec-
tion 10.2.2, with client code lines to the left and their postconditions to
the right.

After inserting some items (line 1) to the tree, the model contains
these items, {1, 2, 3}. In line 2, a snapshot s of the tree t is created.
The invariant H now consists of the Tree structure and a Snap struc-
ture containing the same elements. For the client the abstract structures

118 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

are disjoint, but in an implementation, they will be realized using shar-
ing. Indeed, for the A1B1 implementation, the concrete heap will be as
shown in Figure 10.2a, where all the nodes are shared between the tree
and the snapshot.

In line 3 an iterator it over the snapshot s is created. To apply
the call rule of the iterator method, only the Snap structure is taken
into account, the rest (the Tree structure) is framed out inside of H (via
appropriate instantiation of φ in the iterator specification). The result
is that an Iter structure is constructed, whose model contains the same
values as the model of the snapshot, but converted to an ordered list. We
introduce the loop condition lc in line 4, and again use abstract framing
to call hasNext.

Lines 5–9 contain a while loop with loop condition lc. The loop
invariant splits the iteration list [1, 2, 3] into the list α containing the
elements already iterated over and the list β containing the remainder.
The loop variable lc is false iff β is the empty list. The invariant H
contains the Tree structure whose model is the initial set {1, 2, 3} joined
with the set of the elements of α, each multiplied by 3. H also contains
the Iter and the Snap structures.

We omit detailed explanation of the remaining lines of verification.
Note that in the final postcondition, the client sees two disjoint struc-

tures (axiom (e) is used to forget the empty iterator), but in the A1B1
implementation, the concrete heap will involve sharing, as shown in
Figure 10.2b. Only the left subtree is shared by the tree and the snap-
shot; the root and right subtree were unshared by the first call to add in
the loop.

In summary, we have shown the following theorem, which says that
given any H and any classes C and IC satisfying the ITree and Itera-
tor interface specifications, the client code satisfies its specification. The
postcondition states that snapshot s contains 1, 2 and 3, and tree t con-
tains additionally 6 and 9.

Theorem 1. ∀H.∀C.∀IC.ITree C H ∧ Iterator IC H
` {H({Tree(t, {})})}

client_code

{H({Tree(t, {1, 2, 3, 6, 9}), Snap(s, {1, 2, 3}))}

10.4. Implementation A1B1 119

2

1 3

t.root s.root

(a) Heap after snapshot construction

2

1 3

6

9

2

3

t.root s.root

(b) Live heap after execution of the client code

Figure 10.2: Heap layout of the trees during execution of client code.

10.4 Implementation A1B1

In this section we show the partial correctness verification of the A1B1
implementation with respect to the abstract specification from the pre-
vious section. This involves defining a concrete H and showing that the
methods satisfy the required specifications for this concrete H. The de-
velopment has been formally verified in Coq (as has the client program
verification above).

The Coq formalization uses a shallow embedding of higher-order
separation logic, developed for verification of OO programs using inter-
faces. See [12].

Invariant H is radically different depending on whether snapshots
of the tree are present or not. The reason is that method add mutates
the existing tree if there are no snapshots present, see Section 10.5 for
details. Here we focus on the case where snapshots are present.

The A1B1Tree class stores its data in three fields: the root node,
a boolean field isSnapshot, indicating whether it is a snapshot, and a
field hasSnapshot, indicating whether it has snapshots. The stamp field
mentioned in Section 10.2.3 is only required for iterators over the tree
and so not further discussed here.

The Node class is a nested class of the A1B1Tree with three fields,
item containing its value, and a handle to the right (rght) and left (left)
subtree.

In the following we use standard separation logic connectives, in
particular the separating conjunction ∗and the points to predicate 7→.

120 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

We now define our concrete H and also the realization of the ab-
stract structures. We first explain the realization of Tree and Snap; the
Iter structure is described in Section 10.4.1. Recall that φ ranges over
finite sets of abstract structures (Tree, Snap, Iter), with exactly one Tree
structure, and recall that H, given a φ, returns a separation logic predi-
cate. The definition of H is:

H(φ) , ∃σ.wf (σ) ∧ heap(σ) ∗ σ � φ

Here σ is a finite map of type ptr → ptr × Z × ptr, with ptr being
the type of Java pointers (handles), corresponding to the Node class.
The map σ must be well-formed (pure predicate w f (σ)), which simply
means that all pointers in the codomain of σ are either null or in the
domain of σ.

The heap function maps σ to a separation logic predicate, which de-
scribes the realization of σ as a linked structure in the concrete heap,
starting with >:

heap(σ) , fold (λp n Q. match n with (pl, v, pr)⇒
p.left 7→ pl ∗
p.item 7→ v ∗
p.rght 7→ pr ∗
Q)

>
σ

Finally, we present the definition of σ � φ (we defer the definition of
σ � {Iter(_, _)} to the following subsection):

σ � φ] ψ , σ � φ ∗ σ � ψ

σ � {Tree(ptr, τ)} , ∃p.Node(σ, p, τ)∧
ptr.root 7→ p ∗
ptr.isSnapshot 7→ false ∗
ptr.hasSnapshot 7→ true

σ � {Snap(ptr, τ)} , ∃p.Node(σ, p, τ)∧
ptr.root 7→ p ∗
ptr.isSnapshot 7→ true ∗
ptr.hasSnapshot 7→ false

10.4. Implementation A1B1 121

The spatial structure of all the nodes is covered by heap(σ) so σ � φ

just needs to describe the additional heap taken up by Tree, Snap, and
Iter structures.

The pure Node predicate is defined inductively on τ below. It is used
to express that τ is the finite set of items reachable from p in σ.

Node(σ, p, τ) ,
(
p = null∧ τ = {}

)
∨(

p ∈ dom(σ) ∧ ∃pl, v, pr. σ[p] = (pl, v, pr) ∧
∃τl, τr.τ = τl ∪ {v} ∪ τr ∧
(∀x ∈ τl.x < v) ∧ (∀x ∈ τr.x > v) ∧
Node(σ, pl, τl) ∧Node(σ, pr, τr)

)
The sortedness constraint (a strict total order) in the Node predicate

enforces implicitly that σ has the right shape: σ cannot contain cycles
and the left and right subtrees must be disjoint. The set τ is split into
three sets, one with strictly smaller elements (τl), the singleton v and
with strictly bigger elements (τr).

10.4.1 Iterator

The TreeIterator class implements the Iterator interface. It contains a
single field, context, which is a stack of Node objects.

The constructor of the TreeIterator pushes all nodes on the leftmost
path of the tree onto the stack. The method next pops the top node
from the stack and returns the value held in that node. Before returning,
it pushes the leftmost path of the node’s right subtree (if any) onto the
stack. The method hasNext returns true if and only if the stack is empty.

The verification of the iterator depends on the following specification
of a stack class, generic in C. The specification is parametrized over a
representation type T and existentially over a representation predicate
SR (of type classname → (val → T → HeapAsn) → val → T∗ → HeapAsn).
The second argument is the predicate P (of type val → T → HeapAsn) ,
which holds for every stack element. This specification is kept in the
style of [96], although we use a different logic.

122 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

class Stack<C> {
> new() SR C P ret nil

SR C P this α empty() ret = (α = nil) ∧ SR C P this α

SR C P this α ∗ P x t ∧ x : C push(x) SR C P this (t :: α)

SR C P this (t :: α) pop() P ret t ∗ SR C P this α

SR C P this (t :: α) peek() P ret t ∗
(∀u.P ret u −∗ SR C P this (u :: α))

(a) P v t ` P′ v t =⇒ SR C P v α ` SR C P′ v α

}

For the purpose of specifying the iterators over snapshotable trees,
we instantiate the type T with Z∗; the model of a node on the stack is
a list of integers. Intuitively, this list corresponds to the node value and
the element list of its right subtree. The iterator is modelled as a list
that is equal to the concatenation of the elements of the stack. We also
require that the topmost element of the stack is nonempty (if present).
This intuition is formalized in the interpretation of the Iter structure,
where SR is a representation predicate of a stack:

σ � {Iter(p, α)} , ∃st. p.context 7→ st ∗ ∃β.stack_inv(β, α)∧
SR Node (NS σ) st β.

To make this definition complete, we provide the definitions of
stack_inv, which connects the representation of the stack with the repre-
sentation of the iterator, and the definition of the NS predicate.

stack_inv(xss, ys) , ys = concat(xss) ∧
{
> iff xss = nil
xs 6= nil iff xss = xs :: xss′

NS σ node α , Node(σ, node, τ) ∧ α = [{x ∈ τ|x ≥ node.item}]

These definitions, along with an assumption that SR is the represen-
tation predicate of Stack (i.e., fulfills all the method specifications and
axioms of Stack_spec) suffice to show the correctness of Iter-dependent
methods. The axiom present in Stack_spec is needed to preserve iterators
if some new memory is added to σ: it allows us to replace (NS σ) with
(NS σ′) as a representation predicate of stack objects under certain side
conditions.

10.5. On the Verification of Implemented Code 123

10.5 On the Verification of Implemented Code

We now give an intuitive description of how the A1B1 implementation
was verified, given the concrete H defined above. We verified the com-
plete implementation in Coq but only discuss the add method here. We
used Kopitiam [79] to transform the Java code into SimpleJava, the frag-
ment represented in Coq.

Method add calls method addRecursive with the root node to in-
sert the item into the binary tree, respecting the ordering. Method
addRecursive, shown below, must handle several cases:

• if there are no snapshots present, then

– if the item x is already in the tree, then the heap is not modi-
fied.

– if the item x is not in the tree, then a new node is allocated
and destructively inserted into the tree.

• if there are snapshots present, then

– if the item x is already in the tree, then the heap is not modi-
fied.

– if the item x is not in the tree, then a new node is allocated
and every node on the path from the root to the added node
is replicated, so that the snapshots are unimpaired.

The implementation of addRecursive walks down the tree until a
node with the same value, or a leaf, is reached. It uses the call stack to
remember the path in the tree. If a node was added, either the entire
path from the root to the added node is duplicated (if snapshots are
present) or the handles to the left or right subtree are updated (happens
destructively exactly once, the parent of the added node updates its left
or right handle, previously pointing to null):

Node addRecursive (Node node, int item, RefBool updated) {

Node res = node;

3 if (node == null) {

updated.value = true;

res = new Node(item);

124 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

6 } else {

if (item < node.item) {

Node newLeft = addRecursive(node.left, item, updated);

9 if (updated.value && this.hasSnapshot)

res = new Node(newLeft, node.item, node.rght);

else

12 node.left = newLeft;

} else if (node.item < item) {

Node newRght = addRecursive(node.rght, item, updated);

15 if (updated.value && this.hasSnapshot)

res = new Node(node.left, node.item, newRght);

else

18 node.rght = newRght;

} //else item == node.item so no update

}

21 return res;

}

We now show the pre- and postcondition of addRecursive for the
two cases where snapshots are present. If the item is already present in
the tree, the pre- and postcondition are equal:

{updated.value 7→ false ∗ this.hasSnapshot 7→ true ∗
heap(σ) ∗ wf (σ) ∧Node(σ, node, τ) ∧ item ∈ τ}

addRecursive(node, item, updated)

{updated.value 7→ false ∗ this.hasSnapshot 7→ true ∗
heap(σ) ∗ ret = node}

The postcondition in the case that the item is added to the tree
extends the map σ to σ′, for which the heap layout and the well-
formedness condition must hold. The Node predicate uses σ′ and the
finite set is extended with item:

{updated.value 7→ false ∗ this.hasSnapshot 7→ true ∗
heap(σ) ∗ wf (σ) ∧Node(σ, node, τ) ∧ item 6∈ τ}

addRecursive(node, item, updated)

{updated.value 7→ true ∗ this.hasSnapshot 7→ true ∗
∃σ′.σ ⊆ σ′ ∧ heap(σ′) ∗ wf (σ′) ∧Node(σ′, ret, {item} ∪ τ)}

10.6. Related Work 125

The call to addRecursive inside of add is verified for each specifica-
tion of addRecursive independently.

To summarize Sections 10.4 and 10.5, we state the following theo-
rem, which says there exists an H that given a stack fulfilling the stack
specification, the TreeIterator class meets the Iterator specification and
the A1B1 class meets the ITree specification, and the constructor for the
A1B1Tree establishes the H predicate.

Theorem 2. ∃H.Stack_spec ` Iterator TreeIterator H ∧ ITree A1B1 H∧
{>} A1B1Tree() {H({Tree(ret, {})})}
The client code, independently verified, can be safely linked with the
A1B1 implementation!

10.6 Related Work

Malecha and Morrisett [78] presented a formalization of a Ynot imple-
mentation of B-trees with an iterator method. In their case, the iterator
and the tree also share data in the concrete heap. However, they can only
reason about “single-threaded” uses of trees and iterators: their specifi-
cation of the iterator method transforms the abstract tree predicate into
an abstract iterator predicate, which prohibits calling tree methods until
the client turns the iterator back into a tree. In our setup, we have one
tree, but multiple snapshots and iterators, and the tree can be updated
after an iterator has been created. To permit sharing between a tree and
an iterator, Malecha and Morrisett use fractional permissions, where
we use the H predicate. They work in an axiomatic extension of Coq,
whereas our proofs are done in a shallowly embedded program logic,
since our programs are written in an existing programming language
(Java).

Dinsdale-Young et al. [43] present another approach to reasoning
about shared data structures, which gives the client a fiction of disjoint-
ness. Roughly speaking, they define a new abstract program logic for
each module (they can be combined) for abstract client reasoning. Their
approach allows one to give a client specification similar to ours, but
without using the H and with the abstract structures (Tree / Snap /
Iter) being predicates in the (abstract) program logic. This has the ad-
vantage that one can use ordinary framing for local reasoning.

126 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

Dinsdale-Young et al. [42] also presented an approach to reasoning
about sharing. Sharing can happen in certain regions, and the module
implementor has to define a protocol that describes how data in the
shared region can evolve. What corresponds to our abstract structures
can now be seen as separation logic predicates and thus one can use
ordinary framing for local reasoning.

In both approaches [43] and [42] the module implementor has more
proof obligations than in our approach: In [43] he must show that the
abstract operations satisfy some conditions related to the realization of
the abstract structures in the concrete heap. In [42] she must show re-
lated properties phrased in terms of certain stability conditions.

Compared to the work of Dinsdale-Young et al., our approach has
the advantage that it is arguably simpler, with no need to introduce new
separation (or context) algebras for the modules. That is why we could
build our formalization on an implementation of standard separation
logic in Coq.

Rustan Leino made a solution for a custom implementation of this
data structure (A1B1) using Dafny [74]. Dafny verifies that if a snapshot
is present, the nodes are shared and not mutated by the tree operations.
His solution does not (yet) verify the content of the tree, snapshots or
iterators. Our verification specifies the concrete heap layout. Dafny
does not support abstract specification due to the lack of inheritance.
The trusted code base is different: Dafny relies on Boogie, Z3 and the
CLR, whereas our proof trusts Coq.

10.7 Conclusion and Future Work

We have presented snapshotable trees as a challenge for formalized
modular reasoning about mutable data structures that use sharing ex-
tensively, and given an abstract specification of the ITree interface. More-
over, we have presented a formalization of the A1B1 implementation of
snapshotable trees.

The overall size of the formalization effort is roughly 5000 lines2 of
Coq code and it takes 2 hours to Qed the proofs. This is quite big com-

2Update from July 2013: By using new tactics of the Charge! framework [11], the
size of the formalization is now 2200 lines. The actual proof lines are reduced by a
factor of 5.5, from 3325 lines to 670 lines.

10.7. Conclusion and Future Work 127

pared to other formalization efforts of imperative programs in Coq, such
as Hoare Type Theory / Ynot [87, 88]. The main reason is that we are
working in a shallowly embedded program logic for a Java-like lan-
guage, whereas Hoare Type Theory / Ynot is an axiomatic extension of
Coq. Thus our formalization includes both the operational semantics of
the Java subset and the soundness theorems for the program logic; also,
Java program variables cannot simply be represented by Coq variables.

We also plan to verify the even subtler implementations A1B2, A2B1
and A2B2, which are expected to provide further insight into the chal-
lenges of dealing with shared mutable data and unobservable state
changes. Through those more complex applications of separation logic
we hope to learn more about desirable tool support, including how to
automate the “obvious” reasoning that currently requires much thought
and excessive amounts of proof code. Although we have not formally
verified these implementations yet, we are fairly certain they would
match the interface specification presented in Section 10.3. In all four
implementations the tree is conceptually separate from its snapshots,
which is the property required by the interface, and the invariant H
allows us to describe the heap layout very precisely, using techniques
shown in Section 10.4.

Finally, we would like to explore how to combine the advantages of
our approach and those of Dinsdale-Young’s approach discussed above.

128 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

10.8 Appendix

We define here the ITree and the Iterator interface specification as Coq
definitions, as well as the Stack class. We use the name SPred for the
finite set of abstract structures containing exactly one Tree structure and
any number of Snap and Iter structures.

The notation f̂ lifts the function f such that it operates on expressions
rather than values. A detailed explanation of the notation and of lifting
can be found in [12].

Stack_spec , ∀T : Type.

∃SR : classname→ (val→ T → HeapAsn)→ val→ T∗ →
HeapAsn.

(∀C : classname. ∀P : val→ T → HeapAsn.

Stack::new() 7→ {>}_{r. ŜR C P r nil}
∧ (∀α : T∗. Stack::empty(this) 7→
{ŜR C P this α}_
{r. ŜR C P this α ∧ r = (α = nil)})

∧ (∀α : T∗. ∀t : T. Stack::push(this, x) 7→
{ŜR C P this α ∗ P̂ x t ∧ x : C}_
{ŜR C P this (t :: α)})

∧ (∀α : T∗. ∀t : T. Stack::pop(this, x) 7→
{ŜR C P this (t :: α)}_{r. P̂ r t ∗ ŜR C P this α})

∧ (∀α : T∗. ∀t : T. Stack::peek(this, x) 7→
{ŜR C P this (t :: α)}_{r. P̂ r t ∗
(∀u : T. P̂ r u −∗ ŜR C P this (u :: α))}))

∧ (∀C : classname. ∀P, P′ : val→ T → HeapAsn.

(∀v : val. ∀t : T. (P v t ` P′ v t)) =⇒
∀v : val. ∀α : T∗. (SR C P v α ` SR C P′ v α))

10.8. Appendix 129

ITree , λC : classname. λH : P f in(SPred)→ HeapAsn.

(∀τ : P f in(Z). ∀φ : P f in(SPred). C::contains(this, x) 7→
{Ĥ({T̂ree(this, τ)}] φ)}_
{r. Ĥ({T̂ree(this, τ)}] φ) ∧ r = (x ∈ τ)})

∧ (∀τ : P f in(Z). ∀φ : P f in(SPred). C::contains(this, x) 7→
{Ĥ({Ŝnap(this, τ)}] φ)}_
{r. Ĥ({Ŝnap(this, τ)}] φ) ∧ r = (x ∈ τ)})

∧ (∀τ : P f in(Z). ∀φ : P f in(SPred). C::add(this, x) 7→
{Ĥ({T̂ree(this, τ)}] φ)}_
{r. Ĥ({T̂ree(this, {x} ∪ τ)}] φ) ∧ r = (x 6∈ τ)})

∧ (∀τ : P f in(Z). ∀φ : P f in(SPred). C::snapshot(this) 7→
{Ĥ({T̂ree(this, τ)}] φ)}_
{r. Ĥ({T̂ree(this, τ), Ŝnap(r, τ)}] φ)})

∧ (∀τ : P f in(Z). ∀φ : P f in(SPred). C::iterator(this) 7→
{Ĥ({Ŝnap(this, τ)}] φ)}_{r. ∃IC : classname. Iterator IC H∧
r : IC ∧ Ĥ({Ŝnap(this, τ), Îter(r, [τ])}] φ)})

∧ (∀v : val. ∀τ : P f in(Z). ∀φ : P f in(SPred).

(H({Tree(v, τ)}] φ) =⇒ v : C)∧
(H({Snap(v, τ)}] φ) =⇒ v : C))

∧ (∀v : val. ∀τ : P f in(Z). ∀φ : P f in(SPred).

(H({Snap(v, τ)}] φ) ` H(φ)))

∧ (∀v : val. ∀α : Z∗. ∀φ : P f in(SPred).

(H({Iter(v, α)}] φ) ` H(φ)))

∧ (∀v : val. ∀τ, τ′ : P f in(Z). ∀φ : P f in(SPred).

τ = τ′ =⇒ (H({Tree(v, τ)}] φ) ` H({Tree(v, τ′)}] φ)))

130 Chapter 10. Formalized Verification of Snapshotable Trees: Separation and Sharing

Iterator , λC : classname. λH : P f in(SPred)→ HeapAsn.

(∀α : Z∗. ∀φ : P f in(SPred). C::hasNext(this) 7→
{Ĥ({Îter(this, α)}] φ)}_
{r. Ĥ({Îter(this, α)}] φ) ∧ r = (α 6= nil)})

∧ (∀x : Z. ∀α : Z∗. ∀φ : P f in(SPred). C::next(this) 7→
{Ĥ({Îter(this, x::α)}] φ)}_
{r. Ĥ({Îter(this, α)}] φ) ∧ r = x})

Chapter 11

Functional Verification of a Point Location
Algorithm

Abstract

In this paper we verify the functional correctness of a solution
to the point location problem. The point location problem is of geo-
metric nature: in a plane, which is divided into disjoint polygonal
regions, find the smallest region which contains a queried point.
Several solutions have space complexity linear in the number of
edges that form the regions and provide a logarithmic query time
also in the number of edges. We implement and outline a func-
tional correctness proof of one solution which meets these time
and space complexity by using shared mutable state. We use a
higher-order separation logic for verification of its correctness.

11.1 Introduction

The point location problem [41, Chapter 6] is well known in geometry.
Consider a plane, which is subdivided into regions. The task is to find
the region which contains the query point. The subdivision of the plane
by n edges into regions is known ahead of time, and the query time may
not exceed O(log n). Additionally a space constraint of O(n) is imposed.

In this paper we contribute a full functional specification and ver-
ification of a real-world solution to the point location problem, which

132 Chapter 11. Functional Verification of a Point Location Algorithm

meets the time and space complexity requirements. We use separation
logic to verify the correctness of our implementation. We describe our
Java implementation in detail, which is based on an implementation
in C# that serves as a showcase of the collection library C5 [66]. We
point out where we refactored the code to simplify its verification. A
side effect of these modifications was that the code is easier to under-
stand, thus they have also been applied to the original implementation.
The full Java source is available at http://www.itu.dk/people/hame/

PlanarPoint.java.
This paper first describes the point location problem in Section 11.2,

followed by the solution we are verifying in Section 11.3. Afterwards we
describe the implementation in detail in Section 11.4. We give a specifi-
cation in Section 11.5, which we use to verify the query implementation
in Section 11.6. In Section 11.7 we describe the related work. Finally,
we conclude by describing the modifications to the original code in Sec-
tion 11.8 and describe future work in Section 11.9.

11.2 Point Location Problem

The point location problem occurs frequently in real world applications:
given a political or geographical map and a query point by its coordi-
nates, find the smallest region (or country) of the map containing the
queried point. A map is a planar subdivision of the plane, where the
regions are disjoint.

Another appearance of this problem is a web browser - if a user
moves the mouse pointer to any point and presses the mouse button,
the underlying HTML element should be activated: a link should be
followed, text highlighted, etc.

Both occurrences might have to handle a lot of data — a huge map
or a complex website — and to be interactive for user input, the query
time should be minimal.

As running example we use a very simple division of the plane,
shown in Figure 11.1. The plane is divided into the region A with a
nested region B. The algorithm should return region B for the queried
point q.

http://www.itu.dk/people/hame/PlanarPoint.java
http://www.itu.dk/people/hame/PlanarPoint.java

11.2. Point Location Problem 133

q
B

A

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

Figure 11.1: Nested regions: the outer region A contains completely the inner region B. Anything
outside of the region A does not belong to a region. The query point q belongs to the inner region B.

11.2.1 Problem Statement

We decompose the point location problem into two phases. The first
phase, named build, is static and receives the planar subdivision as n
line segments. The second phase is query, which is dynamic and re-
ceives queries. A query consists of a point in the plane specified by its
coordinates. The smallest region which contains the queried point must
be returned.

We narrow down the problem slightly by considering only a two di-
mensional plane. We constrain the list of line segments: no line segment
may intersect with another one, no line segment is vertical (starts and
ends at the same x-coordinate), and the set of line segments must form
closed regions. The containing region for a query point which is exactly
on a line segment is unspecified. The limitation that no line segment
is vertical can be overcome by rotation with a small angle, because we
have a finite set of line segments.

The point location problem is extensively studied in the literature,
the book Computational Geometry: Algorithms and Applications [41] de-

134 Chapter 11. Functional Verification of a Point Location Algorithm

votes a complete chapter [41, Chapter 6] to the problem. It includes
a comprehensive overview of solutions and possible extensions of the
problem, such as making the planar subdivision dynamic as well, or
scaling up to more than two dimensions.

A naive implementation would build polygons out of the n line
segments during the build phase and, during the query phase, check
whether the queried point is inside each polygon. This requires O(n)
space and also O(n) query time during the query phase. We will ignore
the time consumption during the build phase, since this happens only
once. Different enhancements trade reduced query time for increased
space usage. One such enhancement is to divide the plane by drawing a
vertical line through the starting and ending point of each line segment.
This partitions the plane into vertical slabs. For each slab a binary search
tree containing all line segments which intersect this slab is constructed.
We store the x-coordinate of the slab together with a binary tree of its
line segments. To query for a concrete point, first a lookup of the slab
tree to the left is done, then the line segment above and below the query
point are looked up in the binary tree. While the query time reduces to
O(log n), the space usage increases to O(n2). In this paper, we look at a
further improvement of this approach that reduces the space usage.

The point location problem has a long history in computational ge-
ometry. Several solutions in the literature show that for n line segments
a linear space usage of O(n) and logarithmic query time of O(log n) can
be accomplished for the two dimensional case. Solutions with this com-
plexity are described in [41, Chapter 6]: the chain method [47] based
on segment trees; the triangulation refinement method [63]; the ran-
domized incremental method [86]; and the snapshotable binary tree
method [101]. In this paper we will describe the solution based on snap-
shotable binary trees [46], which we specified and verified in previous
research [82].

11.3 Solution

We illustrate the algorithm of the solution [101] in more detail by con-
tinuing with our example from Figure 11.1.

11.3. Solution 135

S0 S1 S2 S3 S4

a

b

c

d
e

f

B

A

q

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

Figure 11.2: Partition of Figure 11.1 into five slabs.

11.3.1 Build Phase

During the build phase, the planar subdivision is partitioned into vertical
slabs, shown in Figure 11.2. A slab is created for the starting and ending
point of each line segment.

For each slab we build a line segment tree, which is a binary tree con-
taining the line segments which intersect with the slab. Line segments
which end at the slab are not included, but line segments which start at
the slab are included. The non-empty line segment trees (all but S4) are
shown in Figure 11.3, where nodes are the named line segments from
Figure 11.2. Each line segment contains the information which region
is above and below it. These line segment trees are stored in a slab tree,
also a binary tree. The slab tree uses the x-position of the line segment
trees as key for lookup and insertion.

136 Chapter 11. Functional Verification of a Point Location Algorithm

S0.root

a

c

(a) Tree of slab S0 of Figure 11.2.

S1.root

f

c b

d

(b) Tree of slab S1 of Figure 11.2.

S2.root

f

c b

e

(c) Tree of slab S2 of Figure 11.2.

S3.root

b

c

(d) Tree of slab S3 of Figure 11.2.

Figure 11.3: Slab trees of Figure 11.2.

Optimization: Meeting Space Requirement

When we construct the line segment trees for each slab separately, the
space consumption is O(n2). To meet the required O(n) space consump-
tion, we instead share subtrees between the line segment trees by using
snapshotable trees [46]. These have an amortized space consumption of
O(n). The actual heap of our shared trees is shown in Figure 11.4, where
colours indicate separate trees. Snapshotable trees use copy-on-write and
a persistent readonly handle can be taken at any time. Each node stores
a third (backup) child reference together with a count of the amount
of snapshots, thus every node may belong to several snapshots and the
tree itself. For each slab, a snapshot of the line segment tree is taken and
stored inside the slab tree. In our example the node b has to be copied
to b′ for the tree S3, since the backup reference of node b is already used
for node e. Note that in the figure each tree is indicated by a different
color, but the actual heap layout uses less references: the line segment

11.3. Solution 137

S0.root S1.root S2.root S3.root

a f

b

b′

c

d e

Figure 11.4: Heap layout of the snapshotable trees of Figure 11.3.

snapshot for slab S1 and slab S2 share references from node f to node c
and from node f to node b.

11.3.2 Query Phase

In the query phase, for a given query point first the nearest line segment
tree to the left of the queried point is located. This is done by a lookup
in the slab tree, which consumes O(log m) time for m slabs.

Consider our query point q from Figure 11.1. This query point lies
exactly on the tree S2, which is then used. The tree S2 is shown in
Figure 11.3c.

Now, the two closest line segments to the query point q are looked
up. This is done by a tree search, where the comparison checks whether
the line segment is above or below the query point, and preserves the
closest line segments in a record.

Our query point q is clearly above the line segment f, thus the right
subtree is used, and the closest above is set to f. The queried point is also
below b and below e. The closest line segment below q is f, the closest
line segment above q is e. The algorithm compares the region above f
and below e, which must be identical. In our example the region is in
both cases B, which is then returned.

The query time is a lookup in the binary slab tree, which consumes
O(log m) time for m slabs, and another binary tree search for the closest
line segments, which takes O(log n) time, for n line segments. Due to
the condition that line segments form closed polygons, m ≤ n holds.
The total time consumed for query is therefore O(log m + log n), which
is the stipulated O(log n).

138 Chapter 11. Functional Verification of a Point Location Algorithm

11.4 Implementation

An implementation of the point location algorithm using snapshotable
trees was developed by Kokholm and Sestoft as part of the C5 li-
brary [66] for C#. We used this implementation as a basis and manually
translated it to Java, and refactored it with verification in mind.

We now briefly recapitulate the snapshotable binary tree interface,
which is similar to the one shown in our earlier paper [82]. We describe
the code of both the Build and the Query method. In Section 11.6 we
verify the Query method. Additionally, we describe the implementation
challenge of line segments and their ordering.

11.4.1 Snapshotable Binary Tree

Conceptually, a snapshotable binary tree is a normal binary search tree
with the additional operation snapshot. This operation returns a per-
sistent readonly copy of the tree in constant time. The implementation
exploits possible sharing between the tree and its snapshots, by copying
only when a node is inserted or deleted (copy-on-write).

The Java standard library confluences monotonicity with partial or-
dering. From a logic perspective we want to distinguish between ele-
ments which have a partial ordering and elements which behave mono-
tonically regarding a set of other elements. We introduce the interface
Monotonic<A> with the single method compareTo to achieve this sepa-
ration. The interface Comparable<A> extends our Monotonic<A> without
introducing additional methods. Thus, the implementor does not see a
difference between these interfaces, but the logical view distinguishes
these interfaces.

The interface ITree is defined as follows, where A must have a partial
ordering by extending the Comparable<A> interface, whereas the cut

operation requires an object which behaves monotonically on the tree:

public interface ITree<A extends Comparable<A>> {

public boolean add (A item);

public boolean remove (A item);

public CutResult<A> cut (Monotonic<A> cmp);

public ITree<A> snapshot ();

}

11.4. Implementation 139

The operations have the following effect:

• tree.add(item) inserts the object item in the tree and returns true
if the object was not already there. Otherwise, it does nothing and
returns false.

• tree.remove(item) removes the object item from the tree and re-
turns true if the object was there. Otherwise, it does nothing and
returns false.

• tree.cut(cmp) receives a callback cmp, which has the single
method cmp.compareTo(A a). It is monotonic in A. If the tree con-
tains an object x, for which cmp.compareTo(x) returns 0, this x is
returned in both fields of the CutResult<A> structure shown below.
Otherwise, if there is an object in the tree for which cmp.compareTo

returns 1, the greatest such object is returned in the high field. Oth-
erwise, if there is an object in the tree for which cmp.compareTo re-
turns -1, the smallest such object is returned in the low field. Both
low and high can be null: if the tree is empty, or if the comparator
returns 1 (or -1) for all tree elements.

• tree.snapshot() returns a readonly snapshot of the given tree in
constant time. Updates to the given tree will not affect the snap-
shot. Only the operation cut is supported for a snapshot.

The CutResult class is shown next. It contains a low and a high field,
representing the results of the cut.

class CutResult<A> {

A low;

A high;

}

The interface ITree<A> provides only the operations we need for the
actual implementation of the point location algorithm in the interest of
simplicity. The previously verified implementation [82] is not polymor-
phic over tree elements, and does not include neither a remove nor a cut

operation. Instead it implements and verifies an iterator operation by
extending Java’s Iterable interface.

140 Chapter 11. Functional Verification of a Point Location Algorithm

11.4.2 PointLocation class

We will describe the concrete implementation of the PointLocation

class. In this class the slab tree of type ITree<Pair<ITree<LineSegment>>>

is stored in the htree field. Our Pair<A> has two fields: a primitive inte-
ger and a polymorphic A. We use the primitive integer for the x-position,
and a ITree<LineSegment>, which contains a line segment tree, such as
S0 to S3 from Figure 11.4. A LineSegment is a four-tuple record of start
position, end position, region above it, and region below it.

The class PointLocator provides two methods: Build receives a list
of LineSegment and builds up the slab tree; the method Query receives
a query point and returns the region identifier which contains it. This
identifier is an integer value in our case, where -1 means no region.

We consider line segments and query points to start and end at inte-
gral values, we will explain this in more detail in Section 11.4.3.

class PointLocation {

ITree<Pair<ITree<LineSegment>>> htree;

void Build (List<LineSegment> l) { ... }

int Query (int x, int y) { ... }

}

Build Method

The Build method is presented in Figure 11.5. It receives the list l of
line segments and constructs a SortedList out of them. This sorted list
sl contains triples: the x-position, a list of line segments ending at this
position, and a list of line segments starting at this position.

The field htree contains the slab tree. It is initialized to an empty
tree. The line segment tree vtree is also initialized to an empty tree.
At every slab, a snapshot of the line segment tree is stored into the slab
tree. An empty snapshot of the line segment tree is inserted at negative
infinity (lines 8–9) into the slab tree. This is used for queries left of the
leftmost x-position of any slab.

In the main loop, for each triple of the sorted list (lines 12 and 33),
at the concrete position x the ending line segments are removed from

11.4. Implementation 141

void Build (List<LineSegment> l) {
assert(htree == null);

3 SortedList<LineSegment> sl = l.toSortedList();
htree = new Tree<ITree<LineSegment>>();
ITree<LineSegment> vtree = new Tree<LineSegment>();

6

//put a snapshot at "negative infinity"
htree.add(new Pair<ITree<LineSegment>

9 (Integer.MIN_VALUE, vtree.snapshot()));

SortedNode cur = sl.head;
12 while (cur != null) {

//remove ending line segments
Node<LineSegment> c = cur.endLineSegments.head;

15 while (c != null) {
boolean rem = vtree.remove(c.val);
assert(rem == true);

18 c = c.next;
}

21 //insert starting line segments
Node<LineSegment> d = cur.startLineSegments.head;
while (d != null) {

24 boolean add = vtree.add(d.val);
assert(add == true);
d = d.next;

27 }

//take snapshot and insert (x, snapshot) into htree
30 ITree<LineSegment> snap = vtree.snapshot();

htree.add(new Pair<ITree<LineSegment>>(cur.x, snap));

33 cur = cur.next;
}

}

Figure 11.5: Implementation of method Build.

142 Chapter 11. Functional Verification of a Point Location Algorithm

int Query (int x, int y) {
assert(htree != null);

3

//Find the closest tree to the left of our query point
TreeComp tc = new TreeComp(x);

6 CutResult<Pair<ITree<LineSegment>>> cr = htree.cut(tc);
ITree<LineSegment> p = cr.low.getValue();

9 //Find the closest line segments above and below our query point
PointLineComparer<LineSegment> plc =

new PointLineComparer<LineSegment>(x, y);
12 CutResult<LineSegment> res = p.cut(plc);

int r = -1;
15 if (res.high != null && res.low != null) {

//we found a cut, the regions must be identical:
// below the upper line segment and

18 // above the lower line segment
assert(res.high.below() == res.low.above());
r = res.low.above();

21 }
return r;

}

Figure 11.6: Implementation of method Query.

the line segment tree (lines 13–19), the starting line segments are added
to the line segment tree (lines 21–27), and a pair of x-position and its
corresponding snapshot is inserted into the slab tree (lines 29–31).

Query Code

The procedure Query looks up the region for a given point, provided by
its x- and y-position. The implementation of the method Query is shown
in Figure 11.6.

First, the closest line segment tree to the left of the query point is
looked up (lines 4–7) in the slab tree. We use the cut operation for this,
along with the tc object, which is an instance of the TreeComp class. A
TreeComp compares its stored x-position with the first projection of the
given pair.

11.4. Implementation 143

Afterwards, the line segments directly below and above the queried
point are located by using a PointLineComparer and the cut operation
on the line segment tree (lines 9–12). A PointLineComparer class stores
an x- and y-position, and judges whether a given line segment is above
or below the point by using the determinant, described in more detail
in the next subsection.

If there is a line segment above the queried point and one below the
queried point (line 15), we ensure that they agree on the region between
them (line 19) and return that region (line 20).

11.4.3 Line Segments

We discuss two aspects of line segments: their representation and how
we establish an ordering relation.

We limit the implementation to use integral values for the start and
end position of line segments. Additionally, queries can only be done
at integral positions. The reason is that floating point numbers, while
used widely to represent real numbers, do not have a concise mathe-
matical model. Although there are libraries for Coq to reason about
floating point numbers, we are more interested in the point location al-
gorithm than in number representations. Additionally, when comparing
floating point numbers, representation and rounding errors have to be
compensated for by using a small epsilon. This would complicate the
verification and make it verbose.

Each line segment is a quadruple of data: the start point, the end
point, the regions to the right and the left of the line segment. Left
and right are defined as if we were at the start point, looking into the
direction of the end point. The x-position of the start point is always
lower than or equal to the x-position of the end point. We disallow
vertical line segments. Since a line segment is a directed vector, the
definition which region is right and left of it is unique. One of the
regions may be null, if the line segment is at the outer border of a
polygon. For example, the line segment a in Figure 11.2 has no region
to the left, and the region A to the right.

We define an order relation on line segments. The intuition behind
this order relation is that a line segment is “greater” if it is above an-
other line segment. The order relation is used for insertion and removal

144 Chapter 11. Functional Verification of a Point Location Algorithm

l1 l2

l3

l4

0 1 2 3

1

2

3

4

(a) Four line segments l1, l2,
l3, and l4 in a plane. The line
segment l1 is above all other
line segments. The line seg-
ment l2 is above l3, which is
above l4. The line segments
l1 and l3 are on the same line,
the comparison between these
can be done solely based on
their x coordinates.

v1

v1→2

θ

(b) Line segment l1 is above
line segment l2, because the
angle θ between the vector
v1, which corresponds to the
line segment l1, and the vector
v1→2, which corresponds to
the vector from the start point
of l1 to the start point of l2, is
smaller than 180◦ .

v4

v4→2

θ

(c) Line segment l4 is below
line segment l2. The line
segments l4 and l2 share a
common start point, thus end
points are used for compari-
son. The angle θ between the
vector v4 and the vector v4→2
from the end point of l4 to the
end point of l2 is greater than
180◦ .

v4

v4→3

θ

(d) Line segment l4 is below
line segment l3, because the
angle θ between the vector
v4, which corresponds to l4,
and the vector v4→3 from the
start point of l4 to the start
point of l3 is greater than
180◦ .

v2

v2→3θ

(e) Line segment l2 is above
line segment l3, because the
angle θ between the vector
v2, which corresponds to l2,
and the vector v2→3 from the
start point of l2 to the start
point of l3 is smaller than
180◦ .

v4

v4→1

θ

(f) Line segment l4 is below
line segment l1, because the
angle θ between the vector
v4, which corresponds to l4,
and the vector v4→1 from the
start point of l4 to the start
point of l1 is greater than
180◦ .

Figure 11.7: Four line segments, presented in Figure 11.7a, and their ordering.

11.5. Specification 145

of line segments into the slab tree, and also for locating the nearest line
segments during the query phase. Recall that line segments may not
intersect. If two line segments were allowed to intersect, our order rela-
tion would depend on the x-position - to the left of the intersection one
line segment is above the other, whereas to the right of the intersection
the other is above the one. We define an ordering relation which does
not depend on the x-position of non-intersecting line segments by using
the cross product. Four line segments l1 to l4 and their ordering are
shown in Figure 11.7. For our ordering relation we compute the cross
product between the vector, which is the line segment with the smaller
x-position and the vector from the start point of this line segment and
the start point of the other line segment. If the line segments have a
common start point, the end points are used instead. In Figure 11.7b
this is illustrated between the line segments l1 and l2 from Figure 11.7a.
The vector v1 of l1 and the vector v1→2 from the start point of l1 to the
start point of l2 are shown, and the cross product between them is com-
puted. The cross product between two vectors a and b is defined as:
a× b ≡ |a| ∗ |b| ∗ sin θ ∗ n, where θ is the angle between a and b, |a| is
the magnitude of the vector a, and n is the unit vector perpendicular
to the plane containing a and b. The sign of the cross product depends
solely on sin θ: if θ is less than 180◦, the cross product is positive, other-
wise negative. If the cross product is positive, the chosen line segment
is above the other one. Otherwise the chosen line segment is below the
other one.

We also use the cross product to find out whether a given point is
above or below a given line segment in the TreeComp class. The cross
product is analogous to the determinant in the two dimensional space.
We compute the cross product of the line segment vector and the vector
from the query point to the start of the line segment, and get the angle
between them as a result. If that angle is above 0, the point is above the
line segment. Otherwise, it is below.

11.5 Specification

In this section we give a specification for the PointLocator class and the
ITree interface. This is used as a prerequisite for Section 11.6, in which

146 Chapter 11. Functional Verification of a Point Location Algorithm

we outline the correctness proof of the implementation of Query. We de-
fine representation predicates which describe the heap layout by using
separation logic. Separation logic allows us to describe disjoint parts of
the heap modularly. We remarked in our earlier verification [82] that
the predicate for a tree without snapshots is completely different from
a tree with snapshots. We need to have knowledge about the line seg-
ment tree and all its snapshots to describe the heap layout of the nodes,
because the nodes can be shared between the line segment tree and
its snapshots. In contrast to the line segment tree, our slab tree is a
binary search tree without snapshots, thus we use a common represen-
tation predicate for binary trees to describe its heap shape. Although
the slab tree and the line segment tree use the same implementation,
their representation predicates are different. In this section we specify
the PointLocator class, and use different predicates for both trees.

The high-level informal specification of the build procedure is that
it receives a set of non-intersecting line segments which form non-
overlapping closed polygons. It associates these polygons with the PL
(PointLocation) predicate. During the query phase the predicate PL is
used to lookup the polygon containing the queried point. When us-
ing geometric reasoning and intuition, verification thereof is straightfor-
ward. This is different when using a proof assistant which does not have
geometric intuition.

In this section we formalise the informal specification, using our
previous work, in which we verified the snapshotable tree data struc-
ture [82] with higher-order separation logic. Our specification is slightly
adapted to cope with changing demands. We also use a generic tree
interface which abstracts over the tree elements by adapting Svendsen
et al. [110].

11.5.1 PointLocator specification

We first specify the PointLocator class, which contains two methods,
Build and Query and a constructor. It contains the field htree, which
stores a reference to the slab tree, initialized to null.

The PL predicate is defined on a Java reference ptr, a set of polygons
p and asserts a predicate on the heap, where 7→ is the separation logic

11.5. Specification 147

points-to predicate and ∗ the separating conjunction.

PL ptr p , (ptr.htree 7→ null ∧ p = ∅) ∨(
∃ tl. ptr.htree 7→ tl ∗ ∃ ls, ts. HTree tl (zip (posls) ts) ∗

ls =
⋃

ts ∗ wf p ls
)

There are two cases: either the set of polygons p is empty, in which
case the reference in the htree field points to null, or p is not empty,
and then the reference in the htree field points to some location tl,
for which the HTree predicate is defined, which we describe later. The
model of the slab tree is a list of pairs, zipped together from the list of x
positions (gathered by the function pos) and the sets of line segments ts.
The union ls of all line segment sets ts must be well-formed (wf) with
regards to the set of polygons p.

The function pos takes a set of line segments and returns their x value
of starting and ending positions:

pos ∅ , ∅

pos {ls} ∪ rt , {x(begin ls), x(end ls)} ∪ pos rt

The set of line segments ls is well-formed, defined by the predicate
wf , if no two segments intersect, there are no vertical line segments, all
line segments are connected, and together they form the set of closed
polygons p:

wf p ls , non-intersecting ls ∧ non-vertical ls ∧
connected ls ∧ closed ls p

With these definitions we specify the PointLocator class, using a no-
tation where we define the pre- and postconditions before and after the
method names. All bindings which are not explicitly quantified are im-
plicitly universally quantified, the special variable r in the postcondition
is bound to the return value of the method.

148 Chapter 11. Functional Verification of a Point Location Algorithm

class PointLocator {
> new PointLocator() PL r ∅

PL this ∅ ∗
List l ls ∗ Build(l) PL this ps
wf ps ls

PL this ps Query(x, y)
(
(x, y) ∈ ps[r] ∨ r = −1

)
∗ PL this ps ∗

(∀p : ps. (p = ps[r] ∨ (x, y) 6∈ p ∨ ps[r] ⊃ p))
}

• The constructor returns a PointLocator object which satisfies the
PL predicate with the empty set (∅) of polygons.

• The Build method receives a list of line segments l, whose model
ls is well-formed regarding some polygons ps. It also requires a PL
predicate that relates the instance to the empty set of polygons. It
ensures the PL predicate is true with regards to the set of polygons
ps formed by the given line segments ls.

• The Query method receives a point (x, y), and returns an index
to the smallest polygon which contains the point or -1 if no such
polygon exists. The order relation on polygons is defined by inclu-
sion. For each point (x, y), the finite set of polygons containing (x,
y) has a smallest element. This follows from the fact that no two
polygons overlap unless one is completely contained in the other.

11.5.2 PredicateHTree

The predicate HTree describes the heap shape of the slab tree that con-
tains the forest of line segment trees. We use an existentially quantified
data structure global invariant H (which we introduced in our earlier
work [82]) to describe the heap shape of the forest of line segment trees.

HTree ptr m , ∃ φ, H. HTree′ ptr m φ ∗ H(φ)

The predicate HTree′ describes the heap layout of the binary slab tree:
each node consists of a reference to its content, a pair of the x-position
and a reference to its line segment tree snapshot (v), its left child (l),
and its right child (r).

11.5. Specification 149

The model m, a list of integer-tree pairs, is destructed into a left part
ml and a right part mr, and a pair of an x-position and a tree model ts in
the middle. We use @ as the append operator. The x positions in the left
part are strictly smaller and the ones in the right part are strictly larger.
This is formalised by using the first projection (Π1) of ml and mr.

The set φ of abstract structures contains the set of abstract structures
of the left (φl) and right (φr) subtree, and a Snap structure with the
reference v and the model ts.

The left and right subtrees are either empty, when l, respectively r

point to null, or described recursively by the HTree′ predicate.

HTree′ ptr m φ , ∃ ml, mr, x, ts. m = ml@[(x, ts)]@mr ∧
(∀y : ml. Π1y < x) ∧ (∀y : m2. Π1y > x) ∗
∃ v. ptr.node 7→ (x, v) ∗
∃ φl, φr. φ = {Snap(v, ts)}] φl] φr ∗
∃ l. ptr.left 7→ l ∗
((l = null ∧ φl = ∅) ∨HTree′ l ml φl) ∗
∃ r. ptr.right 7→ r ∗
((r = null ∧ φr = ∅) ∨HTree′ r mr φr)

11.5.3 Snapshotable Tree Specification

We briefly describe the representation predicates for the snapshotable
tree. The representation predicate Rval (not shown) is defined on a Java
reference and a model T, which describes the heap layout of the Java ref-
erence. The elements of T must have an ordering relation c, which meets
the common ordering laws (anti-symmetry, reflexivity and transitivity).

While separation logic reasons about disjoint heaps, our tree imple-
mentation shares nodes between the tree and its snapshots. This sharing
is not observable by a client. In order to achieve that, we introduce the
global invariant H under which we define abstract structures Tree, Snap
and CR. A client can consider each of these abstract structure to be dis-
joint from the rest of the abstract structures, and frame out the parts she
does not need. Since the H is existentially quantified, the client has no
knowledge of how an implementation defines H. The implementation
has a global view on the tree with all its snapshots and can define which

150 Chapter 11. Functional Verification of a Point Location Algorithm

parts of the abstract structure are shared in the concrete heap. The ab-
stract structures consist of a reference to the tree and a model, which
is an ordered finite set, containing the elements of the tree. The ITree

interface is specified as follows:
interface ITree {
H({Tree(this, τ)}] φ) ∗ add(x) r = e 6∈ τ ∗
Rval x e H({Tree(this, {e} ∪ τ)}] φ)

H({Tree(this, {e} ∪ τ)}] φ)∧ remove(x) r = true ∧
Rval x e ∈ H H({Tree(this, τ)}] φ) ∗

Rval x e

H({Tree(this, τ)}] φ) ∧ remove(x) r = false ∧
e 6∈ τ ∗ Rval x e H({Tree(this, τ)}] φ) ∗

Rval x e

H({Tree(this, τ)}] φ) snapshot() H({Tree(this, τ), Snap(r, τ)}] φ)

H({Snap(this, τ)}] φ) ∗ cut(cmp) H({CR(r, c, τ), Snap(this, τ)}] φ) ∗
Rcmp cmp c ∗ monotonic c τ Rcmp cmp c ∗ monotonic c τ

H({Tree(this, τ)}] φ) ∗ cut(cmp) H({CR(r, c, τ), Tree(this, τ)}] φ) ∗
Rcmp cmp c ∗ monotonic c τ Rcmp cmp c ∗ monotonic c τ
}

The specification of the operations on the tree are as follows:

• add requires a Tree abstract structure and inserts the model of the
given x into the finite set τ.

• remove is split into two cases: either the given x is in the tree,
or not. Both require a Tree abstract structure and a model e of the
given x. In the first case, the model τ of the tree contains the model
e. After this operation, τ no longer contains e, and the return value
is true. In the other case, the model τ does not contain e. The
return value is false and the tree was not modified.

• snapshot requires a Tree abstract structure and returns a Snap ab-
stract structure with the same model τ.

• cut requires a Snap or Tree abstract structure and a comparator
which is monotonic regarding the element set τ. What is returned

11.5. Specification 151

is the abstract structure CR describing the two tree elements which
are closest to where the comparator flips from -1 to 1.

The representation predicate Rcmp is not shown here. It contains
the state of the comparator, and relates the comparator to the modelled
ordering c. We now define the predicate monotonic, used for the cut

method specification. Intuitively the ordering of the comparator model
is the same as the ordering of the modelled objects.

monotonic c τ , ∀ a, b : τ. a ≤ b→ c a ≤ c b

Similarly to our previous verification [82], we define a concrete H.
Recall that φ ranges over finite sets of abstract structures (Tree, Snap,
CR); and that H returns a separation logic predicate, given a φ:

H(φ) , ∃σ.wf ′(σ) ∧ heap(σ) ∗ σ � φ

The σ is a finite map from reference to a triple (reference × Rval
× reference), which represents the Node structure. The map σ must
be well formed, which means that all references in the codomain of σ

are either null or in the domain of σ. The function heap maps σ to
a separation logic predicate, which describes the realization of σ as a
linked structure in the concrete heap.

Finally, we present the definition of σ � {CR(_, _, _)}, which models
the CutResult class. It asserts that the two objects are indeed the closest
above and below of the cut. All objects must be either the selected one
above the cut, above it, or below the cut. Analogously for the selected
below the cut.

σ � CR(ptr, c, τ) ,
(
(∃ hi. ptr.high 7→ hi ∗ ∃ h. Rval hi h ∧ c h > 0 ∧
(∀ t : τ. t = h ∨ t > h ∨ c t < 0)) ∨

(ptr.high 7→ null ∧ ∀ t : τ. c t < 0)
)
∧(

(∃ lo. ptr.low 7→ lo ∗ ∃ l. Rval lo l ∧ c l < 0 ∧
(∀ t : τ. t = l ∨ t < l ∨ c t > 0)) ∨

(ptr.low 7→ null ∧ ∀ t : τ. c t > 0)
)

152 Chapter 11. Functional Verification of a Point Location Algorithm

The specification of the comparators TreeComp and
PointLineComparer is not shown here for conciseness. Each con-
structor of these returns a representation predicate Rcmp this c, which
is monotonic regarding the tree objects (monotonic c τ).

11.6 Verification

In this section we use the specification developed in Section 11.5 to out-
line a proof of the correctness of the Query method, which we presented
in Section 11.4.2.

We did not present a specification for the slab tree applying the cut

method. This operation returns aliases to nodes of the tree, thus we
have to apply a similar mechanism as to the snapshots, namely a data
structure global invariant. Since the aliases do not escape the Query
method, we neglect the exact details here.

We intermingle the source code with the symbolic heap and text
describing verification steps. To distinguish, we prefix the source code
always with a line number.
We start with the method precondition.

{ PL this p }

1: int Query (int x, int y) {

We first unpack (expand) the predicate PL.
{ (this.htree 7→ null ∧ p = ∅)∨
(∃tl. this.htree 7→ tl ∗ ∃ ls, ts. HTree tl (zip (pos ls) ts) ∗
ls =

⋃
ts ∗ wf p ls) }

2: assert(htree != null);

We remove the first part of disjunction that would lead to an assertion
failure.

{ ∃tl. this.htree 7→ tl ∗ ∃ ls, ts. HTree tl (zip (pos ls) ts) ∗
ls =

⋃
ts ∗ wf p ls }

3: TreeComp tc = new TreeComp(x);

A new object is instantiated, which is referred to by the local variable tc.
The constructor returns some representation predicate which is mono-
tonic regarding the slab tree elements (pairs of an integer and a line
segment snapshot).

11.6. Verification 153

{ Rcmp tc c ∗ monotonic c (x, τ) ∗
∃tl. this.htree 7→ tl ∗ ∃ ls, ts. HTree tl (zip (pos ls) ts) ∗
ls =

⋃
ts ∗ wf p ls }

We unpack the predicate HTree to prepare for the cut.
{ Rcmp tc c ∗ monotonic c (x, τ) ∗
∃tl. this.htree 7→ tl ∗
∃ ls, ts, φ, H. HTree′ tl (zip (pos ls) ts) φ ∗ H(φ) ∗
ls =

⋃
ts ∗ wf p ls }

4: CutResult<Pair<Tree<LineSegment>>> cr = htree.cut(tc);

The variable cr contains the result of the cut method, which is a
CutResult of a pair of an integer and a line segment snapshot. We use
the rule of consequence to remove predicates concerning the tc from
our symbolic heap, which we do not need for the remaining proof.

{ CR(cr, c, τ) ∗
∃tl. this.htree 7→ tl ∗
∃ ls, ts, φ, H. HTree′ tl (zip (pos ls) ts) φ ∗ H(φ) ∗
ls =

⋃
ts ∗ wf p ls }

Next we unpack the CR predicate to access cr.low. For readability we
do not list all formulae of the CR predicate, only those we need in later
steps. It is important to note that the Build method puts a line segment
snapshot at negative infinity, thus cr.low will never be a reference to
null. The finite set of abstract structures φ contains at least a Snap at x′.

{ ∃tl. this.htree 7→ tl ∗
∃ ls, ts, φ, H. HTree′ tl (zip (pos ls) ts) φ ∗ H(φ) ∗
∃lo, x′. cr.low 7→ (x′, lo) ∗ Snap(lo, τ) ∈ φ ∗ x′ ≤ x ∗
ls =

⋃
ts ∗ wf p ls }

We shorten the predicate slightly by rearranging and framing out parts
we no longer need.

{ ∃ lo, x′. H({Snap(lo, τ)}) ∗ cr.low 7→ (x′, lo) ∗ x′ ≤ x }

5: ITree<LineSegment> p = cr.low.getValue()

We replace the existentially quantified lo with the local variable p.
{ H({Snap(p, τ)}) }

6: PointLineComparer<LineSegment> plc =

new PointLineComparer<LineSegment>(x, y);

154 Chapter 11. Functional Verification of a Point Location Algorithm

A new object is instantiated. The local variable plc refers to it, and the
postcondition of the constructor contains a representation predicate and
that it is monotonic regarding line segments.

{ Rcmp plc c ∗ monotonic c τ ∗ H({Snap(p, τ)}) }

7: CutResult<LineSegment> res = p.cut(plc);

We call the method cut on the line segment tree which p refers to, and
the point line comparer plc. This method returns a CutResult. We use
the rule of consequence to shorten the symbolic heap for readability.

{ H({Snap(p, τ), CR(res, c, τ)}) }

8: int r = -1;

A new local variable appears on the stack.
{ r = −1 ∗ H({Snap(p, τ), CR(res, c, τ)}) }

We unfold H to access the fields of the CutResult afterwards.
{ r = −1 ∗ ∃σ.wf ′(σ) ∧ heap(σ) ∗ σ � CR(res, c, τ) ∗ σ � Snap(p, τ) }

We further unpack CR to access its internal fields.
{ r = −1 ∗ ∃σ.wf ′(σ) ∧ heap(σ) ∗ σ � Snap(p, τ) ∗(
(∃ hi. res.high 7→ hi ∗ ∃ h. Rval hi h∧
(∀ t : τ. t = h ∨ t > h ∨ c t < 0)) ∨
(res.high 7→ null ∧ ∀ t : τ. c t < 0)

)
∧(

(∃ lo. res.low 7→ lo ∗ ∃ l. Rval lo l ∧
(∀ t : τ. t = l ∨ t < l ∨ c t > 0)) ∨
(res.low 7→ null ∧ ∀ t : τ. c t > 0)

)
}

9: if (res.high != null && res.low != null) {

We remove those assertions which cannot be valid due to this guard.
{ r = −1 ∗ ∃σ.wf ′(σ) ∧ heap(σ) ∗ σ � Snap(p, τ) ∗
(∃ hi. res.high 7→ hi ∗ ∃ h. Rval hi h∧
(∀ t : τ. t = h ∨ t > h ∨ c t < 0))∧
(∃ lo. res.low 7→ lo ∗ ∃ l. Rval lo l ∧
(∀ t : τ. t = l ∨ t < l ∨ c t > 0)) }

10: assert(res.high.below() == res.low.above());

The intuition is that the two line segments in the CutResult object are
neighbours. This is due to the specification of the cut method. Fur-
thermore, since two line segments may not intersect, the region between
those two line segments must be identical. The two line segments are

11.6. Verification 155

also the nearest ones to the queried point – thus the region between them
must be the smallest one containing the queried point. A more formal
proof has to take the well-formedness predicate into account: the line
segments form non-overlapping closed polygons. As mentioned earlier,
we assume that the queried point is not on a line segment; if we were to
allow this, we would need to handle this in a special case here.

11: r = res.low.above();

The returned value r contains the region identifier above the lower line
segment, which is the same as the one below the line segment above the
point. The postcondition of the method holds: we pack the PL predicate,
and the returned region is the smallest one containing the queried point.

{ (x, y) ∈ r ∗ PL this p ∗ (∀ q : p. (q = p[r] ∨ (x, y) 6∈ q ∨ p[r] ⊃ q))
}

12: } else {

The alternative branch, in which one or both line segments in the
CutResult are null. This intuitively means that the queried point is
either below or above all line segments of the tree, which might also
happen if the line segment tree is empty. This means that there is no
region containing the queried point. The postcondition is valid: the re-
turned value r is −1, and none of the polygons ps contains the queried
point (corresponding to the second disjunct). We can also successfully
pack the PL predicate.

{ r = −1 ∗ PL this p ∗ (∀ q : p. (x, y) 6∈ q) }

13: }

Both branches of the conditional fulfill the postcondition of this method.

14: return r; }

We abstract the returned value r to fulfill the method postcondition from
Section 11.5.

{ r.
(
(x, y) ∈ r∨ r = −1

)
∗ PL this p ∗

(∀ q : p. (q = p[r] ∨ (x, y) 6∈ q ∨ p[r] ⊃ q)) }

We have outlined the verification of the Query method, using the our
previous specification of the shapshotable tree data structure. The Query

method returns the correct result: when the point is not contained in any
region, the default value -1 is returned, otherwise a region containing

156 Chapter 11. Functional Verification of a Point Location Algorithm

the queried point is returned, and furthermore this returned region is
the smallest one containing the queried point.

11.7 Related Work

The verification of the point location problem builds on top of our pre-
vious research in verifying snapshotable trees [82]. We modified our
earlier verification slightly to handle our demands. Instead of using
integers as tree elements, we use a generic A here. We removed the
implementation of the Iterator interface from the ITree interface, be-
cause this is not needed for the planar point location algorithm. The
method contains was also removed from the ITree interface, but we
added both the remove and the cut method. We believe that the main
part of the proof, as well as the concrete instantiation of H can be reused
for this modified interface and an implementation thereof.

The snapshotable tree data structure has also been verified by other
researchers using different tools (Why3, Plural, Dafny).

Related to this data structure are other imperative data structures,
like B-trees [78]. B-trees and their iterators share data in the concrete
heap. But they only allow a single-threaded access to the data structure
— the specification of the iterator method transforms the abstract tree
predicate into an iterator predicate. This does not allow multiple snap-
shots and the tree predicate to be present at the same time, which we
need in this verification. Their work uses fractional permissions to allow
sharing between the tree and its iterator, where we use the H predicate.

11.8 Conclusion

We have demonstrated a specification and verification of the point loca-
tion problem. Our implemented and verified solution is applicable to
a real qne non-trivial algorithm. Our verification uses both parametric
polymorphism (generics) and callbacks in particular, the method cut

receives a callback to the comparator.
Since we started from real code, written without verification in mind,

we have learned a lesson when preparing imperative programs for full
functional verification: smash the state! Although we can reason about

11.8. Conclusion 157

shared mutable state with separation logic, we first refactored the pro-
gram to use less mutable state, resulting in a clearer and easier to specify
program.

We give evidence for our smashing the state, one field at a time slogan
by showing two concrete examples where we refactored the original
code: line segment comparison and the Build method. We removed the
state of the line segment comparator by using the cross product for the
ordering relation, as described in Section 11.4.3, and developed a Build

method which does not need mutable state, described in Section 11.4.2.
Hence we obtained more declarative and more comprehensible code as
a side effect.

Line Segment Comparison The comparison of line segments, for in-
sertion and removal into the snapshotable tree, formerly computed the
y position at the concrete x position. This involves computing the slope
of the line segment. The y position is a real number, represented as a
floating point number in a computer. This representation is imprecise,
and rounding errors occur. To compensate for both, a small epsilon was
used during comparison. Additionally, the comparison contained some
state, namely the current x position, which was modified when the line
segment tree for the next position was built. Verifying such an ordering
of line segments would involve reasoning about the monotonicity of the
comparators. An ordering at position 2 should be valid at position 3.
For general line segments this is not the case, but due to the fact that
line segments do not intersect, it holds for our program. Additionally,
the comparison used a field compareToRight, which tracked whether
ending or starting line segments are compared. This was used as a tie
breaker: if the y position of both line segments are equal, the slope of
the line segments was compared - and depending whether the compar-
ison happened at the start or endpoint, the higher or lower slope was
considered to be greater or smaller.

Build Method Related to the comparison, the second piece of evidence
is the Build method, which in the original code used an ordered list of
pairs containing the endpoint and the line segment. The advantage was
that only one loop was needed for this method, but an ordering on the
endpoints was required. The ordering used the x position, then the y

158 Chapter 11. Functional Verification of a Point Location Algorithm

position and as a tie braker the information whether the line segment
was starting or ending at this position. In the Build phase a variable
kept track of the x position in the last iteration. If the x position was
changed, a snapshot was inserted into the slab tree.

Both code changes, the comparison method and the simplified Build

method, were ported back to the C# implementation and merged into
the main development branch of C51.

11.9 Future Work

Future work is in several areas: formalizing the model of the point loca-
tion problem (geometry), unifying the ITree interface specification, and
formalising the proof in Coq using Charge!.

We have two ideas to model geometry in Coq. The first is to look into
Geoproof [89], which formalises Euclidean geometry inside of Coq. The
second is to look deeper into the formalisation of the four colour the-
orem [50] proof. The latter is a well-publicized proof conducted using
Coq. The theorem statement is: For any plane partitioned into regions,
four different colours suffice to colour the regions so that no two ad-
jacent regions share the same colour. We might be able to reuse parts
of this formalisation, based on hypermaps, which define the adjacency
and non-intersection properties of polygons.

The ITree interface is used both for the slab tree and the line seg-
ment tree, but the specification is different. At the moment, the slab
tree is a standard binary search tree without snapshots, whereas several
snapshots are taken from the line segment tree. We plan to generalize
the specification for both use cases, which needs some more thought be-
cause of our global H invariant. The abstract structures Tree and Snap are
defined under the invariant H, such that a user can use them disjointly,
but the implementor of the ITree interface has a global view on the tree
and all of its snapshots. The tree and its snapshots share parts of the
heap, and we use the separating conjunction (∗) between all nodes. This
entails that abstract structures are not first-class citizens, which makes
their nesting cumbersome to use.

To bypass a data-structure global invariant like H, two lines of re-
search were established recently: Fictional separation logic [59] embeds

1https://github.com/sestoft/C5/commits?author=hannesm

https://github.com/sestoft/C5/commits?author=hannesm

11.9. Future Work 159

the fiction of disjointness into the logic. Substructural types [69] com-
bines dependent types with linear types, which are used to reason about
ressources. Both areas of research might fit well for the problem pre-
sented in this paper.

Another area of future work is to mechanize our verification using
our earlier development [82] within our higher-order separation logic
framework Charge!. In order to formalise the presented verification
within Charge!, we first need to extend Charge! to be able to reason
about generics and delegates. Verification of generics and delegates us-
ing separation logic has been pioneered by Svendsen et al [110].

Our earlier verification development [82] does not include the meth-
ods remove and cut, which are required by the planar point implemen-
tation. Additionally, the implemented Java code uses path copy persis-
tence, whereas for space and time complexity it should use node copy
persistence and rebalance the tree if needed after insertion and removal
of nodes.

Chapter 12

Verification of Snapshotable Trees using
Access Permissions and Typestate
Originally published in: TOOLS 2012 [80]

Joint work with: Jonathan Aldrich; Carnegie Mellon University, Pittsburgh

Abstract

We use access permissions and typestate to specify and verify
a Java library that implements snapshotable search trees, as well as
some client code. We formalize our approach in the Plural tool, a
sound modular typestate checking tool. We describe the challenges
to verifying snapshotable trees in Plural, give an abstract interface
specification against which we verify the client code, provide a
concrete specification for an implementation and describe proof
patterns we found. We also relate this verification approach to
other techniques used to verify this data structure.

12.1 Introduction

In this paper we use access permission and typestate to formally ver-
ify snapshotable search trees in Plural [17, Chapter 6]. Snapshotable
trees have been proposed as a verification challenge [82], because they
contain abstract separation and internal sharing: the implementation
uses sharing, while the user sees each tree and snapshot separately.
The complete verified code is available at http://www.itu.dk/people/
hame/SnapTree.java.

http://www.itu.dk/people/hame/SnapTree.java
http://www.itu.dk/people/hame/SnapTree.java

162 Chapter 12. Verification of Snapshotable Trees using Access Permissions and Typestate

We only verify API compliance rather than full functional correctness
in this paper. The protocol of the data structure is verified, rather than
the tree content. The protocol is intricate, with internal sharing that is
hidden from the client. The tree content could be modeled as a set, but
in Plural no reasoning about sets is implemented.

We will first recapitulate the snapshotable tree verification chal-
lenge [82], typestate, and access permissions. Then we will briefly de-
scribe Plural and introduce our solution to the challenge.

To our knowledge this is the first formal verification of a tree data
structure using access permissions and typestate. The verification of the
Composite pattern [19], which consists of a tree data structure, used
non-formalized extensions of Plural and was not formalized in Plural.

Snapshotable Search Trees A snapshotable search tree is an ordered
binary tree with the additional method snapshot, which returns a han-
dle to a readonly persistent view of the tree. Both the tree and the
snapshot implement the same interface ITree. While the client can think
of a tree and a snapshot as disjoint, the actual implementation requires
that snapshot be computed in constant time. This is achieved by sharing
the nodes between the tree and its snapshots. If a new node is inserted
into the tree, the nodes are lazily duplicated (copy on write).

There are two implementation strategies, path copy persistence and
node copy persistence [46]. While the former duplicates the entire path
from the root node to the freshly inserted node, the latter has an addi-
tional handle in each node, which is used for the first mutation of the
node.

public interface ITree extends Iterable<Integer> {

public boolean contains(int x);

public boolean add(int x);

public ITree snapshot();

public Iterator<Integer> iterator();

}

The methods of the ITree interface have the following effects:

• contains return true if the given item is in the tree, otherwise
false.

12.1. Introduction 163

• add inserts the given item into the tree. If the item was already
present, this method does not have any effect and its return value
is false, otherwise true.

• snapshot returns a readonly view of the current tree. Taking a
snapshot of a snapshot is not supported.

• iterator returns an iterator of the tree’s (or snapshot’s) items.

We consider only iterators over snapshots for the remainder of the
paper. There is no limit to the number of iterators over a snapshot.
Iterators over a snapshot are valid even if the original tree is mutated.

Our client code uses this behaviour, and iterates over the snapshot
while mutating the original tree:

void client (ITree t) {

t.add(2); t.add(1); t.add(3);

ITree s = t.snapshot();

Iterator<Integer> it = s.iterator();

while (it.hasNext()) {

int x = it.next();

t.add(x * 3);

}

}

The client code adds some elements to a ITree, creates a snapshot,
and iterates over the snapshot while it adds more items to the under-
lying tree. The client code is computationally equivalent to the original
challenge [82], we do not introduce an unnecessary boolean variable for
the loop condition.

Typestate Typestate systems [108] were developed to enhance relia-
bility of software. A developer specifies the API usage protocol (a fi-
nite state machine) directly in the code. These protocols are statically
checked. Empirical results [10] have shown that API protocol defini-
tions occur three times more often than definitions of generics in object-
oriented (Java) code. In Plaid, an upcoming programming language,
typestate is a first-class citizen [109] and has been incorporated into the
type system.

164 Chapter 12. Verification of Snapshotable Trees using Access Permissions and Typestate

fileName
abstract File

open >> Opened
Closed

read
close >> Closed

fileHandle
Opened

Figure 12.1: A typestate example showing a File class.

A motivating example for typestate is the File class, shown in Fig-
ure 12.1. Reading a file is only valid if it is open, thus the abstract File
class has two states, Opened and Closed, and the method read is only de-
fined in the Opened state. The method open (only defined in the Closed
state) transitions the object from the Closed to the Opened state (indicated
by >>), and vice versa for close.

This prevents common usage violations, like trying to read a closed
file or opening a file multiple times.

Access Permissions A developer can annotate references with alias in-
formation [6] by using access permissions [17]. Access permissions are
used for controlling the flow of linear objects. In the presented system
there are five different permissions: exclusive access (unique), exclusive
write access with others possibly having read access (full), shared write
access (share), readonly access with others possibly having write access
(pure) and immutable access in which no others can write either (im-
mutable).

Boyland et al. [26] presented fractions to reason about permissions.
This allow us to split and join permissions: for example a unique per-
mission can be split into a full and a pure, which can later be merged
back together.

Plural The Plural1 tool does sound and modular typestate checking; it
employs fractional permissions to provide flexible alias control.

1https://code.google.com/p/pluralism/

https://code.google.com/p/pluralism/

12.1. Introduction 165

Plural was implemented as a plugin for Eclipse, on top of the Crys-
tal framework2. It consists of a static dataflow analysis which tracks
constraints about permissions in a lattice and infers local permissions.

A developer can annotate each interface with abstract states, speci-
fied by name. Interface methods can be annotated with pre- and post-
conditions (required and ensured permissions and states).

Each class can be annotated with concrete states, which consist of a
name and an invariant: a linear logic formula consisting of the access
permission to a field in a specific state, or the (boolean or non-null) value
of a field.

In a formula the standard linear logic conjunctions are available: im-
plies ((, written =>), and (⊗, written *), or (⊕, written +) and external
choice (&).

Each state can be a refinement of another state; a state can be refined
multiple times. We use this to refine the default alive state.

In order to access the fields of an object, the object must be unpacked,
allowing temporary violations of the object’s state invariants. Special
care has to be taken to not unpack the same object multiple times (by
using different aliases and permissions thereof), because this leads to
unsoundness. Plural enforces the restriction that only a single object
can be unpacked at a time. Before a method is called, all objects must be
packed. Plural makes an exception to this rule for objects with unique
permission, which is obviously sound since there cannot be any aliases
to these objects.

Overview In Section 12.2 the interface specification and client code
verification will be shown. Section 12.3 describes some proof patterns
used in the verification of the actual implementation. In Section 12.4 we
will describe related work and in Section 12.5 we conclude and present
future work.

Our study is based on Plural, and indeed we observed certain low-
level tool-specific artifacts (discussed in the conclusion) and the Plural-
specific “ghost method” proof pattern. The main focus of this paper,
however, including all other specification and proof patterns in Sec-
tions 12.2–12.3, is a high-level application of typestate and permission
concepts to verify the tree and its clients. This may provide insights

2https://code.google.com/p/crystalsaf/

https://code.google.com/p/crystalsaf/

166 Chapter 12. Verification of Snapshotable Trees using Access Permissions and Typestate

useful in other settings based on permissions [6, 26] and/or types-
tate [108, 109].

12.2 Interface Specification and Client Code Verification

The verification challenge is to give an abstract specification that does
not expose implementation details, is usable by a client, and for each
state an invariant can be specified by an implementor to verify her im-
plementation.

We will first describe the specification of the interface ITree and It-
erator, and afterwards we will show the verification of the client code
using those specifications.

12.2.1 Interface ITree

We specify the interface ITree by having two disjoint typestates, Tree and
Snapshot, which keep track whether the object is a tree or a snapshot of
a tree. The marker=true annotation ensures that the state cannot change
during the lifetime of an object. Both states refine the default state alive.

@States(refined="alive", value={"Tree", "Snapshot"}, marker=true)

interface ITree extends Iterable<Integer> {

@Pure

public boolean contains(int item);

@Full(requires="Tree", ensures="Tree")

public boolean add(int item);

@Full(requires="Tree", ensures="Tree")

@ResultPure(ensures="Snapshot")

public ITree snapshot();

@Pure(requires="Snapshot", ensures="Snapshot")

@ResultUnique

@Capture(param="underlying")

public TreeIterator iterator();

}

The annotations are intuitive: the method contains requires a pure
permission in any typestate, and returns the very same permission. The
method add requires a full permission in the Tree state; the method

12.2. Interface Specification and Client Code Verification 167

snapshot requires a full permission in the Tree state and the return value
has a pure permission in the Snapshot state. The iterator method re-
quires a pure permission in the Snapshot state, whereas the resulting it-
erator will have a unique permission. The Capture annotation indicates
that this is captured by the returned TreeIterator object.

The access permissions and typestates formalize the informal con-
straints presented in the description of the ITree interface in Section 12.1.

12.2.2 Interface Iterator

Iterators have been specified previously in Plural [16], we include the
specification for self-containedness of this paper. We follow similar ideas
(namely a non-empty and empty state), whereas our implementation is
different (see Section 12.3.5).

There are three states defined for an iterator, NonEmpty, Empty and
Impossible, all refine alive. The last one is only for specifying the remove

method which throws an exception in our implementation.
The method next requires unique permission to a NonEmpty iterator.

The hasNext method requires immutable permission and if it returns
true, the object is in the NonEmpty state, if false is returned, it is in the
Empty state.

The need for a unique permission is due to recursive calls and Plu-
ral’s restriction of having only a single unpacked object, mentioned in
Section 12.1. We will discuss this in more detail when we show the it-
erator implementation in Section 12.3.5. This is a marginal drawback,
since in practice iterators are used on the stack rather than shared via
the heap.

This specification actually enforces that hasNext is called before each
call to next, because otherwise the iterator is not known to be in the
NonEmpty state.

@States(refined="alive", value={"NonEmpty", "Empty", "Impossible"})

interface TreeIterator extends Iterator<Integer> {

@Unique(requires="NonEmpty")

public Integer next();

@Imm

@TrueIndicates("NonEmpty")

@FalseIndicates("Empty")

168 Chapter 12. Verification of Snapshotable Trees using Access Permissions and Typestate

public boolean hasNext();

@Unique(requires="Impossible")

public void remove();

}

12.2.3 Client Code Verification

The client code needs only a single annotation, that it has full permission
in the Tree state of the given argument.

class ClientCode {

@Perm(requires="full(#0) in Tree")

3 void client (ITree t) {

t.add(2); t.add(1); t.add(3);

ITree s = t.snapshot();

6 TreeIterator it = s.iterator();

while (it.hasNext()) {

int x = it.next();

9 t.add(x * 3);

}

}

12 }

The method client adds the elements 1, 2 and 3 to the tree (line 4),
creates a snapshot s (line 5) and an iterator it over the snapshot (line
6). The body of the while loop (lines 8 and 9) adds more elements to the
original tree (line 9).

In this section we have demonstrated that the client code preserves
the required permissions and states, using the given specification for the
ITree and Iterator interfaces.

12.3 Proof Patterns and Verification of the Implementation

We have verified the A1B1 implementation [82], which does not imple-
ment rebalancing and uses path copy persistence: when a snapshot is
present, the complete path from the root down to the newly inserted
node is copied in a call to add. This ensures that add does not mutate
any node that is shared between the snapshot and the tree.

12.3. Proof Patterns and Verification of the Implementation 169

The specifications of field getters, field setters, and constructors are
omitted in the paper: they are straightforward, a field getter requires an
immutable permission, a field setter a full permission and the constructor
ensures a unique permission.

The SnapTree class, which implements the ITree interface, contains
two boolean fields, isSnapshot and hasSnapshot, and a field root,
which contains a handle to the root node.

12.3.1 Formula Guarded by a Boolean Variable and Implication

The invariant for Snapshot is straightforward. It contains an immutable
permission to the root in the PartOfASnapshot state; the isSnapshot field
is true, and the hasSnapshot field is false.

The field isSnapshot is used in the invariant to distinguish between
the Tree and Snapshot states.

For the Tree invariant we distinguish between two cases: either there
is a snapshot present, or there is no snapshot present. In the former case
the invariant contains an immutable permission to the root node in the
PartOfASnapshot state. This ensures the no node is mutated. In the latter
case the invariant contains a unique permission to the root node in the
NotPartOfASnapshot state.

To implement this conditional we use a proof pattern: the permission
is guarded by an implication whose left hand side tests a boolean pro-
gram variable. The variable hasSnapshot is compared to true (or false),
and on the right hand side of the implication we have an immutable (or
unique, respectively) permission to the root node in the PartOfASnapshot
(or NotPartOfASnapshot) state.

@ClassStates({

@State(name="Snapshot", inv="immutable(root) in PartOfASnapshot *
isSnapshot == true * hasSnapshot == false"),

@State(name="Tree", inv="isSnapshot == false *
(hasSnapshot == true => immutable(root) in PartOfASnapshot) *
(hasSnapshot == false => unique(root) in NotPartOfASnapshot)")

})

This distinction between the two cases is natural and follows from
the program implementation.

170 Chapter 12. Verification of Snapshotable Trees using Access Permissions and Typestate

12.3.2 Specification of a Recursive Structure

This implementation either contains a completely immutable tree (if
snapshots are present) or a mutable tree. This is specified by the in-
variants of the states of the node class. Two states are defined, and both
refine alive: either the node is part of a snapshot (PartOfASnapshot) or
not part of a snapshot (NotPartOfASnapshot). The invariant recursively
contains immutable (or unique) permissions in the PartOfASnapshot (or
NotPartOfASnapshot, respectively) state for the left and right children.

@Refine({

@States(refined="alive",

value={"PartOfASnapshot","NotPartOfASnapshot"}),

})

@ClassStates({

@State(name="PartOfASnapshot",

inv="immutable(left) in PartOfASnapshot *
immutable(rght) in PartOfASnapshot"),

@State(name="NotPartOfASnapshot",

inv="unique(left) in NotPartOfASnapshot *
unique(rght) in NotPartOfASnapshot")

})

The base case for the recursion is that both the left and the right
child are null. Plural assumes the possibility that these might be null by
default.

12.3.3 Conditional Composition of Implementations

The method add behaves differently for a mutable tree and an im-
mutable one. The add method in the SnapTree checks in which case
the tree is and calls the correct method, either a mutating or a functional
insert. In both cases the precondition and postcondition are a full per-
mission to an object in the Tree state. The annotation use=Use.FIELDS

specifies that this has to be unpacked in the method body, which is
required to access the fields.

The implementation first checks whether root is null and instanti-
ates a new Node object if that is the case. Otherwise the boolean field
hasSnapshot is tested to determine whether a mutating insert (addM)

12.3. Proof Patterns and Verification of the Implementation 171

or a functional insert (addF) should be done. The proof goes through
because the test is the same as in the invariant of the Tree state, thus
one guard is false, its implication is eliminated, and the other guarded
formula is used.

@Full(use=Use.FIELDS, requires="Tree", ensures="Tree")

public boolean add (int i) {

assert(isSnapshot == false);

if (root == null) {

setRoot(new Node(i));

return true;

} else

if (hasSnapshot) {

RefBool x = new RefBool();

setRoot(root.addF(i, x));

return x.getValue();

} else {

RefBool x = new RefBool();

root.addM(i, x);

return x.getValue();

}

}

The implementation of addF requires an immutable permission of the
node in the PartOfASnapshot state, and ensures an immutable permission
in the PartOfASnapshot state for the returned object. It recurses down
the tree to find the location at which to insert the given value, and if
the value was inserted, it duplicates the entire path (which is on the call
stack). It uses some helper methods to get and set fields.

@Perm(requires="immutable(this) in PartOfASnapshot",

ensures="immutable(result) in PartOfASnapshot")

public Node addF (int i, RefBool x) {

Node node = this;

if (item > i) {

Node lef = getLeft();

Node newL = null;

if (lef == null) {

newL = new Node(i);

x.setValue(true);

172 Chapter 12. Verification of Snapshotable Trees using Access Permissions and Typestate

} else

newL = lef.addF(i, x);

if (x.getValue()) {

Node r = getRight();

node = new Node(newL, item, r);

}

} else if (i > item) {

Node rig = getRight();

Node newR = null;

if (rig == null) {

newR = new Node(i);

x.setValue(true);

} else

newR = rig.addF(i, x);

if (x.getValue()) {

Node l = getLeft();

node = new Node(l, item, newR);

}

}

return node;

}

The implementation of addM also searches for the correct place by
calling itself recursively, and assigns a freshly instantiated Node object
to that place.

@Unique(use=Use.DISP_FIELDS,

requires="NotPartOfASnapshot",

ensures="NotPartOfASnapshot")

public void addM (int i, RefBool x) {

if (item > i)

if (left == null) {

left = new Node(i);

x.setValue(true);

} else

left.addM(i, x);

else if (i > item)

if (rght == null) {

rght = new Node(i);

x.setValue(true);

12.3. Proof Patterns and Verification of the Implementation 173

} else

rght.addM(i, x);

}

12.3.4 Dropping Privileges (Ghost Method)

The method snapshot requires a full permission to this in the Tree state.
The !fr annotation is equivalent to use=Use.FIELDS, but can be used in
the more general Perm annotation.

The implementation of snapshot needs to drop the permissions to
all nodes, because they are now shared with the tree and the snapshot.
This is achieved in the snapall method.

@Perm(requires="full(this!fr) in Tree",

ensures="pure(result) in Snapshot * full(this!fr) in Tree")

public ITree snapshot() {

assert(!isSnapshot);

if (hasSnapshot)

return new SnapTree(root);

else {

Node r = root;

r.snapall();

hasSnapshot = true;

return new SnapTree(r);

}

}

The method snapall drops the privileges recursively by traversing
the tree. It is implemented in the Node class. It does not have any
observable computational effect, but it is required because we must drop
the permissions for the entire tree and Plural only allows this to occur
as each node is unpacked going down the tree. In order to verify it with
Plural, we need to specifically assign null to the left/right sibling if it is
already null (to associate a bottom permission).

@Perm(requires="unique(this!fr) in NotPartOfASnapshot",

ensures="immutable(this!fr) in PartOfASnapshot")

public void snapall () {

174 Chapter 12. Verification of Snapshotable Trees using Access Permissions and Typestate

if (left != null)

left.snapall();

else

left = null;

if (rght != null)

rght.snapall();

else

rght = null;

}

Although the specific technique used here is specialized for Plural,
note that an analogous mechanism would be required to convince any
tool that the permissions and/or typestates are dropped recursively.

12.3.5 Iterator

The iterator implementation uses a field context, which contains a stack
of nodes that have not yet been yielded to the client. This is initially
filled recursively with the left path, and whenever an item is popped
from the stack, the left path of its right subtree is pushed onto the stack.
The Stack class is annotated with a proper specification, but its imple-
mentation is not verified (especially that pop returns an object in the
PartOfASnapshot typestate)3.

@Perm(requires="immutable(this) in Snapshot",

ensures="unique(result)")

public TreeIterator iterator() {

Node r = this.getRoot();

TreeIteratorImpl it = new TreeIteratorImpl(this);

it.pushLeftPath(r);

return it;

}

The concrete class specifies an invariant only for the top-level alive
state:

3Update from October 2013: The Stack class, as annotated, does not track whether
it is empty or not. A more precise specification could possibly use different typestates
carrying this information, which could then be used by the hasNext method to specify
the connection between the contents of the stack and the typestate of the iterator.

12.3. Proof Patterns and Verification of the Implementation 175

@ClassStates({

@State(name="alive",

inv="immutable(tree) in Snapshot *
unique(context) in alive")

})

The method pushLeftPath calls itself recursively with the left child
to push the entire left path onto the stack. It requires a unique per-
mission to this in order to unpack this, access the context field, and
call a method on the context object while this remains unpacked. As
mentioned in Section 12.1, for soundness reasons, leaving an object un-
packed during a method call is only possible in Plural if there is a unique
permission to the unpacked object.

@Perm(requires="unique(this!fr) in alive *
immutable(#0) in PartOfASnapshot",

ensures="unique(this!fr) in alive *
immutable(#0) in PartOfASnapshot")

public void pushLeftPath(Node node) {

if (node != null) {

context.push(node);

pushLeftPath(node.getLeft());

}

}

The hasNext method is simply a check whether the stack is non-
empty4.

@TrueIndicates("NonEmpty")

@FalseIndicates("Empty")

@Imm(use=Use.FIELDS)

public boolean hasNext() {

return !context.empty();

}

4Update from October 2013: The verification of the hasNext method is very
lightweight. Especially it does not verify whether the stack (context) is actually empty
or not, since the stack specification does not expose this information via a typestate
(also see footnote on page 174).

176 Chapter 12. Verification of Snapshotable Trees using Access Permissions and Typestate

The method next pops the first element of the stack and pushes the
left path of the right child onto the stack. In contrast to the original
implementation [82], a guard if hasNext() is true around lines 4-7 is not
needed, because Plural verifies that next is only called on a non-empty
iterator.

@Unique(use=Use.DISP_FIELDS, requires="NonEmpty")

public Integer next() {

3 Integer result;

Node node = context.pop();

result = node.getItem();

6 if (node.getRight() != null)

pushLeftPath(node.getRight());

return result;

9 }

Here a unique permission is required in order to call pushLeftPath.
In this section we described proof patterns used in the verification

of the path copy persistence implementation of snapshotable trees. The
complete implementation has been automatically verified with Plural.

12.4 Related Work

The Composite pattern, which is a tree data structure, has been verified
using typestate and access permissions [19]. This work differed in mul-
tiple aspects: first of all it was not formalized in a tool, then it relied
on extensions, like multiple unpacking and equations using pointers,
which were not proven to be sound. Also, the verification challenge
is different: the Composite pattern exposes all nodes to a user using a
share permission, and preserves an invariant upwards the tree, namely
the number of children of the subtree rooted in each node. This leads
to a specification with several typestates in the different dimensions of
each node, which fractions are cleverly distributed to allow for bottom-
up updates of the count.

A prior iterator verification [16] is similar to our specification, but
the implementation of the iterator is completely different. In this paper
we present an iterator which shares its content with the snapshot and

12.5. Conclusion and Further Work 177

holds only some elements on the stack, pushing more onto the stack on
demand.

Snapshotable trees have been verified using a higher-order separa-
tion logic [82]. This approach verified full functional correctness, while
this paper can only prove correct API usage: add and snapshot are
always called on the tree, and by having immutable permission to the
contents of a snapshot, we can verify that it will not be modified. Also,
our work verifies that an iterator is always taken on a snapshot, not the
original tree, and that next is never called on an empty iterator.

We use automation in the proof, which requires only a moderate
number of annotations to the source code. The higher-order separation
logic proof requires roughly 5000 lines of proof script, while the code
and annotations for this paper are together under 400 lines; this is less
than 2 lines of annotation for every line of source code.

An unpublished verification of snapshotable trees in Dafny [74],
done by Rustan Leino, is similar to the Plural approach. Both are au-
tomated systems using a first-order logic. In Dafny functional correct-
ness can be proven. The advantage of Plural is that already existing
code written in a widely deployed programming language (Java) can
be analyzed, whereas Dafny specifies its own programming language.
Dafny uses implicit framing and also relies on annotations by the user,
whereas Plural is based on linear logic (access permissions) and types-
tates. Dafny does not support inheritance, thus no abstract specification
is provided.

12.5 Conclusion and Further Work

There exist several extensions to the access permission system which
support verifying full functional correctness: Object propositions [91]
combine access permissions with first-order formulae; but there is cur-
rently no implementation available. Symplar [18] combines access per-
missions with JML, thus access permissions are used to reason about
aliasing, and JML formulae for full functional correctness.

In order to verify iterators over the tree (vs. its snapshots) we would
need to change the unique permission of the nodes to full in order to
share them between the tree and the iterator. Because the proof relies

178 Chapter 12. Verification of Snapshotable Trees using Access Permissions and Typestate

on method calls while a unique object is unpacked, we would have to
modify Plural in order to achieve this.

There are also more advanced implementations of snapshotable
trees [46], namely rebalancing - for which we would need to have partly
unique and partly immutable permissions to the nodes in the tree. An im-
portant observation is that rebalancing involves only freshly allocated
nodes in the path copy persistence implementation. Thus, we would
need to carefully write the code such that Plural can derive this obser-
vation.

The node copy persistence implementation is more challenging:
parts of a node are immutable while other parts are mutable. Here or-
thogonal dimensions of state, which are implemented in Plural, might
become useful.

To conclude this paper, we successfully verified a snapshotable tree
implementation and client code in Plural. In order to achieve that we
had to rewrite parts of the reference implementation [82], mainly by
adding explicit getter and setter methods, which is good object-oriented
style.

An interesting method was add, which in the reference implemen-
tation calls addRecursive, which handles all cases at once: whether a
snapshot is present (functional insertion) or no snapshots are present
(mutating insert). In the higher-order separation logic proof this leads
to three different specifications for addRecursive, one for each separate
case. In automated tools (Plural and Dafny), it is easier to implement
and verify two methods for those two cases, due to size of invariants
and automated reasoning. Evidence for this is also provided by Rus-
tan Leino, who implemented insertion in a clean-room setting from the
beginning as two different methods. The reference implementation is
clearly more compact, but it is arguable which implementation is clearer
or more in the object-oriented spirit.

We modified the client code slightly by removing an additional tem-
porary boolean variable, because we found that Plural’s inference of
boolean values works better this way. The original challenge used a
boolean variable because their semantics does not allow for statements
(heap access) in the loop condition, but only expressions (stack access).

While doing this proof we found several proof patterns for Plural:
using implications instead of multiple typestates, inserting explicit re-

12.5. Conclusion and Further Work 179

turn statements to help Plural with automation, writing explicit alterna-
tives for conditionals, moving methods into the specific class that con-
cerns them because static methods are not as well supported, avoiding
choice conjuncts, and assigning null explicitly so that Plural can asso-
ciate a bottom permission with the field. To get the proof through, we
had to write the method snapall, which does not have any observable
computational effect, but reassigns fields which were null to null.

We consider Plural to be a helpful static analysis tool which prevents
runtime bugs: it issues an error when add is called on a snapshot or
when a snapshot of a snapshot is taken.

One bug in Plural has been found (while (lc == true) leads to
infinite recursion), which silently crashed Plural, making it appear that
the code was proven. This has subsequently been fixed by the author of
Plural.

Many thanks to Kevin Bierhoff for helping with specifications and
best practices in Plural. The second author was funded by NSF grant
CCF-1116907.

Bibliography

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle,
W. Menzel, W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt.
The KeY tool. Software and System Modeling, 4:32–54, 2005.

[2] A. Andersson. Balanced search trees made simple. In F. Dehne
et al., editors, Algorithms and Data Structures. LNCS 709, pages 60–
71. Springer-Verlag, 1993.

[3] A. W. Appel. Tactics for separation logic. INRIA Rocquencourt and
Princeton University, Early Draft, 2006.

[4] A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A
very modal model of a modern, major, general type system. In
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’07, pages 109–122,
New York, NY, USA, 2007. ACM.

[5] D. Aspinall. Proof General: A Generic Tool for Proof Develop-
ment. In S. Graf and M. I. Schwartzbach, editors, TACAS, volume
1785 of Lecture Notes in Computer Science, pages 38–42. Springer,
2000.

[6] H. G. Baker. "Use-once" variables and linear objects: storage man-
agement, reflection and multi-threading. SIGPLAN Not., 30:45–52,
January 1995.

[7] M. Barnett, R. DeLine, M. Fähndrich, B. Jacobs, K. R. M. Leino,
W. Schulte, and H. Venter. The Spec# programming system: Chal-
lenges and directions. In VSTTE, pages 144–152, 2005.

182 Bibliography

[8] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L.
Lanet, M. Pavlova, and A. Requet. JACK - a tool for validation
of security and behaviour of Java applications. In FMCO, pages
152–174, 2006.

[9] G. Barthe, P. Crégut, B. Grégoire, T. Jensen, and D. Pichardie. The
MOBIUS proof carrying code infrastructure. In F. S. Boer, M. M.
Bonsangue, S. Graf, and W.-P. Roever, editors, Formal Methods for
Components and Objects. Springer Verlag, 2008.

[10] N. E. Beckman, D. Kim, and J. Aldrich. An empirical study of
object protocols in the wild. In ECOOP’11, 2011.

[11] J. Bengtson, J. B. Jensen, and L. Birkedal. Charge! – a framework
for higher-order separation logic in Coq. In ITP, pages 315–331,
2012.

[12] J. Bengtson, J. B. Jensen, F. Sieczkowski, and L. Birkedal. Verify-
ing object-oriented programs with higher-order separation logic
in Coq. In ITP, pages 22–38, 2011.

[13] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modu-
lar automatic assertion checking with separation logic. In F. S.
de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever, editors,
FMCO, volume 4111 of Lecture Notes in Computer Science, pages
115–137. Springer, 2006.

[14] J. Berdine, B. Cook, and S. Ishtiaq. SLAyer: Memory safety for
systems-level code. In CAV, pages 178–183, 2011.

[15] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development. Coq’Art: the Calculus of Inductive Constructions.
Springer Verlag, 2004.

[16] K. Bierhoff. Iterator specification with typestates. In Proceedings
of the 2006 conference on Specification and verification of component-
based systems, SAVCBS ’06, pages 79–82, New York, NY, USA, 2006.
ACM.

[17] K. Bierhoff. API protocol compliance in object-oriented software.
Technical Report CMU-ISR-09-108, CMU ISR SCS, 2009.

Bibliography 183

[18] K. Bierhoff. Automated program verification made SYMPLAR. In
Proc of Onward! 2011, 2011.

[19] K. Bierhoff and J. Aldrich. Permissions to specify the composite
design pattern. In Proc of SAVCBS 2008, 2008.

[20] B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines,
higher-order separation logic, and abstraction. ACM Trans. Pro-
gram. Lang. Syst., 29(5), 2007.

[21] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledge-
hammer with SMT solvers. In N. Bjørner and V. Sofronie-
Stokkermans, editors, CADE, volume 6803 of Lecture Notes in Com-
puter Science, pages 116–130. Springer, 2011.

[22] J. M. Bland and D. G. Altman. Statistics notes: Cronbach’s alpha.
BMJ, 314(7080):572, 2 1997.

[23] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shep-
herd your herd of provers. In Boogie 2011: First International Work-
shop on Intermediate Verification Languages, Wrocław, Poland, Au-
gust 2011.

[24] R. L. Bocchino, H. Mehnert, and J. Aldrich. High-level abstractions
for safe parallelism. In 4th Workshop on Determinism and Correctness
in Parallel Programming, 2013.

[25] C. Borrás. Overexposure of radiation therapy patients in Panama:
problem recognition and follow-up measures. Rec Panam Salud
Publica, 20(2/3):173–187, 2006.

[26] J. Boyland. Checking interference with fractional permissions. In
R. Cousot, editor, Static Analysis: 10th International Symposium, vol-
ume 2694 of Lecture Notes in Computer Science, pages 55–72, Berlin,
Heidelberg, New York, 2003. Springer.

[27] E. Brady. Programming in Idris: a tutorial. Technical report, Uni-
versity of St Andrews, 2013.

[28] F. P. Brooks. The mythical man-month (anniversary ed.). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

184 Bibliography

[29] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML tools
and applications. Int. J. Softw. Tools Technol. Transf., 7, Jun 2005.

[30] C. Calcagno and D. Distefano. Infer: an automatic program ver-
ifier for memory safety of c programs. In Proceedings of the Third
international conference on NASA Formal methods, NFM’11, pages
459–465, Berlin, Heidelberg, 2011. Springer-Verlag.

[31] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Composi-
tional shape analysis by means of bi-abduction. POPL ’09: Pro-
ceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, Jan 2009.

[32] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Space
invading systems code. In LOPSTR, pages 1–3, 2008.

[33] J. Charles and J. R. Kiniry. A lightweight theorem prover interface
for Eclipse. UITP at TPHOL’08, 2008.

[34] A. Chlipala. Mostly-automated verification of low-level programs
in computational separation logic. In PLDI, pages 234–245, 2011.

[35] A. Chlipala, G. Malecha, G. Morrisett, A. Shinnar, and R. Wis-
nesky. Effective interactive proofs for higher-order imperative pro-
grams. ACM Proc. of ICFP ’09, Aug 2009.

[36] D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML
– progress and issues in building and using ESC/Java2. In Con-
struction and Analysis of Safe, Secure and Interoperable Smart Devices:
International Workshop. Springer, 2004.

[37] L. J. Cronbach. Coefficient alpha and the internal structure of tests.
Psychometrika, 16:297–334, 1951.

[38] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editors. Structured
programming. Academic Press Ltd., London, UK, UK, 1972.

[39] C. David and W.-N. Chin. Immutable specifications for more con-
cise and precise verification. In C. V. Lopes and K. Fisher, editors,
OOPSLA, pages 359–374. ACM, 2011.

Bibliography 185

[40] F. Davis. Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. Management Information
Systems Quarterly, 1989.

[41] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-
Verlag, Berlin, 1997.

[42] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. In T. D’Hondt, edi-
tor, ECOOP 2010, volume 6183 of LNCS, pages 504–528. Springer
Berlin / Heidelberg, 2010.

[43] T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Abstraction
and refinement for local reasoning. In VSTTE, pages 199–215,
Berlin, Heidelberg, 2010. Springer.

[44] D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. In H. Hermanns and J. Palsberg, ed-
itors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 3920 of Lecture Notes in Computer Science, pages 287–
302. Springer Berlin Heidelberg, 2006.

[45] D. Distefano and M. J. Parkinson. jStar: towards practical verifi-
cation for Java. In G. E. Harris, editor, OOPSLA, pages 213–226.
ACM, 2008.

[46] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making
data structures persistent. Journal of Computer and System Sciences,
38(1):86 – 124, 1989.

[47] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location
in a monotone subdivision. SIAM J. Comput., 15(2):317–340, May
1986.

[48] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract
languages. ACM Proc. of SAC ’10, Mar 2010.

[49] J. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform
for deductive program verification. Proc. of CAV’07, Jul 2007.

186 Bibliography

[50] G. Gonthier. The four colour theorem: Engineering of a formal
proof. In D. Kapur, editor, ASCM, volume 5081 of Lecture Notes in
Computer Science, page 333. Springer, 2007.

[51] G. Gonthier. Engineering mathematics: the odd order theorem
proof. In R. Giacobazzi and R. Cousot, editors, POPL, pages 1–2.
ACM, 2013.

[52] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a
theorem proving environment for higher order logic. Cambridge Uni-
versity Press, New York, NY, USA, 1993.

[53] L. Guibas and R. Sedgewick. A dichromatic framework for bal-
anced trees. In 19th FCS, Ann Arbor, Michigan, pages 8–21, 1978.

[54] P. Hawkins, A. Aiken, K. Fisher, M. C. Rinard, and M. Sagiv. Data
structure fusion. In K. Ueda, editor, APLAS, volume 6461 of Lecture
Notes in Computer Science, pages 204–221. Springer, 2010.

[55] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, Oct. 1969.

[56] W. A. Howard. The Formulae-as-types Notion of Construction.
In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479–490.
Academic Press, London, 1980. original manuscript from 1969.

[57] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a
minimal core calculus for Java and GJ. ACM Trans. Program. Lang.
Syst., 23(3):396–450, May 2001.

[58] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. VeriFast: A powerful, sound, predictable, fast verifier
for C and Java. In NASA Formal Methods, pages 41–55, 2011.

[59] J. B. Jensen and L. Birkedal. Fictional separation logic. In H. Seidl,
editor, ESOP, volume 7211 of Lecture Notes in Computer Science,
pages 377–396. Springer, 2012.

[60] J. B. Jensen, L. Birkedal, and P. Sestoft. Modular verification of
linked lists with views via separation logic. Proc. of FTfJP 2010,
May 2010.

Bibliography 187

[61] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-021, Carnegie Mellon Univer-
sity, November 1992.

[62] I. Kassios. Dynamic frames: Support for framing, dependencies
and sharing without restrictions. In J. Misra, T. Nipkow, and
E. Sekerinski, editors, FM 2006: Formal Methods, volume 4085 of
Lecture Notes in Computer Science, pages 268–283. Springer Berlin
Heidelberg, 2006.

[63] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J.
Comput., 12(1):28–35, 1983.

[64] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: formal verification
of an OS kernel. In J. N. Matthews and T. E. Anderson, editors,
SOSP, pages 207–220. ACM, 2009.

[65] D. E. Knuth. Literate programming. THE COMPUTER JOURNAL,
27:97–111, 1984.

[66] N. Kokholm and P. Sestoft. The C5 Generic Collection Library for
C# and CLI. Technical Report ITU-TR-2006-76, IT University of
Copenhagen, January 2006.

[67] N. Krishnaswami. Verifying Higher-Order Imperative Programs with
Higher-Order Separation Logic. PhD thesis, Carnegie Mellon Uni-
versity, June 2012.

[68] N. R. Krishnaswami, L. Birkedal, and J. Aldrich. Verifying event-
driven programs using ramified frame properties. In TLDI, pages
63–76. ACM, 2010.

[69] N. R. Krishnaswami, A. Turon, D. Dreyer, and D. Garg. Superfi-
cially substructural types. In Proceedings of the 17th annual ACM
SIGPLAN-SIGACT International Conference on Functional Program-
ming, ICFP ’12, New York, NY, USA, September 2012. ACM.

188 Bibliography

[70] V. Kuncak and M. C. Rinard. An overview of the Jahob analysis
system: project goals and current status. In IPDPS. IEEE, 2006.

[71] O. Laitenberger and H. M. Dreyer. Evaluating the Usefulness and
the Ease of Use of a Web-based Inspection Data Collection Tool.
In IEEE International Software Metrics Symposium, pages 122–132,
1998.

[72] O. Lee, H. Yang, and R. Petersen. Program analysis for over-
laid data structures. In Proceedings of the 23rd International Confer-
ence on Computer Aided Verification, volume 6806 of Lecture Notes in
Computer Science, pages 592–608, Utah, USA, July 2011. Springer-
Verlag.

[73] M. M. Lehman. Programs, Life Cycles, and Laws of Software Evo-
lution. Proceedings of the IEEE, 68(9):1060–1076, Sept. 1980.

[74] K. R. M. Leino. Dafny: An automatic program verifier for func-
tional correctness. In E. M. Clarke and A. Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning. LNCS 6355,
pages 348–370, 2010.

[75] X. Leroy. Formal verification of a realistic compiler. Communica-
tions of the ACM, 52(7):107–115, 2009.

[76] N. G. Leveson. An investigation of the Therac-25 accidents. IEEE
Computer, 26:18–41, 1993.

[77] B. Liskov and J. Wing. A behavioral notion of subtyping. Transac-
tions on Programming Languages and Systems (TOPLAS), 16(6), Nov
1994.

[78] G. Malecha and G. Morrisett. Mechanized verification with shar-
ing. In 7th International Colloquium on Theoretical Aspects of Comput-
ing, Sept. 2010.

[79] H. Mehnert. Kopitiam: Modular incremental interactive full func-
tional static verification of Java code. In M. Bobaru, K. Havelund,
G. Holzmann, and R. Joshi, editors, NASA Formal Methods, volume
6617 of Lecture Notes in Computer Science, pages 518–524. Springer
Berlin Heidelberg, 2011. Reproduced as Chapter 6 of this disser-
tation.

Bibliography 189

[80] H. Mehnert and J. Aldrich. Verification of snapshotable trees us-
ing access permissions and typestate. In C. A. Furia and S. Nanz,
editors, TOOLS (50), volume 7304 of Lecture Notes in Computer Sci-
ence, pages 187–201. Springer, 2012. Reproduced as Chapter 12 of
this dissertation.

[81] H. Mehnert and J. Bengtson. Kopitiam – a unified IDE for devel-
oping formally verified Java programs. Technical Report ITU-TR-
2013-167, IT University of Copenhagen, May 2013. Reproduced as
Chapter 7 of this dissertation.

[82] H. Mehnert, F. Sieczkowski, L. Birkedal, and P. Sestoft. Formal-
ized verification of snapshotable trees: Separation and sharing. In
R. Joshi, P. Müller, and A. Podelski, editors, Verified Software: The-
ories, Tools, Experiments, volume 7152 of Lecture Notes in Computer
Science, pages 179–195. Springer Berlin Heidelberg, 2012. Repro-
duced as Chapter 10 of this dissertation.

[83] B. Meyer. Design by contract. Advances in Object-Oriented Software
Engineering, 1991.

[84] W. Mostowski. Fully verified Java card API reference implemen-
tation. In VERIFY, 2007.

[85] L. D. Moura and N. Bjørner. Z3: An efficient SMT solver. In
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2008.

[86] K. Mulmuley. A fast planar partition algorithm, I. Journal of Sym-
bolic Computation, 10(3-4):253 – 280, 1990.

[87] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and
L. Birkedal. Ynot: dependent types for imperative programs. In
J. Hook and P. Thiemann, editors, Proc. of 13th ACM ICFP 2008,
pages 229–240. ACM, 2008.

[88] A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the veri-
fication of heap-manipulating programs. In Proceedings of POPL,
2010.

190 Bibliography

[89] J. Narboux. A graphical user interface for formal proofs in geom-
etry. Journal of Automated Reasoning, 39(2):161–180, 2007.

[90] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[91] L. Nistor and J. Aldrich. Verifying object-oriented code using ob-
ject propositions. In Proc of IWACO, 2011.

[92] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Mich-
eloud, N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger. An
overview of the Scala programming language. Technical Report
IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[93] M. Parkinson and A. Summers. The relationship between sepa-
ration logic and implicit dynamic frames. In G. Barthe, editor,
Programming Languages and Systems, volume 6602 of Lecture Notes
in Computer Science, pages 439–458. Springer Berlin Heidelberg,
2011.

[94] M. J. Parkinson and G. M. Bierman. Separation logic and abstrac-
tion. In J. Palsberg and M. Abadi, editors, POPL, pages 247–258.
ACM, 2005.

[95] M. J. Parkinson and G. M. Bierman. Separation logic, abstraction
and inheritance. In G. C. Necula and P. Wadler, editors, POPL,
pages 75–86. ACM, 2008.

[96] R. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett. A
realizability model for impredicative Hoare type theory. In
S. Drossopoulou, editor, ESOP 2008, volume 4960 of Lecture Notes
in Computer Science, pages 337–352. Springer, 2008.

[97] P. Philippaerts, F. Vogels, J. Smans, B. Jacobs, and F. Piessens. The
Belgian electronic identity card: a verification case study. ECE-
ASST, 46, 2011.

[98] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

Bibliography 191

[99] B. C. Pierce, C. Casinghino, M. Greenberg, C. Hriţcu, V. Sjoberg,
and B. Yorgey. Software Foundations. Electronic textbook, 2012.
http://www.cis.upenn.edu/~bcpierce/sf.

[100] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. IEEE Proc. of 17th Symp. on Logic in CS, pages 55–74,
Nov 2002.

[101] N. Sarnak and R. E. Tarjan. Planar point location using persistent
search trees. Communications of ACM, 29(7):669–679, July 1986.

[102] N. Schirmer. A verification environment for sequential imperative
programs in Isabelle/HOL. In LPAR, pages 398–414, 2005.

[103] P. Schobbens, P. Heymans, and J.-C. Trigaux. Feature diagrams: A
survey and a formal semantics. In Requirements Engineering, 14th
IEEE International Conference, pages 139–148, 2006.

[104] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested
Hoare triples and frame rules for higher-order store. Logical Meth-
ods in Computer Science, 7(3:21), July 2011.

[105] R. Sedgewick. Left-leaning red-black trees. At
http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf.

[106] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames:
Combining dynamic frames and separation logic. ECOOP 2009,
Apr 2009.

[107] G. Stewart, L. Beringer, and A. W. Appel. Verified heap theorem
prover by paramodulation. In Proceedings of the 17th ACM SIG-
PLAN international conference on Functional programming, ICFP ’12,
pages 3–14, New York, NY, USA, 2012. ACM.

[108] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. In IEEE Transactions on
Software Engineering, 1998.

[109] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and Éric Tanter. First-
class state change in Plaid. In OOPSLA’11, 2011.

http://www.cis.upenn.edu/~bcpierce/sf

192 Bibliography

[110] K. Svendsen, L. Birkedal, and M. Parkinson. Verifying gener-
ics and delegates. In ECOOP’10, pages 175–199. Springer-Verlag,
2010.

[111] The Coq Development Team. The Coq Proof Assistant Reference Man-
ual – Version V7.3, May 2002.

[112] R. Vallée-Rai and L. J. Hendren. Jimple: Simplifying Java byte-
code for analyses and transformations. Technical Report 4, McGill
University, 1998.

[113] J. van den Berg and B. Jacobs. The LOOP compiler for Java and
JML. In TACAS, pages 299–312, 2001.

[114] C. Varming and L. Birkedal. Higher-Order Separation Logic in
Isabelle/HOLCF. Electronic Notes in Theoretical Computer Science,
218:371–389, 2008.

[115] F. Vogels, B. Jacobs, and F. Piessens. A machine-checked sound-
ness proof for an efficient verification condition generator. In S. Y.
Shin, S. Ossowski, M. Schumacher, M. J. Palakal, and C.-C. Hung,
editors, SAC, pages 2517–2522. ACM, 2010.

[116] B. Weide, M. Sitaraman, H. Harton, B. Adcock, P. Bucci, D. Bro-
nish, W. Heym, J. Kirschenbaum, and D. Frazier. Incremental
benchmarks for software verification tools and techniques. Proc. of
VSTTE ’08, Oct 2008.

[117] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and
P. Wischnewski. SPASS version 3.5. In CADE, pages 140–145, 2009.

[118] W. E. Wong, V. Debroy, A. Surampudi, H. Kim, and M. F. Siok.
Recent catastrophic accidents: Investigating how software was re-
sponsible. In SSIRI, pages 14–22. IEEE Computer Society, 2010.

	Contents
	Set and Setting
	Introduction
	Motivation
	Thesis
	Research Questions
	Contributions
	Background
	Disclaimer

	Design Space of Verification Tools
	User Interface
	Verification Back-end
	Specification Logic
	Target Language
	Trusted Code Base
	Which Features Does Kopitiam Implement?

	Related Work
	Future Work
	Conclusion

	Research Papers: Kopitiam
	Kopitiam: Modular Incremental Interactive Full Functional Static Verification of Java Code
	Introduction
	Overview of Kopitiam
	Example Verification of Factorial
	Related Work
	Conclusion and Future Work

	Kopitiam – a Unified IDE for Developing Formally Verified Java Programs
	Introduction
	Using Kopitiam
	Implementation
	Discussion and Future Work
	Related Work
	Conclusions

	Evolutionary Design and Implementation of Kopitiam
	Introduction
	Background
	Software Development and Software Verification Workflow
	Requirements
	Implementation Challenges
	Conclusion
	Future Work

	Empirical Evaluation of Kopitiam
	Introduction
	Research Objective
	Methodology of the Evaluation
	Questionnaire
	Participants and Setup
	Results
	Threats to Validity
	Discussion
	Conclusion

	Research Papers: Case Studies
	Formalized Verification of Snapshotable Trees: Separation and Sharing
	Introduction
	Case Study: Snapshotable Trees
	Abstract Specification and Client Code Verification
	Implementation A1B1
	On the Verification of Implemented Code
	Related Work
	Conclusion and Future Work
	Appendix

	Functional Verification of a Point Location Algorithm
	Introduction
	Point Location Problem
	Solution
	Implementation
	Specification
	Verification
	Related Work
	Conclusion
	Future Work

	Verification of Snapshotable Trees using Access Permissions and Typestate
	Introduction
	Interface Specification and Client Code Verification
	Proof Patterns and Verification of the Implementation
	Related Work
	Conclusion and Further Work

	Bibliography

