
Bigraphs:
Modelling, Simulation, and

Type Systems

On Bigraphs for Ubiquitous Computing and
on Bigraphical Type Systems

Ebbe Elsborg

Dissertation

Successfully Defended on 16 March 2009

in Front of an External Evaluation Committee and

the Faculty of the IT University of Copenhagen

in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Programming, Logic, and Semantics group 24 March 2009

ii

Abstract

We study how bigraphical reactive systems may be used for modelling and
simulating — in a manner controlled by sorts and types — global ubiquitous
computing. Ubiquitous computing was in the early 1990s envisioned by
Mark Weiser to be the third wave of computing (after mainframes, and then
personal computers), in which each person has many computers, receding
into the background, at his or her disposal. Global ubiquitous computing
has been identified internationally, indeed it is a UK Grand Challenge, as
one of the most important challenges for computing in the 21st century.

In mathematical modelling of real-life systems, we aim to gain a deeper
understanding of their behaviour by studying their essence. Concurrent
and mobile systems are notoriously hard to understand in their entirety
and thus to give guarantees about. The complexity increases when global
ubiquitous computing is considered, especially as systems become larger.
A key observation is the importance of understanding this new paradigm
before it is realised by technological advances, because trustworthiness will
be paramount, and theory is an important factor in achieving this. To this
end, computer simulations complement well mathematical methods.

In this dissertation we focus on context-aware computing — in particular
location-aware computing — which is at the core of ubiquitous computing.
Our point of origin is the theory of Bigraphs by Milner and co-workers.
Up until now it has been an open question whether Bigraphs is a suitable
model for ubiquitous computing, for which we provide a partial answer.
The relevant literature is surveyed and Bigraphs challenged by modelling
and simulation of location systems. Plato-graphical models are developed
as a more advanced modelling technique. Finally, exploiting Bigraphs as a
meta-model not just for (process) calculi but for type systems, and to control
models, we show how to develop inductive type systems for Bigraphs.

We thus expand the knowledge of what may be achieved with Bigraphs.

iii

iv Abstract

Preface

This dissertation evolved out of the efforts to evaluate bigraphical reac-
tive systems as a model of global ubiquitous computing [Wei93, Wei91,
CCK+05]; efforts undertaken by my colleagues in the Bigraphical Program-
ming Languages (BPL) group at the IT University of Copenhagen (ITU) and
I. Early on, in the spring of 2005, we realised that the concept of ubiquitous
computing was not at all well-defined. It was, however, clear that the notion
of location-awareness was important for the understanding of ubiquitous
computing and this concept was somewhat more tangible; a (mobile) device
can be “aware” of its location (or even its context in a broader sense) by re-
ceiving events from hardware sensors, which it uses to maintain a location
model – a data structure – of the last known locations of the devices of in-
terest. I set out to model location-aware systems using bigraphical reactive
systems during the spring of 2005 and discovered that modelling location-
aware systems using a single bigraphical reactive system was troublesome,
because implementing location queries of location-aware applications on
location models with reaction rules left me lacking certain control structures
of traditional programming.

To escape from this predicament my adviser Lars Birkedal had the
idea of lifting the level of abstraction by introducing the so-called ’Plato-
graphical models’, where three (concurrent) bigraphical reactive systems
are used in modelling location systems and their environment; a model of
the real world, a model of the model of the real world including a sensor
component, and a model of the application running on a mobile device
using the location information. This work was carried out in the summer
and early autumn of 2005. Separating concerns turned out to be very useful
in that the troublesome parts of the model could now be represented in a
more structured programming language, MiniML, and then translated into
a bigraphical reactive system by mapping terms to bigraphs and structural

v

vi Preface

operational semantics to reaction rules.
Having an idea of how to model even large systems, the BPL group

set out to develop a tool to rewrite bigraphs thus implementing bigraphical
reactive systems. Such a tool would enable us to experiment with the design
and behaviour of (ubiquitous) systems through simulation, which would
be a significant step toward our goal of evaluating Bigraphs as a model of
global ubiquitous computing – bridging theory and practice. With Arne
Glenstrup and Espen Højsgaard (and in the early phases also Troels C.
Damgaard and Martin Elsman) as driving forces a prototype of the tool was
released in 2007. Concurrently, I was working with my former co-adviser
Henning Niss on the ambitious implementation of a realistic location system
as a Plato-graphical model. Finally, in 2008, both the prototype of the BPL
tool (see http://www.itu.dk/research/pls/wiki/index.php/BPL_Tool)
and the model were ready for experimentation, and we were able to conduct
(simple) simulations.

During the winter of 2007/2008 I spent four months at the University
of Bologna completing my long-term term research stay abroad. Under
Davide Sangiorgi’s skillful guidance, I worked on a novel approach to type
systems for (process) calculi. The idea wss, roughly, to push the problem
of designing type systems and proving properties about them to the more
abstract level of Bigraphs, as Bigraphs had already been established as an
expressive meta-model for many process calculi. The main advantages
of this approach are: a meta-model can describe several concrete calculi,
therefore one can hope that a result for a meta-model can be transferred to all
of these calculi; understanding type systems at the level of meta-models can
help us to achieve a deeper understanding of the type systems themselves.
This line of work is also relevant for modelling and simulation efforts as
modelling with bigraphical reactive systems is somewhat like declarative
programming, and static typing is indeed helpful when programming. By
studying inductively defined type systems for Bigraphs one can directly
recover traditional type systems and their guarantees for process calculi,
and even obtain novel ones.

So, ultimo 2008, we have a bigraphical model of a symbolic location
model, a prototype tool for normalisation, matching, and simulation of
binding BRSs, and theories for typing and sorting to control models.

Papers
During my PhD studies I published four papers in peer-reviewed interna-
tional conferences and journals, and one position paper at a workshop.

vii

First, working in a different field of formal semantics I co-authored a
conference paper on compositional specification and automatic analysis of
commercial contracts, which was published at the 1st International Sympo-
sium on Leveraging Applications of Formal Methods (ISoLA’04) [AEH+04].
Second, I co-authored a superseding journal article that appeared in a spe-
cial issue on Leveraging Applications of Formal Methods in the Interna-
tional Journal on Software Tools for Technology Transfer (STTT) in 2006
[AEH+06]. I made a proportional contribution to both papers.

Third, I co-authored a paper on bigraphical models of context-aware
systems, which was published at FoSSaCS’06 [BDE+06].

Then, I co-authored a position paper on bigraphical programming lan-
guages for pervasive computing, which was published at the 1st Interna-
tional Workshop on Combining Theory and Systems Building in Pervasive
Computing (CTSB’06) [BBD+06], a Pervasive 2006 workshop.

Fourth, I co-authored a paper on inductive type systems for Bigraphs,
which was published at the 4th Symposium on Trustworthy Global Com-
puting (TGC’08) [EHS09].

The work on modelling and simulation of location-models is for the
most part documented in technical reports and has yet to be polished and
submitted for publication. The work on inductive type systems and their
relation with predicate sortings is in progress, we have no firm results at
this time of writing.

This dissertation subsumes and integrates the following papers, in order
of appearance:

[Els06] Ebbe Elsborg. Bigraphical Location Models. Technical Report 94,
IT University of Copenhagen, September 2006.

[BDE+06] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas Hildebrandt,
and Henning Niss. Bigraphical Models of Context-aware Systems.
In Luca Aceto and Anna Ingólfsdóttir, editors, Proceedings of the 9th
International Conference on Foundations of Software Science and Compu-
tation Structures (FoSSaCS’06), volume 3921 of Lecture Notes in Compu-
ter Science, pages 187-201. Springer-Verlag, 2006.

[BDE+05] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas Hildebrandt,
and Henning Niss. Bigraphical Models of Context-aware Systems.
Technical Report 74, IT University of Copenhagen, November 2005.

[EHS09] Ebbe Elsborg, Thomas Hildebrandt, and Davide Sangiorgi. Type
Systems for Bigraphs. In Christos Kaklamanis and Flemming Niel-

viii Preface

son, editors, Proceedings of the 4th International Symposium on Trust-
worthy Global Computing (TGC’08), Lecture Notes in Computer Science.
Springer-Verlag, 2009. To appear.

[EHS08] Ebbe Elsborg, Thomas Hildebrandt, and Davide Sangiorgi. Type
Systems for Bigraphs. Technical Report 110, IT University of Copen-
hagen, October 2008.

Chapters 2, 4, 5, 6, and 7 are slightly revised versions of the technical
report [Els06] – the first section of Chapter 8 too. Chapter 3 subsumes and
integrates [BDE+06] and [BDE+05]. Chapter 10 subsumes and integrates
[EHS09] and [EHS08].

The following papers are omitted from this dissertation:

[AEH+04] Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue Si-
monsen, and Christian Stefansen. Compositional Specification of
Commercial Contracts. Preliminary Proceedings of the 1st Internatio-
nal Symposium on Leveraging Applications of Formal Methods (ISoLA’04),
pages 103-110. University of Cyprus Report TR-2004-6, 2004.

[AEH+06] Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue Si-
monsen, and Christian Stefansen. Compositional Specification of
Commercial Contracts. International Journal on Software Tools for Tech-
nology Transfer (STTT), 8(6):485-516, November 2006. Special Section
on Leveraging Applications of Formal Methods.

[BBD+06] Mikkel Bundgaard, Lars Birkedal, Søren Debois, Ebbe Elsborg,
Arne J. Glenstrup, Thomas Hildebrandt, Troels C. Damgaard, Robin
Milner, and Henning Niss. Bigraphical Programming Languages for
Pervasive Computing. In Thomas Strang, Vinny Cahill, and Aaron
Quigley, editors, Pervasive 2006 Workshop Proceedings – The 1st Interna-
tional Workshop on Combining Theory and Systems Building in Pervasive
Computing (CTSB’06), pages 653-658, 2006.

The first two are omitted because they fall within a different line or field
of research; they are about formal semantics but have nothing to do with
Bigraphs. The third paper omitted is a position paper.

The above mentioned works do not represent the totality of my work as
a PhD student. To fulfill the requirements for the degree of doctor of philo-
sophy I also undertook significant teaching responsibilities (approximately
500 hours of lecturing, project/thesis supervision, and exercise lessons), at-
tended courses, seminars, summer schools, and conferences, gave talks,
and peer-reviewed papers and articles.

ix

This dissertation was successfully defended on 16 March 2009 in front
of 1) an evaluation committee consisting of two external examinators —
Marino Miculan of the University of Udine and Arne Skou of the University
of Aalborg — with Jens Chr. Godskesen from the ITU as chairman, and
2) the faculty of the ITU, in partial fulfillment of the requirements for the
degree of doctor of philosophy (PhD or ph.d.).

Acknowledgments
First and foremost I wish to thank my lovely wife Dagmar and our precious
daughter Isabella for being the lights of my life. I also wish to thank my
parents Vibeke and Erik for being there for me always, and my aunt Birgitte
and uncle Kim for their moral support and for inviting us to dinner so often.

I would also like to thank the members of the BPL group at the ITU for
constituting a stimulating research environment, and the following people
in particular: Mikkel N. Bundgaard for being an outstanding office mate
and for answering many of my questions; Søren Debois for enlightening
discussions — primarily about Bigraphs — his unique sense of humour,
and for being helpfully LATEX savvy; Troels C. Damgaard for conversations
about Bigraphs and life at large; my adviser Lars Birkedal for sound advice
and ample patience during my PhD education; my former co-adviser Hen-
ning Niss for working with me and for his encouragement; and Thomas
Hildebrandt for his inherent friendliness and our research collaborations.

I was delighted and thankful to spend four months — during the autumn
and winter of 2007/2008 in Bologna — working with Davide Sangiorgi, who
was a highly amiable host and collaborator. I also thank Davide’s PhD
student Jorge Andrés Pérez Parra for being so hospitable.

Happy thoughts go to my friends Jakob Lemvig, Jesper Sandvig Marie-
gaard, Jakob Grue Simonsen, and Philip Bille who through social interaction
motivated me to complete my PhD degree.

Finally, I would like to thank the members of my evaluation committee
Marino Miculan, Arne Skou, and Jens Chr. Godskesen for useful comments
on the dissertation and a good experience during my defence.

The work in this dissertation was funded in part by the Danish Research
Agency (grant no.: 2059-03-0031) and the IT University of Copenhagen (the
LaCoMoCo/BPL project).

x Preface

Contents

Abstract page iii
Preface v
Contents xi

I Preliminaries 1
1 Introduction 3

1.1 Global ubiquitous computing 3
1.2 Theory versus engineering 6
1.3 Bigraphs 9
1.4 A model for global ubiquitous computing 16
1.5 A meta-model for type systems 20
1.6 A model for stating and proving properties of systems 22
1.7 Summary 22

II Modelling and Simulation 25
2 Location Models 29

2.1 Introduction 29
2.2 Relationships, queries, and requirements 32
2.3 Classification of location models 36
2.4 A model of a reflective building 41
2.5 Concluding remarks 42

3 Bigraphical Models of Context-aware Systems 43
3.1 Introduction 44
3.2 Bigraphs and bigraphical reactive systems 45
3.3 Naive models of location-aware systems 48

xi

xii Contents

3.4 Plato-graphical models of context-aware systems 50
3.5 Examples 53
3.6 Discussion 57
3.7 Conclusion and future work 59
3.8 Acknowledgments 60
3.A Encoding of “find all devices” 60
3.B Native queries 62
3.C Rigid control-sortings and RPOs 68

4 Encoding MiniML with References in Bigraphs 73
4.1 Purpose 73
4.2 Non-interference of closed links 74
4.3 Encoding references via closed links 77
4.4 Dynamic correspondence 91
4.5 Discussion 92

5 A Real-life Location Model 95
5.1 A reflective building 95
5.2 The model 96
5.3 Concluding remarks 120

6 Simulation of Location-aware Systems 123
6.1 An abstract location model 124
6.2 A pedagogical scenario 127
6.3 Simulation with the BPL tool 131
6.4 Case study: a tour guide 139

7 Related Work 141
7.1 Modelling 141
7.2 Context UNITY 143
7.3 Contextual Reactive Systems (CRSs) 149
7.4 A calculus for context-awareness (CAC) 153
7.5 A formal model for context-awareness (CONAWA) 156
7.6 Other approaches 159
7.7 Concluding remarks 160
7.8 Simulation 161

8 Future Work in Modelling and Simulation 163
8.1 Modelling 163
8.2 Simulation 169

9 Summary of Modelling and Simulation 171

xiii

III Type Systems 173
10 Type Systems for Bigraphs 177

10.1 Introduction 178
10.2 Bigraphs 181
10.3 A bigraphical i/o-type system 187
10.4 Conclusion 194
10.A Full proofs 196

11 On Type Systems and Sortings for Bigraphs 215
11.1 Introduction to sortings 215
11.2 Inductive sortings 218
11.3 Summary 221

IV Conclusion 223
12 Summary 225
13 Future work 229
Appendix 231

A.1 Background Bigraph definitions 231
A.2 Code 239
A.3 π-calculus 276

Bibliography 279

xiv Contents

Part I

Preliminaries

1

1
Introduction

This dissertation is a contribution in meeting the UK Grand Challenge of
Global Ubiquitous Computing. We study Bigraphs [JM04, Mil06a, Mil05a,
JM03]: their theory and applications. We do so by initiating an evaluation
of the theory of Bigraphs1 as a model and simulation environment for
global ubiquitous computing, and by exhibiting how one may inductively
give static type systems for Bigraphs to better control the structure and
behaviour of models.

Here is a brief outline of this introduction. First, we discuss the mo-
tivation, characteristics, and challenges of global ubiquitous computing.
Second, we consider the gauge between theory and engineering (practice)
that needs bridging. Then, having set the scene, we introduce Bigraphs as
a theory within the field of concurrency and as a possible model for ubiqui-
tous computing. Having the framework in place, we give the reader a teaser
on how one can derive inductive type systems for process calculi using the
fact that Bigraphs is a meta-model. Finally, we discuss how sorting can be
used to control models and refine derived labelled transtition systems. All
in all, the introduction aims at establishing motivation, setting the scene,
and hinting at how our developments in this dissertation fit in.

1.1 Global ubiquitous computing
Ubiquitous computing (ubicomp) was envisioned by Mark Weiser [Wei93,
Wei91] to be the third wave of computing (after mainframes, and then
personal computers), in which each person has many computers, receding
into the background, at his or her disposal. Ubiquitous computers will be

1We often write simply ’Bigraphs’ instead of ’the theory of Bigraphs’. This term encom-
passes bigraphical reactive systems. Moreover, the term ’bigraph’ refers to morphisms of a
particular s-category.

3

4 1. Introduction

able to interact and form ubiquitous computing systems, their aggregation
being the Global Ubiquitous Computer.

Global ubiquitous computing (GUC) is one of the UK Grand Challenges
of Computing Research2. The work in this dissertation falls within one
such grand challenge, namely ’Ubiquitous Computing: Experience, Design
and Science’3 [KMS04, CCK+05]. These challenges propose to unite efforts
of researchers to meet challenges that are envisioned to become essential
in theory and practice within the upcoming decade. Often, theory trails
practice and thus rarely has important impact on how problems are solved
in practice. With regard to computers and computing systems this is emer-
ging a huge problem because these are becoming increasingly complex –
too complex for humans to completely understand in their whole.

1.1.1 Concurrency, distributivity, and mobility
Three factors that render contemporary computing systems particularly
complicated are concurrency, distributivity, and mobility, aspects that are
being studied both in theory and practice currently and have been so for a
few decades. Concurrency is the branch of computer science that deals with
concurrently executing programs or processes that may interact at any time,
and it is this non-sequentiality that makes them powerful and complicated.
Distributivity introduces interconnected locations where computation can
take place, but these connections may fail at any time, introducing the
need for complicated link failure protocols in computer networks. Mobility
denotes the scenario where interconnected computing devices have a loca-
tion, often in physical space, and where they can change location during
computation, either objectively or subjectively, thus altering the network
topology. All of these three, say, paradigms, introduce possibilities on their
own and thus also complexity into systems that was not there in the times of
sequential computing. Moreover, these paradigms may even be combined,
yielding quite unwieldy systems.

1.1.2 Pervasive computing
These are the challenges that we face, but computing systems are envisio-
ned to become ubiquitous or pervasive over the next decade or two [CCK+05].
This means that a burgeoning population of ubiquitous computers — some
invisible to the naked eye — will be everywhere around us embedded in the

2http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/
3http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/index.html

1.1. Global ubiquitous computing 5

fabric of our homes, work places, the public space, and even in our bodies.
These computers may: interact with us and with each other to cooperate in
solving tasks – sometimes even seamlessly; be very small and exist in dizz-
ying numbers forming large complex computing systems, which demands
scalability of design; be globally connected forming a truly large-scale sys-
tem; and be “aware” of their context (physical or computational) or perhaps
even “self-aware” thus exhibiting introspective behaviour. Imaginable is
also for them to become self-organising and self-repairing. These ubiqui-
tous computers will be “everywhere” doing “everything” so they should
evidently be trustworthy. Hence, it is critical that we understand ubiqui-
tous computers and their interaction properly before they become a reality.
These, perhaps, dizzying possibilities of “tomorrow’s” computing systems
put high demands on their foundations indeed.

In this context, the term ’structure’ refers to the ways entities interact
and move among each other, as captured by structural theories of proces-
ses. In [CCK+05], the authors envision that no later than the year 2010
will we have a calculus or logic, which allows us to model systems such
as a location-aware building. It is to be expected that models of real-life
systems will need to capture not only time as a continuous variable, but also
continuous space; according to [CCK+05] one approach is to use hybrid au-
tomata (modelling/representing both time and continuous space) governed
by differential equations. Also, stochastic or probabilistic information will
likely be needed to, e.g., faithfully model and simulate device movement
in a sentient building, because sensors are not perfect. The sensor system
usually approximates the location of devices by sampling measures from
different (close by) sensors.

1.1.3 Computing in space

As if the previously described challenges were not enough, it furthermore
makes perfect sense to consider both physical and virtual space, as argued
in [Mil02]. “Computing in space” is about communication across space and
actually considers the global computer as both a physical and a virtual en-
tity. The term infodynamics is used to describe the fact that physical devices
move in physical space but also in virtual space via their representations.
Infostatics is the term used to state that software superposes virtual space
upon physical space. The conclusion of [Mil02] is that joining the forces of
software engineering and software theory is necessary to achieve success
with the global computer.

6 1. Introduction

1.1.4 Theory-driven development
Mathematical analysis of complex systems such as UCSs should be driven
by experimental research because it seems impossible to foresee all the po-
tential problems of this new computing paradigm. Real systems should
be modelled and analysed, and hopefully theory can impact the way engi-
neers build systems. A help in understanding UCSs could be a graphical
representation and reconfiguration of, e.g., network topology. We would
like to contribute here also by gradually formalising and reasoning about
increasingly realistic systems; a first step is taken in this report. One could
also imagine a family, or tower [Mil09, Mil06b], of models with consistency
requirements between them, where each model aids in reasoning about a
certain level of a UCS.

1.1.5 Science, toolkits, and theories
The required science, toolkits, and theories for global computing do not
yet exist. Progress has been made, but we shall need much more suppor-
tive science to really influence engineering of the technologies and devices
ensuring sufficiently correct and trustworthy behaviour. By announcing a
challenge uniting researchers a decade or two ahead of the technological
advancement, we can hope to understand the vision well enough to be able
to influence how these systems are built when the technology is ready.

1.1.6 Goals
Essentially, the ideal goals of the Ubiquitous Computing grand challenge
are: to define a set of design principles for global ubiquitous computing,
and to develop science whose concepts, calculi, theories, and automated
tools allow predictive analysis of global ubiquitous computing.

1.2 Theory versus engineering
Theory and engineering should be a combined effort to realise the potential
of global ubiquitous computing [Mil02, Ter06]. This is a theoretical compu-
ter science dissertation so naturally our main interests lie within the theory
perspective, thus let us delve a little further into that. Some central con-
cerns that theories for ubiquitous computing must address are [CCK+05]:
Structure, interaction, context-awareness, self-reconfiguration, information
flow, and trustworthiness.

1.2. Theory versus engineering 7

1.2.1 Structure and interaction

Structure and interaction have been two prime notions of process calculi
over the last quarter-century. Three issues of particular importance have
been placing, linking, and mobility.

Placing

Let us first consider placing. One way to structure entities, or processes, has
been to use a hierarchy, e.g., a tree. A popular operator for concurrent cal-
culi has been parallel composition as used in, e.g., π-calculus [Mil99, SW01],
which gives rise to a flat process structure. Another popular process struc-
ture is an unordered tree as featured in the nesting of ambients in Mobile
Ambients [CG00], and also in Distributed π-calculus (Dpi) [Hen08] where
explicit locations holding processes are introduced to capture distributi-
vity in the setting of message-passing. Thus, structurally, Dpi combines
π-calculus and Mobile Ambients.

Linking

Linking describes the interconnection of computational nodes in a place
structure. Usually, such links represent communication channels as, e.g., in
π-calculus, where process interaction proceeds by passing messages over
channels (links) that can be either base values such as integers or even links.
Some process calculi allow process passing and are dubbed higher-order.

Mobility

The notion of mobility rests upon a notion of locality. Mobility then means
the movement of a process from one location to another. One way to
represent such movement is to define a process’ location as its set of links,
as in π-calculus. If links are passed over links, e.g. in π-calculus, then
mobility is obtained because a location of a process is defined as the set of
its links, and the reception of a new link will thus change the location.

Sometimes, the linking of a process defines its location, as in π-calculus,
but there are other options. A process’ location may define its linking, e.g.
in the case of location-based services. Moreover, we may even consider
placing and linking as two orthogonal structures. Thus, placing may affect
linking and vice versa. Mobility certainly affects placing, but may also affect
linking.

8 1. Introduction

1.2.2 Context-awareness
Context-aware computing is a scenario where entities (e.g. mobile devices)
are aware of their surrounding environment, i.e., adapt their behaviour
depending on the context at hand [SAW94], interpreting ’context’ to mean
the situation in which the computation takes place [DA00]. Context-aware
systems typically have a component that maintains a model of the current
context, and such components are known as context models [HIR02].

The prime example of context is physical location, i.e., a device adapts its
behaviour according to its perception of its physical location – a perception
that it may accumulate from hardware sensors or by a wireless signal from
a location system hardware infrastructure.

1.2.3 Information flow
As mentioned in [CCK+05] one can expect a merging of research on semi-
structured data and process models to handle that movement of data and
processes is becoming alike. With respect to information the need to query
distributed data will likely be paramount. An example of work in this area
is Reactive XML [HNO06, HNOW05], which is a bigraph-and-XML-based
approach. Recently, modelling and verification of protocols for communica-
tion in mobile ad hoc networks (MANETs) [God08, GHK08, God07, GG06,
God06, NH06, NH04] has become a lively research area, where issues of
trust and resource access challenge formal models.

1.2.4 Trustworthiness
In essence, a system is trustworthy if we can guarantee that its behaviour
lives up to some predefined specification. Such specifications, e.g. of
concurrent, mobile, or even ubiquitous computing systems, can be difficult
to make complete and error free. Moreover, it may be extremely hard to
verify that an actual implementation lives up to the specification. Often,
only an abstract or core part of a system can be proved trustworthy. We
need computers and (semi-)automated tools to aid us, because models are
becoming so extensive and complicated that a human can not comprehend
them entirely.

Model checking is an approximately 25 year old successful branch
[GV08] of research in computer science. A piece of software, the model
checker, takes as input a mathematical model of a real-world system and
a specification of desired properties, and as output it reports whether the
model fulfills the properties. Often, the search space of models becomes

1.3. Bigraphs 9

too large for a brute force approach and approximation techniques will
have to apply. Approximations can yield ’false negatives’, but never ’false
positives’. This means that a property may hold for a model even though
the model checker can not verify this, but it must never be the case that a
property is reported to hold when, in fact, it does not. Probabilistic mo-
del checking is a more fine-grained technique that allows guarantees that
are not 100 percent, and it is typically possible to dually relate guarantee
percentages with model size. The gain is feasibility. The loss is precision.

There are other techniques for establishing trustworthiness of a system,
but we do not discuss them here.

1.3 Bigraphs
Bigraphs is a theory, or model, in the field of concurrency theory. We study
concurrently executing computer programs by identifying their essential
characteristics and representing these as mathematical objects. The hope is
then that when deepening our understanding of these objects we will also
gain insights into the programs that can be represented by these objects.

In this section we will provide the reader with intuitions about Bigraphs,
and try not to bog down the reader with formal definitions. The formal
definitions are, of course, more precise, so we have included the most
important ones in Appendix A.1, for the interested reader to find. They
should not be necessary for this chapter, though, but later on things become
more technical.

1.3.1 Concurrency theory
In concurrency theory we are particularly interested in process calculi or
process algebra, where programs are represented by terms/processes. We
study equivalences between processes in the hope of learning about equiva-
lences of programs. Interesting equivalences should at least be congruence
relations — placing equivalent processes into identical contexts should yield
equivalent processes — because that allows us to replace one process (pro-
gram) by another equivalent one as part of a larger process (program). In
other words, the equivalence should be contextual. In fact, process calculi
are usually compositional to allow such modularity.

The theory of Bigraphs is a meta-model aiming to encompass calculi for
concurrency and mobility. Bigraphs is in direct continuation of Reactive
Systems à la Milner and Leifer [LM00a], butr neither theory is an instance
of the other. Specifically, Bigraphs is a graphical model of computation

10 1. Introduction

in which both locality and connectivity are prominent. Seen as a model
of these two important aspects of global computing Bigraphs takes up
the challenge to base all distributed computation on a graphical structure,
recognising the inherent topological nature of global computing. It was
tailored directly to comprise two of the most fundamental and important
process calculi; π-calculus and Mobile Ambients.

1.3.2 Reactions and transitions

In concurrency theory the dynamics of processes is often presented by
means of reductions (rewriting rules) of the form

a −→ a′

where a and a′ are agents (process terms). In process calculi we often refine
this reduction relation into a labelled transition relation of form

a l−→ a′

where l expresses the interaction between agent a and its environment or
context. Labelled transition systems (LTSs) conveniently support the defi-
nition of behavioural preorders and equivalences, such as traces, failures,
and bisimilarity. LTSs are usually compositional but can be quite compli-
cated – a typical example is the notorious difficulty of establishing that
bisimulation equivalence on processes is a congruence relation. Reduction
systems on the other hand define the meaning of a term to be its possible in-
ternal actions. An advantage is simplicity. A disadvantage is that they may
not be informative enough, because they state nothing about the possible
interactions between a process and its environment.

Extending a reduction semantics to an LTS is often achieved in an ad
hoc manner for every calculus. Bigraphs offers to uniformly derive labels
from a given set of reaction rules, automatically. Given a source calculus
by a set of terms and a reduction semantics, one represents the terms by
bigraphs and the reduction semantics by bigraphical reaction rules, and then
one automatically derives an LTS on which there by construction exists a
congruential behavioural equivalence, which respects contexts and ignores
insignificant structural differences.

In this section we will gently introduce the reader to the world of Bi-
graphs. Then, we will take a closer look at the main aims of this theory.

1.3. Bigraphs 11

1.3.3 Bigraphs for theory and applications
There are requirements on Bigraphs from applications and theory. With
respect to applications, the long-term aim of Bigraphs is to provide a model
of computation on a global scale, such as the Internet [JM04]. Not only
should Bigraphs be a mathematical model describing existing systems, but
should preferably also guide the specification, design, and programming
of future such systems.

Moreover, Bigraphs should be general enough to provide for both high-
level and low-level descriptions of systems, and we want to be able to
describe how the low-level model realises the high-level model.

Finally, the theory should encompass existing theories or formalisms for
concucrrency and mobility.

1.3.4 A bigraph is a graph
Bigraphs is based directly on the important and well-studied mathematical
objects known as graphs. This merits a nice graphical or visual representa-
tion of bigraphs, which is indeed useful when modelling spatial systems.
There also exists a complete algebraic theory [Mil05a, DB06] for (Pure and
Binding) Bigraphs.

A bigraph is a graph. Actually, it consists of two graphs, namely a
place graph describing the locality and nesting of computational nodes, and
a link graph describing the inter-connectivity of said nodes. These two
structures are overlayed, as they share the node set, to form a bigraph.
The nesting is non-cyclic and the links are hyperlinks, i.e., a link may
connect more than two nodes. In fact, the place graph is a forest of trees
each defining a region, where nesting is represented by the parent-child
relationship between nodes.

Such a bigraph can, e.g., represent a process or a physical location. Each
node has a control associated with it that determines its type or kind. Each
control has a fixed number of ports that may link it to names. If two ports
link to the same name then they are linked together. Such a link can be
private, i.e., invisible to the context, if it is closed (by “putting on top of it”
a particular bigraph).

Because bigraphs are contexts they not only have names in the outer
interface (that the context sees), they also have names in their inner interface
(that parameters see).

The place graph is a forest of trees so a bigraph can be wide. It may
occupy more than one hole (or site) in another bigraph, in which case it has
an outer width greater than one. Bigraphs are multi-hole contexts.

12 1. Introduction

1.3.5 Reaction rules

Bigraphs consist of nodes and links representing, e.g., interconnected com-
putational entities such as processes. Naturally, we wish to be able to
describe dynamic systems so a structured way of rewriting one bigraph to
another is included; reaction rules. They rewrite ground bigraphs (or agents),
i.e., bigraphs which are terms as opposed to contexts, to ground bigraphs.
Reaction rules are parametric meaning that they are specified over contexts
(bigraphs with holes). Roughly, a reaction rule is a pair of contexts4; a
left-hand side (redex) and a right-hand side (reactum).

Without going into detail, for an agent b to be rewritten by a reaction
rule (R,R′) one must find a context C and some parameters p, p′ such that
the rule matches the agent b = C ◦R ◦ p; we omit some details for now. The
result of the reaction is b′ = C ◦ R′ ◦ p′. (p and p′ are related.) So, reaction
rules are roughly pairs of bigraphs. Matching of bigraphs with reaction
rules has been studied to some extent in recent works [BDGM06, Dam08],
as it is at the core of the BPL tool.

Reaction rules can be wide, they are so if the redex (and then also
reactum) are. In fact, the redex and reactum must have the same outer
width (and names).

1.3.6 Variations of Bigraphs

There exist several different variations of Bigraphs. Most notably, the Pure
Bigraphs where locality and linking are orthogonal structures, i.e., “where
you are does not affect who you can talk to”. One can add lexical scopes on
links in Binding Bigraphs, which then locates some names at nodes. This is
useful for encoding calculi such as π-calculus and λ-calculus in Bigraphs,
as these calculi use name binders heavily. It is also practical for modelling.
There is a third main variant, which is known as Local Bigraphs. Local
Bigraphs remind us of Binding Bigraphs, but in Local Bigraphs all names
are located at regions or sites, as opposed to pure Bigraphs where all names
are global (none are located). Furthermore, a name may reside at several
locations, as opposed to binding Bigraphs, where local names are unique.
This difference is important for modelling, and also has some technical
implications. For modelling it turns out that this multiple locality gives us
an additional control structure when programming with Bigraphs in that
it in some cases allows us to use a wide reaction rule instead of a whole

4And an instantiation. More on this later.

1.3. Bigraphs 13

collection of non-wide rules. This may prove significant with respect to
scalability of models. We will touch upon this further in Chapter 4.

A variant of Bigraphs where edges (closed links) are also assigned con-
trols has been proposed by Bundgaard and Sassone in [BS06] to naturally
capture the type of new channels – channels created by the ν operator – in
typing derivations of π-calculus processes in a bigraphical model.

In a note, Milner has suggested to loosen binding Bigraphs to allow
’outward’ binding, i.e., to allow a binding port on a node to exercise lexical
scope over a sibling nodes’ names. It is argued that this is desired for
modelling in reflective buildings, see also Chapter 5.

Another strand of research is that of Directed Bigraphs by Grohmann
and Miculan [GM08b, GM08a, GM07b, GM07a]. They generalise link
graphs to be directed meaning that links are uni-directional. With this
change the Fusion calculus has a bigraphical model [GM07b, GM08a]. La-
tely, direction on ports (negative ports) has been introduced to govern the
access to resources [GM08b], with the understanding that “resource request
flow” inside link graphs goes from controls to edges (through names).

Finally, Stochastic Bigraphs [KMT08] have been developed to enhance
the applicability of Bigraphs, in this case to computational, molecular bio-
logy. The expressiveness of the framework has been demonstrated through
an example of membrane budding in a biological system. Another use of
stochastic information is for dealing with quantitative aspects of ubicomp
such as quality of service (QoS). The paper presents a stochastic semantics
for BRSs; a reduction and a labelled stochastic semantics for Bigraphs are
defined, and it is proved that the two semantics are consistent with each
other. Support of stochastic phenomena is certainly important for future
work on modelling of real-life systems, as discussed in Chapters 5 and 8.

1.3.7 Bigraphs and category theory
A bigraph is also a morphism in a particular kind of category, an s-category
[Mil06a]. (For connoisseurs: an s-category is roughly a strict, symmetric
monoidal pre-category with a finite set of node identifiers (the support) for
each morphism. A pre-category is roughly a category where composition
of morphisms with overlapping support is undefined. Formal definitions
are in Appendix A.1.) The objects of s-categories are called interfaces, they
determine which bigraphs may be composed vertically (one on top of the
other) by categorical composition. S-categories possess tensor products
allowing bigraphs to be composed horizontally, i.e., juxtaposed (put next
to each other). Choosing the morphisms as representatives for bigraphs, as

14 1. Introduction

opposed to the objects, has the advantage that a natural way of composing
smaller bigraphs into larger ones appears, namely by categorical compo-
sition (and tensor product). The last thing that we need to know about
these s-categories, for reading this dissertation, is that they have a notion of
support, which allows us to keep track of the identity of nodes.

Bigraphs, or more precisely, BRSs, are an instance of a more general (non-
graphical) categorical framework; Wide Reactive Systems (WRSs). Without
going into detail we point out that the Relative Pushout (RPO) theory of
Leifer and Milner is used to derive LTSs for WRSs, in a way that leads au-
tomatically to behavioural congruences. This is a main feature of Bigraphs;
to uniformly derive (a suitably minimal set of) labels from a given set of
reaction rules.

Sassone and Sobociński [SS03] generalise s-categories to G-categories
(a variant of 2-categories). Then, they build G-reactive systems (GRSs)
with G-RPOs on these [SS05b], achieving that bisimilarity on the derived
transitions is congruential. Moreover, they prove that any reactive system
on an s-category can be encoded faithfully in a GRS, preserving induced
transitions [SS05a, SS03]. Alas, there is an inherent difference between BRSs
and GRSs; BRSs are naturally modelled as output-linear cospans, but only
input-linear cospan bi-categories over adhesive categories [LS05] have G-
RPOs for sure [SS05b]. Thus, BRSs are not merely an instance of GRSs.
Grohmann and Miculan’s work on Directed Bigraphs aims to generalise
both kinds of bigraphs with an RPO construction subsuming both Jensen-
Milner’s and Sassone-Sobocińki’s constructions [GM07a].

1.3.8 Aims of Bigraphs
Robin Milner and collaborators have developed Bigraphs with two princi-
pal aims (1) and (2) below, but we intersperse a third and a fourth one, (3)
and (4) below.

1. A meta-model for (process) calculi deriving labelled transition sys-
tems with congruential behavioural equivalences.

2. A model for ubicomp.

3. A meta-model for (process) calculi deriving type systems.

4. A theory for stating and proving spatial and temporal properties of
systems represented as BRSs using spatial-temporal logics, like the
spatial logic BiLog [CMS05].

1.3. Bigraphs 15

In this subsection we consider the first, traditional aim. Then, in the three
following sections, 1.4, 1.5, and 1.6, we consider aims (2), (3), and (4),
respectively.

1.3.9 Bigraphs as a meta-model
Bigraphs may be viewed as a unifying meta-model of calculi for concu-
rrency and mobility, because Bigraphs can be instantiated both with respect
to terms and semantics to encompass many concrete calculi. That is the
challenge of process theory. The space of possible calculi is daunting; beha-
vioural specification and equivalence, and different notions of locality are
widely varying across calculi for mobility. And as the systems increase in
complexity, e.g., considering the domain of web services, then the primiti-
ves of the calculi become manifold, complicated, and intrinsically different
from each other. Bigraphs was developed to naturally extend two im-
portant, say, core classes of process calculi, namely π-calculus and Mobile
Ambients.

Encoding calculi

The idea is that Bigraphs can model a whole class of calculi for mobility
and concurrency so one may hope that results for Bigraphs can somehow
be transferred to the calculi that have bigraphical models. This branch of
research has investigated Bigraphs as a meta-model of calculi for concu-
rrency and mobility by representing concrete calculi, defined by terms and
a reduction semantics, as bigraphical reactive systems: Petri nets [Mil04b];
π-calculus [Jen07, JM04, JM03]; CCS [Mil06a]; Mobile Ambients [Jen07],
Homer [BH06]; λ-calculus [Mil04c, Mil05b]; and Fusion Calculus [GM07b].

Deriving labels

Some of the derived behavioural equivalences coincide with known ones for
the source calculi, however, others do not, as is discussed in the dissertations
of Høgh Jensen [Jen07] and Debois [Deb08]. This is a problem because it
is difficult to fix the bisimulation equivalence if it turns out not to be as
desired or expected. It could be in conflict with your real-world intuition,
e.g., if it distinguishes terms that in your intuition should be equal. Or, it
could simply be intrinsically different from the equivalence that you already
know and was trying to derive. For LTSs one can alter the labels to eliminate
unintended interactions between a process and its environment. Alas, for

16 1. Introduction

reactive systems, where the LTS is automatically derived, that option is
non-existent. There are two other options, though. One is to alter the
reaction semantics, but this would ruin their virtue of being simple enough
to be self-evidently correct. The other option is to alter the compositional
structure of terms and contexts, which is exactly the approach advocated in
the work on bigraphical sortings, see Section 1.5.

Expressivity

As mentioned in Bundgaard’s dissertation [Bun07], another aspect of Bi-
graphs as a meta-model is expressivity by encodings. Clearly, Bigraphs is
at least as expressive as the calculi that are encodable in Bigraphs. Moreo-
ver, because reaction rules can be defined freely, we expect that Bigraphs
is highly placed in expressiveness hierarchies. (For a discussion of espres-
siveness hierarchies and the criteria for building them, we recommend the
paper [Gor08] by Gorla.) One may even obtain a deeper understanding of
a calculus by considering its encoding or representation as a BRS.

In principle, Bigraphs could be used to compare calculi by encoding
them into Bigraphs. To compare two calculi with different terms and se-
mantics one would encode them into Bigraphs, e.g., using two different
BRSs, and then call on a notion of equivalence between BRSs to provide the
comparison. Alas, no such notion exists currently. We discuss this briefly
in Chapter 3.

Neither derivation of labelled transition systems nor the expressivity
aspect of Bigraphs is the main subject of this dissertation, however, so we
move on to the second aim, which is at the very centre of our investigations.

1.4 A model for global ubiquitous computing
Pervasively in this dissertation we study the modelling power of Bigraphs,
i.e., how suitable is the set of primitives for modelling real-world pheno-
mena such as ubiquitous computing systems.

It can be extremely hard to predict every possible behaviour of large
systems. This is a problem that computers can help us with, because they
can check possibilities fast, exhaustively, and systematically. Even in the
cases where a complete search is infeasible, computers can tell us something
new about systems by simulating models of them.

One gain of mathematical modelling of real-world phenomena is to
make concepts and relationships precise, and to allow rigorous reasoning
about them. Simulation can help predict the behaviour of large systems and

1.4. A model for global ubiquitous computing 17

it allows for experiments with the design of models/systems. To help us
control the behaviour of our models we may introduce (static) type systems,
just as one does for traditional programming languages.

The second aim of Bigraphs, mentioned above, is less tangible than the
first one. The reason is that ubicomp is still a vision, an idea, not an existing
computational paradigm with hardware and software already in place, nor
is it a well-defined (mathematical) object.

1.4.1 Narrowing the problem domain
To obtain a more tangible problem to attack we narrow the domain of in-
vestigation. An important facet of ubiquitous computing that has received
much attention in the research literature is context-awareness.

The most commonly exploited instance of context is physical location, as
witnessed by the literature and the context-aware systems and toolkits that
have been implemented [SLP04, BD05, Dom01, SC02]. Location-aware ap-
plications acquire information from sensors, which can happen in a uniform
way through a location model [BD05] that interprets sensor information to
maintain a model of the current locations (positions) of, e.g., mobile devices.
We delve into location models in Chapter 2. Location models are concrete
enough for us to study and they are an essential part of location-aware
systems.

1.4.2 Sentient computing
A foothill project ’Analysing Movement in a Sentient Environment’5, under
the GC in question, takes our train of thought of location-aware computing
to a concrete scenario. Sentient computing [ACH+01, Hop00] is about how
software applications can be made more responsive and useful by observing
the physical world and reacting to it. Sensors (hardware) collect context
(e.g. location) information of physical objects such as mobile devices and
even other (mobile) sensors. We use the words sentient and context-aware
interchangeably.

The foothill project aims to arrive at a conceptual framework in which to
express a variety of rules of motion and interconnection, allowing context-
aware systems to be programmed conveniently, simulated, and analysed
rigorously. We use the term ’system’ broadly to mean a group of indepen-
dent but interrelated elements comprising a unified whole. We will detail
this in Chapter 2.

5www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/Manifesto/fp-movement.html

18 1. Introduction

The framework could consist of a calculus and a derived programming
language along with a programming methodology so that the language may
be used and evaluated by people whose primary interest is in applications.
The ultimate goal of this foothill project is to unify theory and practice in
sentient computing. A step toward this goal could be to model and program
a sentient or “reflective” building, where sensors continually transmit data
to a monitor that maintains a data structure of the locations of physical
objects. A more advanced task could be to also model mobile virtual objects
such as mobile code moving from one software domain to another.

1.4.3 Our approach
Our strategy toward meeting the challenge posed by this foothill project is to
take an experimental approach by comprehensive modelling of a concrete,
realistic system.

First, in Chapter 2 we study the literature on location models to gain
understanding of the models we wish to model bigraphically.

Then, to test whether Bigraphs are suited for direct modelling of context-
aware systems we pick some queries on location-aware systems to model.
Such queries are concrete, and it is clear when a query has been implemented
faithfully. If we can successfully handle the important facet of (physical)
location in pervasive computing then we can reasonably hope to extend the
work and techniques to the more advanced setting with several facets.

We find that direct modelling of a whole location system in a single
BRS is inconvenient. There are two reasons for this. First, these queries
are difficult to implement by bigraphical reaction rules only. Operationally,
the queries involve inspection of the location model, which is essentially a
tree traversal. It turns out, perhaps surprisingly, that we lack control struc-
tures to implement such an apparently easy recursive procedure. Second,
modelling both the model and the queries on it in the same BRS results
in conceptual problems, because the location system consists of several
parts that evolve concurrently, and to some extent, independently. As an
example, we point out that an executing query will change the state of the
location model by use of auxiliary controls that manage the traversal of
the tree structure. This is unnatural. We return to both of these points in
Chapter 3.

To tackle these issues we develop a more advanced modelling method;
Plato-graphical models. The idea is to split the model into four parts; a
representation of the real world C, a sensor component S that observes C, a
location model part L which is the model’s representation of C that is main-

1.4. A model for global ubiquitous computing 19

tained by information on changes in C mediated by S, and an application
part A representing a location-aware application. S and L are encompassed
by a single BRS P; the ’proxy’. To test this setup we model a context-aware
printing example from the literature.

Further, we use our gained knowledge of location models to formulate
a representative one, and model it as a Plato-graphical model, in Chapter
5. In doing this, we define an encoding of a MiniML-like calculus into
Bigraphs, in Chapter 4, and analyse this encoding. Separating concerns in
Plato-graphical models allows us to express parts of the model in another
formalism than Bigraphs, if we can encode this formalism as a BRS. Concre-
tely, we represent the operationally more involved parts L and A in a (small)
functional language, MiniML, and then we translate these components into
BRSs.

Having a model is useful. The next step is to simulate evolution of this
model as this can help us experiment with the design of the system. A
goal is to uncover unforeseen and unwanted behaviour, which is a noto-
rious problem in concurrent systems, and in particular for large systems.
We begin this branch of research in Chapter 6, where we go through two
scenarios of an abstract version of the location system.

1.4.4 Modelling and simulation summary

Our point of origin is the theory of Bigraphs [JM04, Mil05a, JM03]. A
principal aim of BRSs is to model ubiquitous systems. In this dissertation
we begin evaluation of this aim. We find that:

1. It is awkward to model context-aware (location-aware) systems di-
rectly in Bigraphs.

2. This awkwardness can be alleviated by using Plato-graphical models.

3. Location models can be modelled as Plato-graphical models using a
bigraphical encoding of a MiniML-like calculus with references.

4. Bigraphical models, in this case a Plato-graphical model, can be simu-
lated using a prototype of the BPL tool, allowing for experimentation
with the design of models and to some extent systems.

The BPL tool is still under development in the BPL group, in particular by
Arne Glenstrup and Espen Højsgaard.

20 1. Introduction

1.5 A meta-model for type systems
This section outlines two approaches to types for Bigraphs; inductive type
systems and sortings.

1.5.1 Inductive type systems
Briefly, our idea is to design type systems for Bigraphs, prove properties
of them, and then transfer them along with their properties to encoda-
ble source calculi that display a tight dynamic correspondence with their
bigraphical models.

Obviously, the larger the class of encodable calculi is for a given BRS,
the more work can be saved or, said in another way, the more results we
obtain “for free”. Likewise, if many type systems can be defined on top of
the same BRS then we save more work.

In a little more detail, our idea is to define inductive type systems à la type
systems for π-calculi, but on the term language of Bigraphs, i.e., the com-
plete and sound term language generated from the small set of elementary
bigraphs and the two operations of tensor product and categorical compo-
sition. This is a novel idea. It is inherently different from that of bigraphical
sorting in that sortings functors are hardly ever inductively defined on the
structure of bigraphs [Deb08]. Possible advantages of developing (induc-
tive) bigraphical type systems include: a deeper understanding of a type
system itself and its properties; transfer of the type systems to the concrete
family of calculi that the BRS models; and the possibility of modularly
adapting the type systems to extensions of the BRS (with new controls).

1.5.2 Sorting
The idea of sorting or typing bigraphs is not new. Traditionally, sorting has
been the preferred term for typing names in process calculi. In Milner’s
book on the π-calculus [Mil99] a sort is assigned to every name to ensure
that when a process receives a name it uses it properly. To this end a sorting
is a partial function from a set Σ of sorts to Σ∗ (the set of all sorts over
Σ). Notice that sorting can be impossible for a given system, but if it is
constructable then it is preserved by structural congruence and reaction
(Prop. 11.5 of [Mil99]). Milner uses the term ’sort’ to classify names,
because he has reserved the term ’type’ to classify processes. We remark
that the notions of ’abstraction’ and ’concretion’ in Bigraphs also stem from
π-calculus notions, see [Mil91].

1.5. A meta-model for type systems 21

In the setting of Bigraphs, sorting is essentially a mechanism to outlaw
some unwanted bigraphs from the underlying s-category. Roughly, one
specifies a predicate that stipulates, in terms of nodes and links, which bi-
graphs we like. It is a mechanism for altering the compositional structure of
bigraphs, in such a way that also the altered category has sufficient structure
for bisimulation to be a congruence relation on the derived LTS. A sorting
merely restricts which bigraphs can go into which, and maybe outlaws cer-
tain bigraphs. It does not change the structure of the individual bigraph,
but it does enrich the interfaces (objects) of the bigraphs; a sort component
is added. Bigraphs with the same sorts in their otherwise common object
can be composed. We will see a non-trivial example of sorting in Chapter 3.

Traditionally, such predicates were in plain English [Mil06a]. Debois, in
his dissertation [Deb08], takes the functors that the predicates give rise to as
the very definition of sorting, thus paving the way for an elaborate formal
theory of these sorting functors. In both cases there are some restrictions on
sortings, which secure that the bigraphs that are cut out of the category are
none of those needed to construct RPOs, because if they were, the automatic
derivation of the LTS with congruential behavioural equivalences would
break down.

In works by Milner, Leifer, and Høgh Jensen, respectively, some suffi-
cient conditions for “safe sortings” have been established. The conditions
were not necessary though, one can find sortings that are “safe” without
them satisfying the conditions. In the work by Debois and collaborators the
predicates are required to be decomposable, which means that

P(f ◦ !) =⇒ P(f) & P(!)

for a predicate P and bigraphs f and !. In fact, given such a predicate their
technical machinery will generate a safe sorting for you, but the category
will have other objects than before, usually also more objects.

Bigraphs encompass both links à la π-calculus, but also nested nodes
à la Mobile Ambients. Thus, both sortings for links and nodes have been
proposed to aid bigraphical modelling efforts of such calculi. A prominent
link sorting is the one for modelling Petri Nets in Bigraphs [LM06]. Another
one implements subtyping on channels for a bigraphical model of polyadic
π-calculus [BS06]. Høgh Jensen uses several place sortings in his disserta-
tion [Jen07] to model increasingly complicated versions of π-calculus and
Mobile Ambients. For π-calculus a place sorting is used to model summa-
tion, whereas for Ambients a place sorting is used to represent the difference
between systems/networks and processes.

22 1. Introduction

With respect to modelling, sorting actually gives one another tool. It
enables the modeller to remove some unwanted bigraphs from the sys-
tem, which effectively corresponds to the inhibitors of Braione and Picco’s
Contextual Reactive Systems [BP04, Bra03] and, in some cases, also the ne-
gative application conditions of Algebraic Graph Transformation [EEPT06].
See Chapter 7.

In Part III we explore inductive type systems for Bigraphs and relate
this novel approach to the known approach of sorting. We find that even
though the two approaches are very different there is a way to recover
inductive type systems by formulating them as predicates and then using
the theory of Debois and collaborators to generate appropriate sortings. In
other words, we begin to bridge these two approaches in Chapter 11.

1.6 A model for stating and proving properties of systems
As will become evident, Bigraphs is a suitable formalism for modelling
mobile and concurrent systems. To verify that models are well-behaved we
may define a specification of the desired behaviour to check against. Such
a specification could be formulated using a spatial logic such as BiLog and
checked using a tool. One could construct a tool to work on the bigraphical
term language of the BPL project, or translate the term language into a
format on which the well-established model-checkers can work on, which
would have the advantage that model-checkers for many different calculi
exist; probabilistic, timed and so forth. Extending BiLog to handle binding
and temporal information seems like important steps in this direction.

1.7 Summary
This concludes the overview of ubicomp, Bigraphs, modelling, simulation,
and type systems and sortings. We have also touched upon some of the
developments that this dissertation holds, and on related work.

This dissertation consists of four parts, where Parts II and III are the
main ones. In Part II we treat modelling and simulation of context-aware
systems, whereas in Part III we study inductive type systems for Bigraphs
and their relation to sortings. Here is a brief outline of this dissertation.

• Part I: We introduced the UK Grand Challenge of Global Ubiquitous
Computing along with a sketch of our contributions in modelling
and simulation to meet this challenge. Furthermore, we provided
an introduction to Bigraphs and type systems/sortings as this is our

1.7. Summary 23

point of origin. The introduction was interspersed with literature
discussions.

• Part II: We survey the literature on location models and synthesise
it to pinpoint general characteristics of location-aware systems, in
Chapter 2. Upon that knowledge we develop Plato-graphical models
for modelling context-aware systems in Bigraphs, in Chapter 3. In
Chapter 4, we encode MiniML with references into Bigraphs and use
this to develop a Plato-graphical model of a general location-aware
system in Chapter 5. We “close the circle” by reporting on performed
simulation of this system, in Chapter 6. Then, we discuss related and
future work in Chapters 7 and 8, respectively. Finally, we summarise
very briefly in Chapter 9.

• Part III: We begin this part with the development of inductive type
systems for process calculi, in Chapter 10. As proof of concept we
present a model of a core π-calculus as a bigraphical reactive system,
develop an i/o-type system on elementary bigraph terms and their
operators, prove crucial properties of it, derive a type system for the
source calculus, and transfer these results back to the typed source
calculus. Then, in Chapter 11, we sketch work-in-progress on how
to develop inductive type systems for Bigraphs. In Chapter 11 we
study the relationship between bigraphical inductive type systems
and sortings.

• Part IV: We conclude and point out the most promising directions for
future work.

Dear reader, I hope that You will enjoy reading this dissertation.

24 1. Introduction

Part II

Modelling and Simulation

25

27

“That was to me the challenge: picking communicational pri-
mitives which could be understood in systems at a reasonably
high level as well as in the way these systems are implemen-
ted at a very low level...But still, the emphasis ought to be
on modelling what happens in real systems, whether they are
human-made systems like operating systems, or whether they
exist already...But as we move towards mobility, understanding
systems that move about globally, you need to commit yourself
to a richer set of semantic primitives. I think we are in a terri-
fic tension between (a) finding a small set of primitives and (b)
modelling the real world accurately.”

– Robin Milner, [Ber03]

“Do not quench your inspiration and your imagination; do not
become the slave of your model.”

– Vincent Van Gogh6

“...I want to extend the computer and information systems to
observe the real world and automatically modify the systems’
behaviour to suit the prevailing conditions. Such "sentient" com-
puting systems will play a key part in ensuring the sustainability
of our planet.”

– Andy Hopper7

“The problem of verifying was a problem of simulation or data
representation, and I realised how big a problem that was going
to be.

In fact, out of that I got interested in simulation, which I did a
bit of work on.”

– Robin Milner, [Ber03]

6Dutch artist, 1853-1890.
7http://www.cl.cam.ac.uk/Research/DTG/~ah12/aims-research.html

28

2
Location Models

2.1 Introduction
It is well agreed upon that location is an important context-parameter [Sch95,
Leo98], but not the only one [SBG99] in context-aware computing, and that
context-aware computing will become increasingly important in the years to
come. This chapter serves as general background knowledge for Chapter 3
on bigraphical models of context-aware systems, and as basis for modelling
a location model in Chapter 5.

2.1.1 Context-awareness
Location is the most important piece of context information. Therefore
we concentrate on this in our work. If we can capture location then it
should also be possible to extend our techniques to other facets of context-
awareness such as battery power, ligthing, noise, temperature, user beha-
viour, and virtual context information such as libraries and concurrently
running processes. We discuss the extension of our work from location-
awareness to context-awareness in Chapter 8.

2.1.2 Location systems
First, we need some terminology.

Located-objects

As mentioned earlier, there are (at least) two ways to think about location;
namely physical and virtual. In the present discussion we think of physical
location, i.e., the location of objects in the physical world. Typically, it is

29

30 2. Location Models

the location of real-world entities such as mobile devices (e.g. mobile pho-
nes) that is interesting for location-aware applications (which we explain
shortly). Following [Leo98, ST94] we use the term located-object to refer to a
mobile object whose physical location can be tracked.

The overall location system model

In this chapter we present a digest of the research literature on location
models. We say that a location model is constituted by (1) representations
of static and mobile real-world objects, (2) spatial relationships between
these objects, (3) a collection of rules that model object movement, and (4)
a collection of location information queries on the model.

Location models are essential parts of location systems (see [HB01] for a
survey on location systems) because they provide a uniform way for appli-
cations to obtain location information, which facilitates rapid development.
Before delving into location systems we need to address how information
about location is presented in different formats.

Geometric coordinates, as used by the Global Positioning System (GPS),
refer to a point or geometric figure in a multi-dimensional space.

Symbolic coordinates are names and can refer to cell-IDs in cellular net-
works such as the Global System for Mobile communications (GSM) or Wi-
reless Local Area Networks (WLANs), or to radio frequency tags (RFIDs).
The distinction between these two coordinate types is fundamental and we
will return to it shortly. For now, please consider Figure 2.1, which depicts
the overall system model. We explain Figure 2.1 in a top-down fashion.

A location-aware application (see [Leo98] for examples) queries a location
model for location information. By location-aware we mean “the ability to
adapt behaviour to the physical locations of users, resources, and processes”
[Leo98]. In some cases the application can update the location model; we
say that this is actuation. The different kinds of queries and actuators imply
demands on the internal structure and organisation of the location model.

The location model maintains a representation of the state of the physical
world by receiving events about updated position information on mobile
objects from a positioning system (see [HB01] for an overview of positioning
systems).

“A positioning system allows a mobile object or tracking system to issue
a position update with a coordinate identifying a location to the location
model.” [BD05]. In [Leo98] it is stated that a positioning system measures
the location of the querying located-object (e.g. vehicle navigation systems),
whereas a tracking system measures the location of other located-objects

2.1. Introduction 31

Location model

Application

Actuators

Positioning system

Physical world

Sensed information

Position updates

Queries

Figure 2.1: Overall location system model.

(e.g. the Active Badge system [WHFG92]). We do not wish to distinguish
between tracking and positioning because we need objects to enquire about
both their own and other objects’ locations. If different positioning systems
are in play then there is a need for sensor fusion, but that is out of the scope of
this dissertation so we refer to [HBB02] for a discussion of a layered model
for location in ubiquitous computing.

In the preceding explanation we have used the terms ’location’ and
’position’. Following [HB01] we distinguish between physical position and
symbolic location; a physical position is specified by a geometric coordinate,
whereas a symbolic location is specified by a symbolic coordinate. The
positioning system generates location information events on the basis of
what its (hardware) sensors sense in the physical world. The sensors track
the movement of located-objects, and the sensed information is delivered
to the location model – usually via events that, in real systems, are time-
stamped. The physical world is the world we live in, which is narrowed
according to the geographical location of interest, e.g., a sentient building
as in our case.

We sometimes wish to speak of a geographical point or area without
being specific as to whether we consider it from a geometric or symbolic
point of view. We overload the term “location” for this purpose, but usually
in this dissertation we speak of symbolic locations.

32 2. Location Models

Focus

We focus on a conceptual classification of the models. We do not discuss
specific location-aware applications, positioning systems or sensor techno-
logy any further, except for a few comments later on.

2.2 Relationships, queries, and requirements
As mentioned earlier, location-aware applications query a location model.
We intend to identify types of common queries, and mention which de-
mands they list for the underlying location model. This requires us to first
study coordinates and spatial relationships between locations. We do not
consider actuation in this chapter, but we do return to it briefly during this
dissertation and in Chapter 9. We proceed to explain location models and
their basis.

2.2.1 Basic properties of coordinates
We follow the definitions of [BD05]. A coordinate is an identifier specifying
the physical position of an object with respect to a given coordinate system,
or the symbolic location by a name (e.g. a cell-ID). A coordinate system is a
set of coordinates. As mentioned, there are essentially two different classes
of coordinates, namely geometric and symbolic. We discuss each class of
coordinates in turn.

Geometric coordinates

Geometric coordinates refer to a point or geometric figure in a multi-
dimensional space and can be global or local. Geometric coordinates natu-
rally support calculation of physical distance and containment relationships
between positions (which are described by one ore more coordinates), to
which we return shortly. Through calculation, geometric coordinates also
support the following operations: Area overlap, areas touching, and area
containment.

GPS is an example of a system using global geometric coordinates, where
coordinates are triples of longitude, latitude, and elevation above main sea
level. Many applications use GPS – e.g. navigation systems in cars. An
example of a system using local geometric coordinates is the Active Bat
system [ACH+01], which is a high-resolution indoor positioning system
providing three-dimensional coordinates with respect to a local Cartesian

2.2. Relationships, queries, and requirements 33

coordinate system. In other words the physical space is defined by a coordi-
nate system, positions are identified by coordinate tuples, and the location
model is geometric, i.e., identifies positions by geometric coordinates.

Symbolic coordinates

Symbolic coordinates are names that refer to locations, e.g. a room, a cell
ID, or an IR identifier of a sensor. A reason for having symbolic coordinates
is that they are “human-readable” – it is often more useful to know that
a person is in a particular cell (e.g. a room), than at some given (set of)
coordinate(s). Given only symbolic coordinates, it is not possible to cal-
culate distances via a distance function, but the distance and containment
relationships on locations (to be explained shortly) must be represented
explicitly in the location model. Nevertheless, a symbolic notion of near-
ness (or proximity) can be supported, i.e., a located-object is close to another
located-object or location. We return to this below.

The Active Badge system [WHFG92] provides symbolic identifiers (co-
ordinates) for locations via fixed IR sensors registering users’ badges that
transmit a unique identifier. In other words the location space is defined by
the placement of fixed sensors, a location is defined by the symbolic name
of the sensor, and the location model is symbolic. Another application
that uses symbolic coordinates is the Active Office system [WJH97] where
locations are denoted ’building’, ’floor’, ’room’ and so forth.

2.2.2 Relationships of locations and located-objects
In the literature five relationships pertaining to locations and located-
objects are emphasised as having practical importance; Contains (inclusion),
connected-to, near (proximity), range, and distance. These spatial relations-
hips between locations are relevant for queries and topologies of location
models. We briefly discuss each one in turn.

Contains Indicates whether a location is completely included in another.
This relation is supported naturally in models with a hierarchical location
structure such as trees and lattices. As mentioned, it can be calculated in
geometric models. As an example: A building can contain a room, but
hardly vice versa.

Connected-to Refers to some linking between locations. This relationship
is often captured by introducing a graph-based location structure, as it

34 2. Location Models

can not be calculated or derived. Examples: Two mobile devices can be
connected, e.g., via Bluetooth. Two rooms can be connected by a door.

Distance The distance relationship is defined on spatial objects and is usua-
lly expressed as a natural or real number. It can be calculated in geometric
models, but needs to be explicit in symbolic models. As an example: Two
mobile devices can be positioned ten meters from each other, but in different
rooms. This raises the question of how to calculate distance; by following
a path via the connected-to relationship, or as the Euclidean distance. We
return to this question in Chapter 5.

Near For a located-object l to be near another, a notion of distance function
is required. The near-relationship could contain the n located-objects closest
to the position of l. This relationship can be calculated in geometric models,
but must be explicitly represented in symbolic models. It can be seen as
a specialisation of the distance relationship. As an example: A user of a
mobile device may want to find the nearest printer.

Range The range relationship has the located-objects within a certain geo-
graphic area of the located-object in question. To support this query located-
object positions must be known and the contains relationship modelled, i.e.,
it has to be defined whether a coordinate lies within a spatial area. As an
example: The sending of messages to receivers in a certain geographic area,
e.g., a room on (contained in) the fourth floor (contained) in a building.

2.2.3 Queries

In [BD05] four different query types, which location models should support,
are identified. We present and explain them for future reference. When
explaining the queries we refer to the relationships.

Position queries: Determination of the position or location of a located-
object like a user’s mobile device, or a static object like a room. A
position is defined by local or global coordinates. It would, e.g., be
relevant with a local coordinate system for a moving train so that a
traveller can be located in a compartment instead of his or her position
on the ground [BD05]. To compare positions from local coordinate
systems, mappings to a common global coordinate system must be
defined.

2.2. Relationships, queries, and requirements 35

Nearest neighbour queries: A search for the located-object or location clo-
sest to a certain position, e.g., a printer. Besides known located-object
positions a distance function is needed to support this query. This
function should output the physical distance when supplied with
two coordinate tuples.

Navigation: Finding paths between locations. There is a need to model
the topological connected-to relationship, which describes intercon-
nections between neighbouring locations. This can, e.g., be used to
find the shortest or fastest path, or a path for a person in a wheel chair.
One could imagine adding weights to links for this purpose.

Range queries: Search for all located-objects within a certain geographic
area. This can, e.g., be used to send messages to receivers in a certain
geographic area as in Geocast protocols [DR03]. To this end, the model
needs to be able to determine the positions of the located-objects and
also the topological contains relationship, i.e., whether a coordinate
lies within a spatial area. Containment is supported implicitly for
geometric coordinates, but must be specified explicitly for symbolic
coordinates.

These are the query types we will consider supporting in our bigraphical
location model in Chapter 5. We should mention that [BD05] also has
a requirement stating that all information of the location model can be
visualised, but we do not consider that as a query as such.

2.2.4 Location model requirements

Having described these queries the following model requirements, not all
of which need to be fulfilled at the same time, are derived in [BD05]. The
requirements are on general-purpose models that wish to support all four
query types, and so a model for a specific purpose need not necessarily fulfill
these requirements to be of use. We believe that our preceding treatment
justifies these requirements without further comments.

Object positions: Need geometric and symbolic coordinates to support a
wide range of applications that have been implemented. Can do with
either geometric or symbolic in some cases. Multiple local and global
coordinate reference systems are desirable. This supports the position
queries.

36 2. Location Models

Distance function: Distances between spatial objects; Euclidean and de-
sirably over paths. This is required for the nearest neighbour and
geometric range queries. We argue that range can also be supported
by location containment and can thus make sense in symbolic models
also.

Topological relations: Contains and connected-to. These are needed to
support range and navigation queries, respectively.

Orientation: Horizontal and vertical orientation is required for some ap-
plications, e.g., to determine which situation a person is in.

According to [Leo98] co-location is another interesting relative relationship.
We consider this to be a range query where the range is exactly ones own
location.

[BD05] argues that minimal modelling effort should be considered when
constructing a location model, i.e., with respect to accuracy (creation and
updating of the model, dynamics), level of detail (granularity of locations),
and scope (the area covered; a building, a room, a country). We agree, and
return to this in Chapter 5.

2.3 Classification of location models
When classifying location models we need to have a clear terminology.
Unfortunately, there is no clear consensus in the research literature regar-
ding the terminology of location model types. We proceed by synthesising
the terminology of the literature. Some terms used are: Geometric, phy-
sical, symbolic, geographical, semantic, metric, topological, and Cartesian
[HB01, Rot03, Pra00, BS01, BD05, DRD+00, BZD02, CK00]. We believe that
these terms, in essence, cover two different types of location models; sym-
bolic and geometric. We group the terms as follows:

Symbolic includes geographical, semantic and topological.

Geometric includes physical, metric, and Cartesian.

Hybrid models are combinations of symbolic and geometric models.

We continue by giving explanations of geometric and symbolic location mo-
dels following [Leo98], along with brief justifications of our grouping. We
begin with the geometric models and continue with the symbolic models.

2.3. Classification of location models 37

2.3.1 Geometric location models
Geometric location models define the physical space by one or more mul-
tidimensional reference coordinate systems. Both positions and located-
objects are represented as points, areas, or volumes within these coordinate
systems. This supports calculation of the relationships distance (which
may not be accurate) and containment between positions, and therefore
also allows for calculation of area overlap, and whether areas touch. The
connected-to relationship is however not inherent. A geometric location
model is said to be unified if it has multiple coordinate systems, otherwise
simple. Often, uncertainty areas are used to capture the imprecision of sensors
(see e.g. [SBG99, HHS+02, HB01]) when positioning located-objects. Some
geometric systems use global coordinates, e.g., referring to the position
on the Earth’s surface like in GPS, while other systems (e.g. Active Bat
[ACH+01, HHS+02]) use local coordinates referring to a (smaller) Cartesian
coordinate system with another point of origin (which is typical for indoor
positioning systems). Geometric models use absolute positions, i.e., located-
objects and locations are positioned with reference to some common point
of origin (within each coordinate system), and not relative to each other.

Physical, metric, and Cartesian models

Physical, metric, and Cartesian denote exactly the same type of model as
geometric.

2.3.2 Symbolic location models
In symbolic location models locations and located-objects are referred to
by symbols or names such as “Room 4C.16” or “Linus Torvald’s laptop”.
Symbolic models use relative locations meaning that each located-object
has its own frame of reference because there are no underlying absolute
positions. Locations can be organised in different structures to support
different queries. We review three different approaches: Set-based models,
graph-based models, and hybrid models combining the two approaches.

Set-based models

Locations can be modelled (naturally) as sets of located-objects which are
represented by symbolic coordinates. A located-object is a member of a
location whenever it is physically within the associated area or volume.
Using sets, overlap of locations L1 and L2 is represented by set intersection

38 2. Location Models

L1∩L2 ! ∅, and thus also the containment relationship, if L1∩L2 = L1 then L2
contains L1. This supports range queries by subset construction. It should
also be possible to test for equivalence on locations. The support for queries
related to spatial distances is naturally limited, but a notion of qualitative
distance on symbolic coordinates can be modelled via set membership tests,
we refer to [BD05] for the details. We mention two example systems; Guide
[CDMF00] and Active Badge [WHFG92].

Cell models This is the most basic and flexible set-based model, and thus
named a simple symbolic model. In this model the location space is described
by cells so cells are the symbolic locations. A cell is a well-defined geograp-
hical area, e.g., a room. Cells can overlap, and need not cover the whole
space. This is realistic with respect to sensor systems. There is typically
no containment relationship in cell models. An example system is GPS,
where the cell’s area is a circle defined by the sighting coordinates and the
accuracy margins [Leo98].

Zone models A zone model is a cell model with exclusive membership, i.e.,
non-overlapping locations. In a cell model cells may overlap. These over-
laps are named zones. Each zone is part of one or more cells. Now, zones
are used as symbolic locations. Imposing the constraint that locations must
be non-overlapping yields an exclusive symbolic model. A single zone space
can accommodate an arbitrary number of cells, which is useful if several
sensor systems are in play. Since zones do not overlap, a located-object can
be in at most one zone at a time. As noted in [Leo98] the movements of
one located-object can be modelled by a single finite-state machine making
the zone space a natural framework for persistent tracking and movement
prediction. Imposing hierarchical locations via a partial order on a zone
model yields a location tree structure. An example is found in [HHS+02]
where a quadtree (a tree where all nodes have four children) is used. (Such
structures support multi-resolution and thus scalability of design.)

Domain models A domain model is a zone model where locations (zones)
have been partially ordered in a virtual hierarchy of domains. The aim is
to enable multi-resolution tracking. A zone is a member of at most one
domain. Domains are partially ordered, by the contains relationship, and
can overlap. Thus, it is now possible to relate some zones to ’building
B’, which is part of ’Campus S’ and also part of ’The computer science
department’, for example. If ’A’ is a member of ’B’ then it is also a member of
the ancestors of ’B’ in the domain ordering. Changes in domain membership

2.3. Classification of location models 39

should propagate through the model. Multi-resolution refers to the ability
to, e.g., say that a located-object is situated in room ’4C16” or in ’ITU’
(where ’4C16’ is a member of ’ITU’). See [DR03] for an example. If a
lattice is imposed as the ordering, then a simple notion of distance can
be expressed: Given three locations l1, l2, l3 we have that distance(l1, l2) <
distance(l1, l3) if sup({l1, l2}) < sup({l2, l3}) in the lattice. This may be a poor
metric, but hierarchical models do not readily represent interconnections
between locations.

Graph-based models

In the graph-based approach symbolic coordinates define the vertices V of
graph G = (V,E). An edge e ∈ E is added between to vertices if a direct
connection between those two vertices exists in the physical world. An
edge could be a door between two rooms (vertices). Edges can be weighted
(and oriented) to model distances. It is clear that this setup supports the
connected-to and distance relationships explicitly. It is therefore well-suited
for navigation and distance queries. The containment relationship is not
supported, but can be simulated by linking from a reference vertex to all
other vertices which are considered to be within a particular range. This is
not a general mechanism though. Furthermore, locations can not consist of
other locations. For examples, see “smart environments” [RLU94, OJDA01].

Combined graph- and set-based symbolic models

As seen, the set-based models support range queries well whereas the
graph-based models support distance and connected-to. We wish to com-
bine the two model types to obtain all the benefits. The set-based part
of this hybrid model is a set of symbolic coordinates. Locations are sets
of coordinates. Locations are connected by edges if a connection between
these locations exists in the physical world. For instance, two rooms can be
connected by a door, and two floors by a stairway. Edges can be weighted to
model distances. We can introduce more than one graph to represent views,
i.e., different aspects of the world such as physical and organisational. An
example is the Active Map system [Sch95].

Geographical, semantic, and topological models

Geographical models typically organise the location space hierarchically via
identifiers such as “City of Copenhagen”, “The IT University of Copenha-

40 2. Location Models

gen”, and “The C wing”.We consider these models to be a special case of
symbolic models where the symbols happen to carry geographical meaning,
and the location space is, e.g., organised as a tree.

We believe the term semantic location model was coined in [Pra00],
where places (semantic locations) are represented by URIs and can have at-
tributes indicating the nature or purpose, or even physical or geographical
information. In [Pra00] there are three types of location; physical (grid ba-
sed), geographical (hierarchical), and semantic (web like). Like in [Rot03],
we do not distinguish semantic and geographical location. We consider se-
mantic locations to be a special case of symbolic locations because web-like
structures can well be described using graphs to model location space in a
symbolic model. Topological [BS01] models are related to semantic models.
Organising semantic locations in a hierarchy supports the containment re-
lationship. Still, the combined model remains a special case of symbolic
models.

2.3.3 Hybrid location models
Hybrid location models are so called because they are combinations of the
two model types we have outlined above, namely symbolic and geome-
tric. Symbolic and geometric models are orthogonal and can therefore be
combined in numerous ways. Hybrid models aim to possess the advan-
tages of both types of models, i.e., basically to provide applications with
a high-level structured symbolic representation of locations while preser-
ving the accuracy of location information inherent in geometric coordinates.
This combination supports the queries we considered in Section 2.2. The
trade-off is a higher modelling effort.

In [BD05] it is suggested to add geometric information to a symbolic
model. This can be done either for each symbolic location, or for only some
of them. It is also possible to deduce symbolic locations from geometric
locations, and relative from absolute by the containment relation [HHS+02].
It is a matter of abstracting certain geometric data into meaningful symbolic
notions. Typically, a non-hybrid model will be geometric and absolute, or
symbolic and relative.

One example of a hybrid model is found in [JS02], where in a symbolic
tree model each node (location) has geometric information as an attribute,
and queries such as distance and containment are supported. Another
example is found in [Rot03], where a domain model is presented. This
hybrid model has mappings between local and global coordinates, and
also between geometric and symbolic locations. Local coordinates can be

2.4. A model of a reflective building 41

translated into global coordinates. Global geometric coordinates can then be
translated into global symbolic coordinates, which in turn can be translated
into global geometric areas. Such mappings are widely adopted in practise
according to [BD05].

2.3.4 Views

An idea found in several papers [BD05, BBR02, BS01, Rot03] is that of having
views, i.e., having multiple hierarchies, e.g., representing different views of
an organisation; the building, employee relationships, access control et
cetera. This thought also appears in theoretical work, see Chapter 7.

2.3.5 Location-aware systems

Several location-aware systems (or location systems) have been implemented
demonstrating the feasibility of using location information in practise while
challenging existing and developing new technology. By ’location system’
we mean a computer system that via hardware sensors can track the physical
location of objects (to be explained shortly), and is able to output this
information in some suitable format. See [HB01] for a survey of location
systems where they have been categorised according to their properties
geometric/symbolic and absolute/relative. Location systems as such are not
within the focus of this dissertation so we refrain from further discussion.

2.4 A model of a reflective building

We describe a reflective building as “one equipped with sensors, which
continually transmit data of the building’s occupancy to a monitor that
maintains a data structure which faithfully records the occupancy.”1. This
is a very loose description. We come a little closer to more tangible proper-
ties in [Hop00], where a sentient building is said to support containment,
proximity (near), and coordinate systems. Except for the coordinate sys-
tems it does seem that we can do with a very simple location model, e.g., a
symbolic tree model. This is the starting point for this dissertation. We do,
however, wish to model more realistic (complex) examples in our work so
coordinates should be considered. We will come back to this in Chapter 5.

1http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/Manifesto/fp-movement.html

42 2. Location Models

2.5 Concluding remarks
The reader should at this point have sufficient background knowledge to
be able to understand the next chapters. The most important points are:

• Location models facilitate efficient development of location-aware ap-
plications.

• To support a broad range of applications a location model should
support four query types (position, near, navigation, range), and thus
be a hybrid model (geometric and symbolic). Queries rely on certain
spatial relationships.

• A symbolic tree model is a good starting point for a reflective building.

We have studied and synthesised the literature on location models and
digested it for the reader. Much can and has been written about different
implementations of location-aware applications, but the details of those
works are outside the scope of this dissertation. Likewise for positioning
systems and sensor technologies underlying a location model. We focus on
mathematical modelling.

The subject of the next chapter is modelling of context-aware systems
in Bigraphs.

3
Bigraphical Models of Context-aware Systems

This chapter consists of a paper [BDE+06] published at the 9th International
Conference on Foundations of Software Science and Computation Structu-
res (FoSSaCS’06). It was a collaborative effort between Lars Birkedal, Søren
Debois, Thomas Hildebrandt, Henning Niss, and I. I made a proportional
contribution both in the research and writing phase, which is evidenced
by a co-author statement accompanying this dissertation. The paper has
been insignificantly altered to match the layout of this dissertation, and a
few additional lines of explanations have been admitted. Moreover, the
appendices from the accompanying technical report [BDE+05] have been
included.

43

44 3. Bigraphical Models of Context-aware Systems

Abstract

As part of ongoing work on evaluating Milner’s bigraphical
reactive systems, we investigate bigraphical models of context-
aware systems, a facet of ubiquitous computing. We find that nai-
vely encoding such systems in Bigraphs is somewhat awkward;
and we propose a more sophisticated modelling technique, in-
troducing Plato-graphical models, alleviating this awkwardness.
We argue that such models are useful for simulation and point
out that for reasoning about such bigraphical models, the bisimi-
larity inherent in bigraphical reactive systems is not enough in
itself; an equivalence between the bigraphical reactive systems
themselves is also needed.

3.1 Introduction
The theory of bigraphical reactive systems, due to Milner and co-workers, is
based on a graphical model of mobile computation that emphasises both
locality and connectivity [JM04, Mil04c, Mil06a]. A bigraph comprises a
place graph, representing locations of computational nodes, and a link
graph, representing interconnection of these nodes. We give dynamics
to Bigraphs by defining reaction rules that rewrite bigraphs to bigraphs;
roughly, a bigraphical reactive system (BRS) is a set of such rules. Based on
methods of the seminal [LM00a], any BRS has a labelled transition system,
the behavioural equivalence (bisimilarity) of which is a congruence.

There are two principal aims for the theory of bigraphical reactive sys-
tems: (1) to model ubiquitous systems [Wei93], capturing mobile locality
in the place graph and mobile connectivity in the link graph; and (2) to
be a meta-theory encompassing existing calculi for concurrency and mo-
bility. To date, the theory has been evaluated only with respect to the
second aim: We have bigraphical understanding of Petri nets [Mil04b],
π-calculus [Jen07, JM04, JM03], CCS [Mil06a], mobile ambients [Jen07],
HOMER [BH06], and λ-calculus [Mil04c, Mil05b].

The present paper initiates the evaluation of the first aim. We investigate
modelling of context-aware systems, a vital aspect of ubiquitous systems.
A context-aware application is an application that adapts its behaviour
depending on the context at hand [SAW94], interpreting “context” to mean
the situation in which the computation takes place [DA00]. The canonical
example of such a situation is the location of the device performing the
computation; systems sensitive to location are called location-aware. As an

3.2. Bigraphs and bigraphical reactive systems 45

example, a location-aware printing system could send a user’s print job
to a printer close by. (For notions of context different from location, refer
to [SBG99]; for large-scale practical examples, see [ACH+01].)

To observe changes in the context, context-aware systems typically in-
clude a separate context sensing component that maintains a model of the
current context. Such models are known as context models [HIR02] or, more
specifically, location models [BD05]. The above-mentioned location-aware
printing system would need to maintain a model of the context that sup-
ports finding the printer closest to a given device. Such models are informal.
There are only very few formal models of context-aware computing (refer
to [Hen04] for an overview). We point out Context Unity [RJP04]; in spirit,
our proposal is somewhat closer to process calculi than Context Unity is.
However, Bigraphs differ from traditional process calculi in that we get to
write our own reaction rules. In overall terms, our contribution is two-fold.

• We find, perhaps surprisingly, that naively modelling context-aware
systems as BRSs is somewhat awkward; and

• we propose a more sophisticated modelling technique, in which the
perceived and actual context are both explicitly represented as distinct
but overlapping BRSs. We call such models Plato-graphical.

The remainder of this paper is organised as follows. In Section 3.2, we
introduce Bigraphs and bigraphical reactive systems. In Section 3.3, we
discuss naive bigraphical models of location-aware systems. In Section 3.4,
we introduce our Plato-graphical models of context-aware systems. In
Section 3.5, we present two example models. In Section 3.6, we discuss.
Finally, in Section 3.7, we conclude and note future work.

3.2 Bigraphs and bigraphical reactive systems
We introduce Bigraphs by example (the reader can find the relevant formal
definitions of [JM04, Mil06a] in Appendix A.1. Readers acquainted with
Bigraphs may skip this section.

Here is a bigraph, A:

Office
Pc Pda Pda

Server

Secret

46 3. Bigraphical Models of Context-aware Systems

It has nodes (vertices), indicated by solid boxes. Each node has a control,
written in sans serif. Each control has a number of ports; ports can be linked
by edges, indicated by lines. Here, the controls secret and office have no
ports, all other controls have one port. Nodes can be nested, indicated by
containment. The two outermost dashed boxes indicate roots. Roots have
no controls; they serve solely to separate different nesting hierarchies.

The bigraph A ostensibly models two physically separate locations (be-
cause of the two roots). The first contains a server, which in turn contains
secret data; the second contains an office, which in turn contains a PC and
two PDAs. The server and the PC are connected, as are the PDAs.

Here is another bigraph, B:

Office
Pc Pda

1

Server

0

z

B resembles A, except that the content of server has been replaced with
a site −0, one of the pdas has been replaced by a site −1, and there is an
inner name z connected to the remaining pda. Using sites and names, we
can define composition of bigraphs. For that, here is yet another bigraph C:

PdaSecret

z

C has an outer name z. The bigraphs B and C compose to form A, i.e., A = B◦C.
Composition proceeds by plugging the roots of C into the sites of B (in
order), and fusing together the connections pda → z (in C) and z → pda
(in B) removing the name z in the process.

One cannot compose arbitrary bigraphs. For U ◦ V to be defined, U
must have exactly as many sites as V has roots, and the inner names of U
must be precisely the outer names of V. The sites and inner names are
collectively called the inner face; similarly, the roots and outer names are
called the outer face. A has inner face 〈0, ∅〉 (no holes, no inner names) and
outer face 〈2, ∅〉 (two roots, no outer names). We write A : 〈0, ∅〉 → 〈2, ∅〉.
Similarly, B : 〈2, {z}〉 → 〈2, ∅〉 and C : 〈0, ∅〉 → 〈2, {z}〉.

3.2. Bigraphs and bigraphical reactive systems 47

The graphical representation used above is handy for modelling, but
unwieldy for reasoning. Fortunately, Bigraphs have an associated term
language [DB05, Mil04a], which we use (albeit in a sugared form) in what
follows. The language is summarised in Table 3.1. Here are, in order of

Term Meaning
U ‖ V Concatenation (juxtaposition) of roots.
U | V Concatenation (juxtaposition) of children.

(Collect the children of U and V under one
root.)

U ◦ V Composition.
U(V) Nesting: U contains V.
K$x(U) Ion: Node with control K of arity |$x|, ports

connected to the outer names of vector $x.
The node contains U.

1 The barren (empty) root.
−i Site numbered i.
/x.U U with outer name x replaced by an edge.
x/y Connection from inner name y to outer

name x.

Table 3.1: Sugared term language for Bigraphs.

increasing complexity, term representations of the bigraphs A, B and C.

C = secret ‖ pdaz

A = /x./y.serverx(secret) ‖ office(pcx | pday | pday)
B = /x./y.serverx(−0) ‖ office(pcx | pday | −1) | y/z

Notice how, in B, edges are specified by first linking nodes to the same
name, then converting that name to an edge using the closure ‘/’.

We give dynamics to Bigraphs by defining reaction rules. Example:

Office

Pc
Pda

1

Server

0

z

!

Office

Pc
Pda

0 1

Server

0

z

48 3. Bigraphical Models of Context-aware Systems

/x.serverx(−0) ‖ office(pcx | pdaz | −1)
! /x.serverx(−0) ‖ office(pcx | pdaz(−0) | −1)

This rule might model that if a PC in some office is linked to a server, a
PDA in the same office may use the PC as a gateway to copy data from the
server. The rule matches the bigraph A above, taking secret to the site −0
and pday to the site −1, rewriting A to

A′ = /x./y.serverx(secret) ‖ office(pcx | pday(secret) | pday)

(We omit details on what it means to match connections; refer to one
of [JM04, Mil06a].)

It is occasionally convenient to limit the contexts in which a reaction
rule applies [BP04], i.e., we might want to limit the above example reaction
rule to apply only in the left wing of the building. To this end, Bigraphs
can be equipped with a sorting [Jen07, Mil06a, Mil04b]. A sorting consists
of a set of sorts (or types); all inner and outer faces are then enriched with
such a sort. Further, a sorting must stipulate some condition on bigraphs,
we then restrict our attention to the bigraphs that satisfy that condition,
thus outlawing some contexts. Obviously, removing contexts may ruin
the congruence property of the induced bisimilarity; [Jen07] and [Mil06a]
give different sufficient conditions for a sorting to preserve that congruence
property.

This concludes our informal overview of Bigraphs. Now, on to the
models.

3.3 Naive models of location-aware systems
In this section, we attempt to model location-aware systems naively in
Bigraphs. We will find the naive approach to be somewhat awkward. Due
to space constraints we do not discuss other forms of context.

We use the place and link graphs for describing locations and inter-
connections directly, and we use reaction rules to implement both reconfi-
guration of the context and queries on the context. The former is simply a
non-deterministic change in the context; the latter is a computation on the
context that does not change the context, except for producing an answer
to some question. In a location-aware system, a device moving would be
a reconfiguration, whereas computing the answer to the question “what
devices are currently at the location l” is a query.

We discuss the implementation of this query. (An implementation of a
“find all” query can be found in Section 3.A.) Incidentally, a query such

3.3. Naive models of location-aware systems 49

as “find nearest neighbour”, which conceptually is only slightly harder, is
significantly harder to implement. (Other examples plagued by essentially
the same difficulties can be found in [DD05].)

Consider the following bigraph l representing devices (e.g. PDAs) loca-
ted at locations (e.g. offices, meeting rooms) within a building.

/w./x./y./z.loc
(
loc
(
loc
(
loc (deviw) | loc

(
devix | deviy

)))
| loc() | loc (deviz)

)

Off-hand, finding all devices, say, beneath the root, looks straightforward:
We should simply recursively traverse the nesting tree. Unfortunately, such
traversal is quite complicated for the following reasons.

• The bigraphical reaction rules do not support recursion directly, so
we must encode a runtime stack by means of additional controls.

• Bigraphical reaction rules can be applied in any context, but when
implementing an operation such as the query we consider now, we
need more refined control over when rules can be applied; one may
achieve this more refined control by again using additional nodes
and controls, essentially implementing what corresponds to a pro-
gram counter. This still leaves great difficulty in handling concurrent
operations, though.

• As a special case of the previous item, it is particularly difficult to
express that a reaction rule is intended to apply only in case something
is not present in the context.

Summing up, the bigraphical rules that model physical action do not in
general provide the power to compute directly with a model of that action
(because of a lack of control structures). The slogan is “reconfiguring is
easy, querying is hard”.

In earlier work on evaluating Bigraphs as a meta-theory (aim (2) mentio-
ned in the Introduction), reaction rules were used to encode the operational
semantics of a calculus or programming language. However, above we
attempt to implement a query directly as reaction rules. This seemingly
innocuous difference will turn out to have major implications for reasoning
methods; more on this in Section 3.6.

We imagine that adding more flexibility to the reaction rules might make
it easier to program directly with Bigraphs. One possible attempt is to use
spatial logics for Bigraphs [CMS05] in combination with sorting, to get
control of the contexts in which a particular reaction rule applies.

50 3. Bigraphical Models of Context-aware Systems

In the following sections, we propose another way to model context-
aware systems in Bigraphs, where the reaction rules are not used to pro-
gram directly with, but instead they are used (1) to represent transitions
happening in the real world and (2) to encode operational semantics of
programming languages, within which one can then implement queries on
representations of the real world.

3.4 Plato-graphical models of context-aware systems
The naive model of the previous section shares an important characte-
ristic with recent proposals of formal models for context-aware compu-
tation [BP04, NGP05, RJP04] that comprise agents and contexts only: These
models take the agent’s ability to determine what is the present context as
given. We contend that for some systems, it is natural to model not only the
actual context but also the agent’s representation of the actual context. We
shall see that pursuing this idea will partially alleviate the awkwardness
seen in the previous section. We shall need some notation and definitions.

Notation 3.1. We write B = (K ,R) to indicate that B is a bigraphical reactive
system with controls K and rules R, and write f ∈ B to mean that f is a bigraph
of B.

Definition 3.2 (Independence). Let B = (K ,R) and B′ = (K ′,R′) be bigraphi-
cal reactive systems. Say that B and B′ are independent and write B ⊥ B′ iff K
andK ′ are disjoint.

Definition 3.3 (Composite bigraphical reactive systems). Let B = (K ,R) and
B′ = (K ′,R′) be bigraphical reactive systems. Define the union B∪B′ point-wise,
i.e., B∪B′ = (K ∪K ′,R∪R′), whenK andK ′ agree on the arities of the controls
inK ∩K ′.

Be aware that there are two ways of taking the union of two sets of
parametrised reaction rules: (1) merge the rules and then ground them, or
(2) first ground the rules and then merge them. In general, the resulting
rule set of (1) is a superset of the rule set of (2), because parametric rules
from one BRS may be instantiated with bigraphs from the other. We use
approach (1).

We propose a model of context-aware computing that comprises three
bigraphical reactive systems: the context C; its representation or proxy
P; and the computational agents A. Drawing on classical work [PlaBC],
specifically The Allegory of the Cave, we call such a model Plato-graphical.

3.4. Plato-graphical models of context-aware systems 51

Definition 3.4 (Plato-graphical model). A Plato-graphical model is a triple
(C,P,A) of bigraphical reactive systems, such that M = C ∪ P ∪ A is itself a
bigraphical reactive system and C ⊥ A. A state of the model is a bigraph of M
on the form /$x.(C ‖ P ‖ A), where C ∈ C, P ∈ P, A ∈ A, and $x is some vector of
names.

We emphasise the intended difference between C and P: Whereas an
element of C models a possible context, an element of P models a model
of a possible context. The independence condition ensures that agents can
only directly observe or manipulate the proxy; not the context itself. (In
the parlance of [RJP04], the independence condition ensures separability.)
To query or alter the context, agents must use the proxy as a sensor and
actuator.

Using Bigraphs as our basic formalism gives us two things. First, we can
write our own reaction rules. We claim that because of this ability, models
become remarkably straightforward and intuitive; hopefully, the reader
will agree after seeing our example models in the next section. Second, we
automatically get a bisimilarity that is a congruence. Thus, bisimilarity of
agents is a very fine equivalence: No state of the context and proxy can
distinguish bisimilar agents.

The bisimilarity of the following proposition is the wide bisimilarity of
Definition 5.3 in [JM04], which corresponds to classical strong bisimilarity
of, e.g., π-calculus, i.e., the largest bisimulation (which is a congruential
and symmetric simulation).

Proposition 3.5. Let ∼ denote the bisimilarity inM, and let A,A′ ∈ A with A ∼
A′. For any C ∈ C, P ∈ P, and $x, we have /$x.(C ‖ P ‖ A) ∼ /$x.(C ‖ P ‖ A′).

To get a less discriminating equivalence we can consider agents under
a particular state of the context, or a particular state of the system.

Definition 3.6. Let ∼ denote the bisimilarity in M, and let A,A′ ∈ A, C ∈ C
and P ∈ P. We say A and A′ are equivalent wrt. P iff P ‖ A ∼ P ‖ A′, and we
say A and A′ are equivalent wrt. C,P iff C ‖ P ‖ A ∼ C ‖ P ‖ A′.

We conjecture that the above forms of derived equivalences will prove
useful for reasoning about a given Plato-graphical system.

Working within the Plato-graphical model, we are free to emphasise any
of its three components, perhaps modelling P in great detail, but keeping C
and A abstract.

Definition 3.4 above does not impose any restriction on composition of
states. For example, assume that we have a Plato-graphical model M =

52 3. Bigraphical Models of Context-aware Systems

(C,P,A), that c, p and a are controls of C, P and A, respectively, and that p
is not a control of C. Then the bigraphs

F = c(−0 | −1) ‖ p ‖ a(−2) and G = c ‖ p ‖ a

are both states ofM, but their composite F ◦ G = c(c | p) ‖ p ‖ a(a) is not
a state of M. This example implies that bisimilarity of states of a Plato-
graphical system may be too fine a relation: Conceivably, when comparing
two states s and s′, we may wish to take into account only contexts C such
that C◦s and C◦s′ are themselves states, i.e., we might want to outlaw F as a
possible context for G. We can achieve this finer control using place-sorting.
So, we define a place-sorted Plato-graphical model. The intuition behind
our sorting is that we want to keep controls of C, P and A separate when
composing contexts of form C ‖ P ‖ A.

Notation 3.7. Denote by Si≤m a vector m0, . . . ,mn−1 of sorts. We will write Si≤m
for a sorted interface 〈m,X,Si≤m〉 when we do not care about names.

Definition 3.8 (Sorted Plato-graphical model). LetM = C∪P∪A be a Plato-
graphical model with C = (KC,RC), P = (KP,RP) and A = (KA,RA). Define a
sorting discipline onM by taking sortsΘ = {KC,KP,KA} and, for primes, sorting
condition Φ(f : Si≤n → S) = ctrl(f) ⊆ S ∧ ∀i ≤ n. Si = S, lifting to an arbitrary
bigraph f ′ by decomposing f into primes f ′ = f0 . . . fn−1 and declaring f ′ well-
sorted iff all the fi are. Let φ be an assignment of Θ-sorts to the rules of RC, RP,
and RA, such that every rule is well-sorted under Φ. DefineM′ to beM sorted
by (Θ,Φ) (using φ to lift the reaction rules). In this case, we call M′ a sorted
Plato-graphical model, and define the states ofM′ to be the well-sorted bigraphs
with outer faceKC,KP,KA.

The condition Φ essentially requires that (1) the controls of a prime
(bigraph) are elements of the sort of its outer face, and (2) the sort of the
outer face is exactly the sort of each of the sites. Under this sorting discipline
and new definition of state, if G is assigned a sort such that it is a state, then
F cannot be assigned a sort that makes it composable with G.

Is the bisimilarity in the sorted systemM′ a congruence? The sorting dis-
cipline ofM′ is in general not homomorphic in the sense of Milner [Mil06a,
Definition 10.4]: we cannot give a sort to controls in KC ∩ KP. (If C, P
and A are pairwise independent, the sorting is homomorphic; however,
such a model is pathological.) Neither is the sorting safe in the sense of
Jensen [Jen07, Definition 4.30]; condition (4) cannot be met. Counterexam-
ple: Suppose f : KC → KC is well-sorted; take ! = f ⊗ 1 : KC → KC,KA

3.5. Examples 53

(recall that 1 : ε → 〈1, ∅〉 denotes the barren root). Clearly, U(f) = (−0 |
−1) ◦U(f ⊗ 1). However, if KC ! KA then (−0 | −1) : KC,KA → KC is not
well-sorted.

Nevertheless, the sorting of definition 3.8 does give rise to a bisimilarity
that is a congruence; we prove so in Appendix C.

3.5 Examples
3.5.1 A simple context-aware printing system
We model the simple context-aware printing system of [BP04]. An office-
building contains both modern PCL-5e compatible printers and old-fashi-
oned raw-printers. Occasionally, the IT-staff at the building removes or
replaces either type of printers. Each printer can process only one job;
queueing is done by a central print server. The print server dispatches jobs
to raw-printers only if it knows no PCL-printers; if there are PCL-printers,
but they are all busy, the job will simply have to wait. This system is context-
aware: The type and number of printers physically available determine the
meaning of the action “to print”. We give a model B of this system in
Figure 3.1. Looking at the controls of B, it is straightforward to verify that B
is Plato-graphical.

Proposition 3.9. The model B of Figure 3.1 is Plato-graphical.

We take a detailed look at the model. A state of the context C consists
of nested physical locations loc, within which printers prt are placed. We
distinguish between PCL- and raw-printers by putting a token pcl and raw
within them, respectively. Each printer has a single port, intended to link
the printer to the proxy. Here is a state of the context with a PCL-printer
and a raw-printer at adjacent locations; the PCL-printer is idle whereas the
raw-printer is busy.

C = loc(loc(prtx(raw | datz)) | loc(/y.prty(pcl))) .

Setting C in parallel with some proxy P will allow P access to the raw printer
through the shared link x, but not to the PCL-printer, because it is in a closed
link. The dynamics of C allow printers to appear (3.1, 3.2), disappear (3.3),
and finish printing (3.4).

A state of the proxy P consists of a pool of pending jobs jobs and two
tables of printers prts; one contains a token raw, the other a token pcl,
indicating what type of printer the table lists. The prts is a table in the
sense that its only port is linked to all the printers in the context that the

54 3. Bigraphical Models of Context-aware Systems

Context C.

Control Activity Arity Comment
loc active 0 Nested location
prt passive 1 Physical printer
pcl atomic 0 Printer-type token
raw atomic 0 Printer-type token
dat atomic 1 Binary data for printer

loc(−0) ! loc(−0 | /x.prtx(raw)) (3.1)
loc(−0) ! loc(−0 | /x.prtx(pcl)) (3.2)

loc(−0 | prtx(−1)) ! loc(−0) | x/ (3.3)
prtx(datz | −0) ! prtx(−0) | z/ (3.4)

Proxy P.

Control Activity Arity Comment
prt passive 1 Physical printer
pcl atomic 0 Printer-type token
raw atomic 0 Printer-type token
dat atomic 1 Binary data for printer
prts passive 1 Known devices
jobs passive 0 Pending documents
doc atomic 1 Document

jobs(docz | −0) ‖ prtsy(pcl) ‖ prty(pcl) !
jobs(−0) ‖ prtsy(pcl) ‖ prty(pcl | datz)

(3.5)

jobs(docz | −0) ‖ /x.prtsx(pcl) | prtsy(raw) ‖ prty(raw) !
jobs(−0) ‖ /x.prtsx(pcl) | prtsy(raw) ‖ prty(raw | datz)

(3.6)

/x.prtx(pcl) ‖ prtsy(pcl) ! prty(pcl) ‖ prtsy(pcl) (3.7)
/x.prtx(raw) ‖ prtsy(raw) ! prty(raw) ‖ prtsy(raw) (3.8)

Agents A.
Control Activity Arity Comment
jobs passive 0 Pending documents
doc atomic 1 Document

jobs(−0) ! jobs(−0 | /z.docz) (3.9)

Figure 3.1: Example Plato-graphical model B.

3.5. Examples 55

Context C Proxy P Agent A
(3.1) : KC (3.5) : KA,KP,KC (3.9) : KA
(3.2) : KC (3.6) : KA,KP,KC
(3.3) : KC (3.7) : KC,KP
(3.4) : KC (3.8) : KC,KP

Figure 3.2: Sorts for the rules of C, P, and A.

table knows about. Here is an example state of the proxy which knows one
raw-printer, knows no PCL-printers and has two pending jobs.

P = prtsx(raw) | /y.prtsy(pcl) | jobs(/z.docz | /z′.docz′)

Setting C and P above in parallel by ‖, and closing the link x, we get a
system /x.C ‖ P, where the table prtsx(raw) and the physical printer prtx(raw |
dat) are linked. The dynamics of P state that if there is a job and a known, idle
PCL-printer, the proxy may activate this printer (3.5); that if there is a job, no
known PCL-printer, and an idle raw-printer, the context may activate that
printer (3.6); and finally, that the proxy may discover a previously unknown
printer (3.7, 3.8).

The dynamics of A allow the agents to spontaneously spool docu-
ments (3.9).

Notice how the two printing rules (3.5) and (3.6) do not observe the con-
text directly. Instead, the proxy observes the context (rules (3.7) and (3.8))
and records its observations in the tables prtsx(raw) and prtsy(pcl); the prin-
ting rules (3.5) and (3.6) then consult the tables. It is straightforward to
determine whether there are no known PCL-printers: simply check if the
table of PCL-printers has the form /y.prtsy(pcl).

As observed in section 3.3 and [BP04], it is generally very difficult, if
not impossible, to observe the absence of something in the context directly.
An interesting but rather natural consequence of the indirect observation
is that it becomes asynchronous, i.e., it is possible that a PCL-printer exists
but has not yet been observed.

This model B can be lifted to a sorted one by adding the sorts given in
Figure 3.2; the figure assigns sorts to the outer face of both the redeces and
reactums of the indicated rules. It is straightforward to verify that all of the
rules are well-sorted.

Proposition 3.10. The model B with the sorting assignment of Figure 3.2 is a
sorted Plato-graphical model.

56 3. Bigraphical Models of Context-aware Systems

3.5.2 A location-aware printing system
Suppose we extend the printing system with location-awareness, by sti-
pulating that a print job is not printed until the printer and the device
submitting the job are co-located. To model this extended system, we in-
troduce a new control devi for devices (PCs or PDAs) with one port and
change doc to include an extra port so we can link submitted jobs to the
devices submitting them. The linking is reflected in the following modified
rule (3.9) for spooling print jobs:

loc(devix | −0) ‖ jobs(−1) ! loc(devix | −0) ‖ jobs(−1 | /z.docz,x) (3.9′)

We must also modify rules (3.5) and (3.6) to insist that the device and printer
are co-located. Rule (3.5) becomes

jobs(docz,x | −0) ‖ prtsy(pcl) ‖ loc(devix | prty(pcl)) !
jobs(−0) ‖ prtsy(pcl) ‖ loc(devix | prty(pcl | datz)).

(3.5′)

(We suppress the new rule (3.6’).)
Modifying the system once again, instead of insisting that device and

printer have to be actually co-located, we just require the print job to end
at a printer close to the device. The print server will need to query the
proxy for the printer nearest a given device. We saw in subsection 3.3 that
implementing such queries is awkward, so we will need to use the proxy.
In the preceding section, we did so directly in Bigraphs; this time around,
we transfer the expressive convenience of a general-purpose programming
language to Bigraphs for ease of implementation. We use Bigraphs directly
for modelling the actual context C, whereas we will exploit Bigraphs as a
meta-calculus for modelling the proxy P.

In detail, the whole model is B = C ∪ P ∪ A, with P = S ∪ L. Here
C is intended to be a bigraphical model of the “real world”, the proxy P
is comprised of a location sensor S and a location model L, and A is the
location-based application (the “computational agent”).

A state C of C could look like this:

C = loc(loc(loc(loc(deviw) | loc(devix | deviy))) | loc | loc(deviz))

Changes in the real world are modeled by reaction rules that reconfigure
such states. If we want to model, say, that a device may move from one
location to another, we include the reaction rule

loc(devix | −0) ‖ loc(−1) ! loc(−0) ‖ loc(devix | −1). (3.10)

3.6. Discussion 57

To implement the proxy, encode as a BRS a programming language L
with data structures, communication primitives, and concurrency, e.g., Pict
[PT00] or CML [Rep99]. (We return to this assumption below.) That is,
define a translation from terms of L to Bigraphs, and add reaction rules
encoding the operational semantics of L. Then implement the location model,
the sensor, and the agents in L and use the encoding to transfer that model to
Bigraphs. In particular, a state of the location model L will have a data
structure representing the current state of C. If L is an even half-way decent
programming language, it should be straightforward to implement queries
such as one of section 3.3 or the “find closest printer” we need above.

The sensor informs the location model about changes in C. We extend
the above rule (3.10) moving a device to

(loc(devix | −0) ‖ loc(−1)) | S | L !(loc(−0) ‖ loc(devix | −1)) | S′ | L, (3.10′)

where S′ is an L-encoding of “send a notification to L that device x has
moved”. Upon receiving the notification, L updates its representation of
the world. Agents of A can in turn query L when they need location
information.

3.6 Discussion
We consider the following questions.

1. What languages L can we encode?

2. How close are Plato-graphical models to real systems?

3. What challenges have we found for bigraphical models?

4. What uses do we envision for Plato-graphical models?

5. How do we reason about Plato-graphical models?

Ad. 1. As mentioned, there exist bigraphical encodings of various π-
calculi [Jen07, JM04, JM03] and of the λ-calculus [Mil04c, Mil05b]. Using
ideas of the latter encodings, we have encoded MiniML (call-by-value λ-
calculus with pairs and lists) in Local Bigraphs [Mil04c]. Based on our
experiences with this encoding, we find it palatable to encode CML or
Pict1.

1We are presently working on implementing an interpreter for bigraphical reactive sys-
tems; such an interpreter will make it easier to experiment with these and other encodings.

58 3. Bigraphical Models of Context-aware Systems

Ad. 2. The model closely reflects how some actual location-aware sys-
tems work, for instance the one running at the ITU. Here, a sensor system
(made by Ekahau) computes every two seconds the physical location of
every device on the WLAN. The sensor system informs a location model
about updates to locations; location-aware services then interact with the
location model. In our sketched Plato-graphical model, the location mo-
del L may lag behind the actual C, if L’s representation of C does not reflect
some recent reconfiguration of C. But that also happens in the real system
at the ITU – when a location-aware service asks the location model for the
whereabouts of a device, it obtains not the position of the device, but the
position of the device the last time the sensor checked. In the mean time,
the device may have moved.

Ad. 3. When modelling the physical world, we have made use of both
the place and link graphs, the place graph modelling the location hierarchy
of a building. As argued in [BD05], DAGs or graphs are more natural
models of location. Thus, systems such as the ones we have considered
here suggest generalising the place graph part of Bigraphs, or consider
ways to encode DAGs or general graphs naturally as place graphs.

Ad. 4. Given an implementation of bigraphical reactive systems, one
could simulate the behaviour of a location-aware system, and thus allow
for experimentation with different designs of location-aware and context-
aware systems. Likewise, one could experiment with different choices for
theL language of Section 3.5.2. Such simulation suggests further extensions
of the bigraphical model: In actual context-aware systems, one is generally
interested in timing aspects (e.g. the sensor samples only every two se-
conds), continuous space (e.g. the sensor really produces continuous data),
and probabilistic models (e.g. to accurately simulate sensors and sensor
failure).

Ad. 5. What about using Plato-graphical models for formal reasoning
about context-aware systems? One use of formal models is to prove an
abstract specification model equivalent to a concrete implementation model.
In π-calculus, we come with π-terms i, s, one for the implementation and
one for the specification. The terms i and s are themselves the models;
we take (π-)bisimilarity as equivalence, so to prove i and s equivalent, we
merely prove them bisimilar. We can play the same game within any BRS:
Simply come up with a bigraph I (the implementation model) and a bigraph
S (the specification model), and prove them bisimilar within the labelled
transition system of the BRS. Because that bisimulation is congruential, such
reasoning should be tractable, e.g. with the bisimulation in Definition 3.6.

3.7. Conclusion and future work 59

Unfortunately, bisimulation within a single BRS is not always enough
with respect to Plato-graphical models. Suppose we want a specification
model M with an abstract view of the context, and an implementation
modelM′ with a detailed view of the context. We express this by having
M andM′ differ only in their context sub-BRSs, i.e.,

M = C ∪ P ∪A M′ = C′ ∪ P ∪A.

The trouble is that because C and C′may have different controls and reaction
rules, bisimulation between their respective labelled transition systems is
meaningless! What we need is a notion of equivalence of BRSs, not just
equivalence of bigraphs of a single BRS. At the time of writing, we know
of no such equivalence2. Thus, our investigation of bigraphical models for
context-aware systems suggests that equivalence of BRSs is a key notion
currently missing. One possible direction would be to try to recover from
the notion of WRS-functor [LM00a] – functors that preserve reaction rules
– a notion of a BRS implementing another BRS.

3.7 Conclusion and future work
We have initiated an evaluation of the use of bigraphical reactive systems for
models of context-aware computing in ubiquitous systems. We found that
BRSs, in their current form, are not suitable for directly modelling context
queries, but on the other hand suitable for modelling reconfigurations of
the actual context.

In response, we proposed Plato-graphical models, where both state
and dynamics are logically divided in three parts: the actual context, the
observed context (or proxy), and the computational agents, respectively.
The computational agents and the actual context are separated, and interact
only through the proxy. This separation into different BRSs makes it possible
to encode different parts of the system using domain-specific languages.
Moreover, we have shown how the context-aware printing system of [BP04]
can be modelled straightforwardly in the Plato-graphical model.

Further, we have argued that Plato-graphical models are useful for si-
mulating context-aware systems, and we are currently working on an im-
plementation of BRSs at ITU to allow such experimentation. Only through

2The reader may suggest that we just define a common language for modelling both the
abstract and detailed view, and define a translation from this language into a single BRS.
However, in this case we are no longer modelling a ubiquitous system directly in Bigraphs
(aim 1 of the Introduction), but using Bigraphs as a meta-calculus (aim 2 of the Introduction).

60 3. Bigraphical Models of Context-aware Systems

such experimentation will it be clear how useful Plato-graphical models
really are. For simulation purposes it will be important to extend Bigraphs
with timing aspects, continuous space, and probabilities.

Finally, we have pointed out that establishing a notion of equivalence
between BRSs, as opposed to bisimilarity within a BRS, is important future
work.

3.8 Acknowledgments
We gratefully acknowledge discussions with the other members of the BPL
group at ITU, in particular Arne Glenstrup, Troels Damgaard and Mikkel
Bundgaard; and with Robin Milner. This work was funded in part by the
Danish Research Agency (grant no.: 2059-03-0031) and the IT University of
Copenhagen (the LaCoMoCo project).

What follows is two sections that were appendices to the paper, and
which feature in the corresponding technical report [BDE+05]. The first
of these sections illustrates how one may program a simple query on a
location model. The second section formally defines rigid control-sortings
and prove that they are “safe”, i.e., respect RPOs (relative pushouts).

3.A Encoding of “find all devices”
This section is due to Ebbe Elsborg.

Consider the following simple bigraph representing a building consis-
ting of locations (e.g. rooms) and devices (e.g. PDAs) in these locations.
(We have omitted the outer names on the locations, and also sites.)

l = loca(loca(loca(loca(devi1) | loca(devi2 | devi3))) | loca() | loca(devi4))

Consider how to implement a query to return all the devices in the building
by means of bigraphical reaction rules. Observe that we have chosen to
represent all locations via the same control loca, rather than using different
controls office, building, etc., for different locations – this is to avoid having
to write reaction rules for every combination of location controls. (loca
differs from loc in that it has a port.)

Now, assume that a query occurs by some process introducing a node
with control f into the system (in a unique3 in node), and that no other
queries impose themselves while we calculate the answer to this one. The

3Certain properties can only be ensured by invariants of the reactive system, e.g. uni-
queness of controls.

3.A. Encoding of “find all devices” 61

termination condition (observable by the “input/output process”) is when in
is empty (and nodes with control f′ appear in the node with unique control
out). We can not handle concurrent queries so that is why we wish to detect
termination (so that we can begin the next query).

The idea is to do a depth-first search/collection while keeping track of
where we have already looked by placing these subtrees into “searched-
nodes” (s). Controls:

Control Activity Arity Comment
in passive 0 Input node
f atomic 0 Controls find-all query
f′ atomic 1 Answer node
loca active 1 Nested location
out passive 0 Output node
g atomic 0 Dummy, just to keep in non-empty
devi atomic 1 Device, has link to id
s passive 0 Collects searched nodes

And now, for the rules. Initialisation; move f into the top location (enclosing
all the others) to indicate “the point of control” in the structure, and add g
to indicate that we are not done with the query:

in(f) | locatop(locax(−0)) | out() ! in(g) | locatop(locax(f | s() | −0)) | out()

If a device is found, add it to s, and add a representative for it to out:

locax(f | −0 | deviy | s(−1)) | out(−2)
! /y.locax(f | −0 | s(−1 | deviy)) | out(−2 | f′y)

Notice that the label (context) of this transition will include the bigraph
top/x. This rule can be used as long as there are devices in the current
location being searched. When done with this location f is moved up, since
we assume that a location can only contain either devices or other locations.
(The query would have been significantly harder without this assumption.)
So, if a location containing location(s) is being searched:

locax(f | locay(−1) | s(−2) | −0) ! locax(locay(f | s() | −1) | s(−2) | −0)

Then, search deeper. A new s-node is created when going down, this is
a trick to do “on-line garbage collection” when climbing back up the tree.
(The query has to leave the bigraph as it was initially.) When a leaf is
reached (an empty location) move f up, merging s-nodes. This is more

62 3. Bigraphical Models of Context-aware Systems

clever than doing a clean-up traversal because there is no construction in
reaction rules that can express “not”, i.e., one can not write a rule saying
“clean up until there are no more s-nodes in the tree”. The “climbing” rule:

locax(locay(f | s(−2)) | s(−1) | −0) ! locax(f | s(locay(−2) | −1) | −0)

Notice how the presented rules use sites to make themselves general. To
clean up when we have traversed the whole tree (and there is exactly one
s):

in(!) | locatop(locax(f | s(−0))) ! in() | locatop(locax(−0))

At this point out will have all representatives, in is emptied to indicate
termination. (The reader is encouraged to try out the rules on the example
location model. It is easiest doing it using the graphical bigraph notation.)

3.B Native queries
This section demonstrates, by an example, the difficulty of programming
directly with bigraphical reaction rules. We represent a location model and
the queries directly in pure Bigraphs. Before developing the model we
consider some issues of representation.

We model buildings, floors, rooms and so forth by introducing ’con-
tainers’. This generality makes the representation more elegant, and more
information about a container can be given by simply adding a link, if
desired.

Containers can be empty, contain other container(s), or contain device(s)
at any given point in time. Specifically, a container cannot contain both a
container and a device at the same time. By ’leaves’ we denote containers
that do not contain other containers.

Regarding topology (place graph): The one tree representing the loca-
tion model is placed as only child of a ’root’ node. This is done to be able
to recognise that a search is completed. The whole system is a forest.

Assume that there is some process that creates queries by introducing
nodes with certain controls into the existing model of the system, that is, an
interface between the user and the model. The algorithm is as follows:

1. Exactly one query node is inserted into the "global" (global means
sibling of the unique root container) in control to avoid interference
with the queries.

2. Calculate.

3.B. Native queries 63

3. Output is likewise put in the “global” out control for immediate
reading by “the IO process” – and in cleared. We use online garbage
collection.

Queries are of two kinds: “Reconfiguring” and “asking”. Reconfiguring
queries alter the place graph, asking queries do not. The rewrite rules are
constructed such that they get stuck when the termination condition is met
(see below). Also, we apply dichotomy so that all cases are covered.

Regarding the “nearest neighbour” query, we look in same container
first, if unsuccessful we do a depth-first search. We do not use the distance
links of the range queries, since we are not yet sure whether it is the right
way to do range queries. (Nearest neighbour was encoded before the range
query.) The controls a and b are used to make sure that one set of rewrite
rules is executed before another – this is needed to separate search from
clean-up.

A tentative way of incorporating distance is to assume ‘distance links’
between all containers that do not contain other containers (these containers
also have 0-links to themselves). These links represent the distance between
the centres of two containers – this is realistic with respect to Bluetooth
technology. Each distance link is connected, through the outer face, to an
“integer name”, for instance, ’7’.

We want to be able to enquire about devices of certain types (without
having to write rules for each pair). Thus, we need subtyping. We do
this by assuming a global control types (sibling to root) which, for all pairs
(t, t′) of device types, holds either a control leq(left, right) where t is linked
to left and t′ to right, or gt(left, right) where t is linked to left and t′ to
right. Intuition: The larger the type, the more general. If we want to find
all devices we just ask for devices with type ’top’, which is greater than
all other types in control types. Subtyping could also have been done by
having a “types tree” to traverse (using a similar technique as in the nearest
neighbour query).

The termination condition (when the IO process can report back to the
user) for the queries is that ’in’ is empty. Also, we assume some meta-
conditions/invariants (see encoding).

signature Locmod =
sig % Arity: Number of ports. Take l.u.b. of req. ports in

% queries to use fewest different controls.
a : atomic (0) % exists while still searching
b : atomic (0) % exists when found a dev, enable clean-up
c : active (2) % container. ports: id,distance

64 3. Bigraphical Models of Context-aware Systems

d : atomic (2) % device. ports: id,type
d’ : atomic (2) % device, answer. ports: id,id
e : atomic (0) % exists when ’near’ query may terminate
f : atomic (1) % find all. ports: type
f’ : atomic (2) % find all, one answer. ports: id,type
g : atomic (0) % dummy control for termination
in : passive (0) % input, one query at a time
left : atomic (1) % left part of binary rel., port: type
m : passive (2) % move. ports: id,id
n : atomic (2) % nearest neighbour. ports: id,type
n’ : atomic (3) % near. neighb., answer. ports: id,id,type
out : passive (0) % output, answer to latest query
r : atomic (2) % range query. ports: id,id
r’ : atomic (3) % range query, answer. ports: id,id,dist
right : atomic (1) % right part of binary rel., port: type
s : passive (0) % searched
tmp : passive (0) % for aux. nodes during ’near’ search
types : passive (0) % implements the subtyping relation
void : atomic (1) % void, if we do not find any. ports: id
w : atomic (1) % where. ports: id
w’ : atomic (2) % where, answer. ports: id,id

end

using Locmod

rule move = % move a device, the sole reconfiguration query
in(m_x,y) || c(d_x | [0]) || c_y([1]) || out([2])
->

in() || c([0]) || c_y(d_x | [1]) || out()

rule where = % where is a certain device?
in(w_x) || c_y(d_x | [0]) || out([1])
->

in() || c_y(d_x | [0]) || out(w’_x,y)

% Invariant: Exactly one container is linked to name ’root’.
rule find_all_1 = % find all devices (of type <=t), init
in(f_t) || c_root(c([0])) || out([1])
->

in(g) || c_root(c(f_t | s() | [0])) || out()

3.B. Native queries 65

rule find_all_2 = % found dev of leq type, add to s and out
c(f_t | [0] | d_x,t’ | s([1])) ||
types(leq(left_t’ | right_t)) ||
out([2])
->

c(f_t | [0] | s(d_x,t’ | [1])) ||
types(leq(left_t’ | right_t)) ||
out(f’_x,t | [2])

rule find_all_3 = % found dev of gt type, add to s only
c(f_t | [0] | d_x,t’ | s([1])) ||
types(gt(left_t’ | right_t)) ||
out([2])
->

c(f_t | [0] | s(d_x,t’ | [1])) ||
types(gt(left_t’ | right_t)) ||
out([2])

rule find_all_4 = % no more here, go up while s-merging
c(c(f_t | s([2])) | s([1]) | [0])
->

c(f_t | s(c([2]) | [1]) | [0])

rule find_all_5 = % only containers here, go down
c(f_t | c([1]) | s([2]) | [0])
->

c(c(f_t | s() | [1]) | s([2]) | [0])

rule find_all_6 = % done, ’out’ has all - clean up s,f,g
in(g) || c_root(c(f_t | s([0])))
->

in() || c_root([0])

rule range_dev_to_dev = % lookup range between two devices
in(r_x,y) || c_i(d_x | [0]) || c_i(d_y | [1]) || out([2])
->

in() || c_i(d_x | [0]) || c_i(d_y | [1]) || out(r’_x,y,i)

rule range_dev_to_con = % lookup range from device to leaf

66 3. Bigraphical Models of Context-aware Systems

in(r_x,y) || c_i(d_x | [0]) || c_y,i([1]) || out([2])
->

in() || c_i(d_x | [0]) || c_y,i([1]) || out(r_x,y,i)

rule near_1 = % find nearest neighbour of type <= t, init
in(n_x,t) || c(d_x,t’ | [0]) || out([1])
->

in(g) || c(n_x,t | d_x,t’ | s() | [0]) || out()

rule near_2 = % found one suitable in same container, done
in(g) ||
c(n_x,t | d_x,t’ | d_y,t’’ | s([1]) | [0]) ||
types(leq(left_t’’ | right_t)) ||
out()
->

in() ||
c(d_x,t’ | d_y,t’’ | [1] | [0]) ||
types(leq(left_t’’ | right_t)) ||
out(n’_x,y,t)

rule near_3 = % found one of wrong type, add to s and stay
c(n_x,t | d_x,t’ | d_y,t’’ | s([1]) | [0]) ||
types(gt(left_t’’ | right_t))
->

c(n_x,t | d_x,t’ | s(d_y,t’’ | [1]) | [0]) ||
types(gt(left_t’’ | right_t))

rule near_4 = % not here, go one up, create proxy d’ & ’a’
c(c(n_x,t | d_x,t’ | s([1])) | [0]) || 1
->

c(s(d_x,t’ | [1]) | n_z,t | [0]) || tmp(d’_z | a)

rule near_5 = % only containers here, go down and create s
c(n_x,t | c([1]) | [0]) || tmp(d’_x | a)
->

c(c(n_x,t | s() | [1]) | [0]) || tmp(d’_x | a)

rule near_6 = % this c’s children were empty, expand s, go up
c(c(n_x,t | s([1])) | [0]) || tmp(d’_x | a)
->

3.B. Native queries 67

c(s(c([1])) | n_x,t | [0]) || tmp(d’_x | a)

rule near_7 = % found wrong type, enclose in s but stay
c(n_x,t | d_y,t’’ | s([1]) | [0])
types(gt(left_t’’ | right_t)) ||
tmp(d’_x | a)
->

c(n_x,t | s(d_y,t’’ | [1]) | [0])
types(gt(left_t’’ | right_t)) ||
tmp(d’_x | a)

% found suitable somewhere, replace ’a’ with n’ and
% disconnect n from d’ while connecting d’ with n’
rule near_8 =
c(c(n_x,t | d_y,t’’ | [1] | s([2])) | [0]) ||
types(leq(left_t’’ | right_t)) ||
tmp(d’_x | a)
->

c(s(c(d_y,t’’ | [1] | [2])) | n_x,t | [0]) ||
types(leq(left_t’’ | right_t)) ||
tmp(d’_p,u | n’_u,y,t)

rule near_9 = % searched all here, go up and cont. cleaning
c(c(n_t | s([0])) | [1]) || tmp(d’_u | n’_u,t)
->
c(s(c([0])) | n_t | [1]) || tmp(d’_u | n’_u,t)

rule near_10 = % enclose remaining c’s before going up
c(n_t | c([0]) | s([1]) | [2]) || tmp(d’_u | n’_u,t)
->

c(n_t | s(c([0]) | [1]) | [2]) || tmp(d’_u | n’_u,t)

rule near_11 = % collapse s’s to ensure all s’s are cleaned up
c(n | s([0]) | s([1]) | [2]) || tmp(d’)
->

c(n) | s([0] | [1]) | [2]) || tmp(d’)

% search w. proxy reached root *without* finding one
rule near_12 =
c_root(c(n_t | s([0]))) || tmp(d’_u | a)

68 3. Bigraphical Models of Context-aware Systems

->
c_root(c([0])) || tmp(d’_u | n’_u,v,t | void_v | e)

rule near_13 = % search w. proxy reached root *with* 1 found
c_root(c(n_t | s([0]))) || tmp(d’_u | n’_u,t)
->

c_root(c([0])) || tmp(d’_u | n’_u,t | e)

rule near_14 = % return, when we had to use proxy
c(d_x,t) || d_y || tmp(d’_x,u | n’_u,y,t | e) || in(g)
->

c(d_x,t) || d_y || out(n’_x,y,t) || in()

rule near_15 = % return, special case
c_root(c(d_x,t’ | n_x,t)) || in(g) || 1
->

c_root(c(d_x,t’)) || out(n’_x,v,t | void_v) || in()

% can also find the distance to nearest d with type leq(t)
% by first calling ’near’ and then just using dist-links

3.B.1 Concluding remarks on native queries
The main point to notice is that the “nearest neighbour” query takes 15
rules to be implemented. We do not believe that it can be done much
simpler. The complexity of even this conceptually simple query is close
to the limit of what we can claim to understand completely. For more
complicated programming tasks we will likely run into trouble trying to
program directly with bigraphical reaction rules.

3.C Rigid control-sortings and RPOs
This section is due to Søren Debois.

For a bigraph b (sorted or otherwise), we write b∗ for the function that
takes each place (site or root) or node of b to its uniquely determined root.
In this appendix we will generally omit writing down the link-graph part
of interfaces when we do not need them.

Definition 3.11 (Rigid control-sorting). LetK be a set of controls. A sortingS =
(K ,Θ,Φ) is a rigid control-sorting if Θ ⊆ P(K) and there exists a predicate φ,

3.C. Rigid control-sortings and RPOs 69

such that

Φ
(
(m, sm)

f−→ (n, sn)
)

iff
{

(i) sm(i) = sn(∗ f (i)) for i < m,
(ii) φ(ctrl f (v), sn(f ∗(v))) for v node in f .

In the sequel, we assume a fixed set of controlsK , rigid control-sorting S =
(K ,Θ,Φ), a sorted signature ΣS and a corresponding unsorted signature
U(ΣS) = Σ; following [Jen07], we write B̂ig(Σ) for the precategory of
concrete bigraphs over Σ and B̂ig(ΣS) for the corresponding precategory
of sorted concrete bigraphs, and we write U for the forgetful functor
from B̂ig(ΣS) to B̂ig(Σ); recall that this functor is faithful.

In Theorem 3.14 we state that B̂ig(ΣS) has RPOs; it follows that the stan-
dard bisimulation on B̂ig(ΣS) is a congruence. To establish Theorem 3.14,
we will need some lemmas to make precise just how closely B̂ig(ΣS) mi-
mics B̂ig(Σ).

Lemma 3.12. IfU(a) = p◦q, then there exists unique b, c s.t.U(b) = p,U(c) = q
and a = b ◦ c.

Proof. For existence, suppose a : (m, sm) −→ (n, sn) and cod(q) = dom(p) = l.
Define

sl(i)
def
= sn(p∗(i)). (3.11)

We claim that c = (m, sm) −→ q(l, sl) and b = (l, sl) −→ p(n, sn) are well-
sorted. Consider c. Condition (i) of Definition 3.11 is satisfied by (3.11),
Condition (ii) is satisfied because the nodes of c is a subset of the nodes of a.
Now consider b. For i < n, we find

sm(i) = sn(∗a(i)) = sn(∗p(∗q(i))) = sl(∗q(i)),

satisfying Condition (i). Next, for v a node of q, we find

φ(ctrlq(v), sl(q∗(v))) = φ(ctrla(v), sn(∗p(∗q(v)))) = φ(ctrla(v), sn(∗a(v))).

Butφ(ctrla(v), sn(a∗(v))) is satisfied by well-sortedness of a; thus Condition (ii)
is satisfied.

For uniqueness, it is sufficient to prove that sl is the only sorting ma-
king b and c well-sorted. Suppose s′l is an alternate such sorting. If there

is i < l s.t. s′l (i) ! sl(i) = sn(p∗(i)), then (l, s′l)
p−→ (n, sn) is not well-sorted:

contradiction. Thus s′l = sl. !

Lemma 3.13. If a, b is a cospan andU(a) =U(b), then a = b.

70 3. Bigraphical Models of Context-aware Systems

Proof. BecauseU(a) =U(b), a and b must have the same inner width, m:

(m, sm)
a ! (n, sn) " b

(m, s′m).

Suppose for a contradiction that there is i < m s.t. s′m(i) ! sm(i). Then

sn(a∗(i)) = sm(i) ! s′m(i) = sn(∗b(i)),

but that cannot be, because a∗(i) = ∗b(i) follows from U(a) = U(b): contra-
diction. !

Theorem 3.14. B̂ig(ΣS) has RPOs.

Proof. Consider the square (i) below.

b0
!

b1

"

a1

!

a0

"

(i)

h0 !

U(b0) !
h

#

" h1

U(b1)
"

U(a1)

!

U(a0)

"

(ii)

Apply U to get a similar square in B̂ig(Σ), and erect an RPO there, al-
together obtaining the diagram (ii). By Lemma 3.12, there are c0 and c
factoring b0 s.t. U(c0) = h0 and U(c) = h; symmetrically, there are also c1
and c′ factoring b1 s.t.U(c1) = h1 andU(c′) = h. (See diagram (iii) below.)

c0
!

b0
!

c
#

c′
#

"
c1

b1

"

(iii)

But b0, b1 is a cospan, so also c, c′ is a cospan; thus c = c′ by Lemma 3.13,
and we have a candidate RPO c0, c1, c.

Suppose d0, d1, d is an alternate candidate RPO. We must find unique e
s.t. c = d ◦ e. Because U(c0),U(c1),U(c) is an RPO, we find unique p
s.t.U(c) =U(d) ◦ p. By Lemma 3.12, there are unique d′, e s.t.U(d′) =U(d),
U(e) = p and c = d′ ◦ e. But then d, d′ is cospan, so by Lemma 3.13, d = d′.

3.C. Rigid control-sortings and RPOs 71

Thus, we have found e s.t. c = d ◦ e. For uniqueness, suppose there is e′
with c = d ◦ e′. Then

h =U(c) =U(d) ◦U(e′) =U(d) ◦ p

but then U(e′) = p = U(e) by uniqueness of p; but e′, e is also a cospan, so
by Lemma 3.13, e = e′. !

Corollary 3.15. Bisimulation on the standard transition-system of B̂ig(ΣS) is a
congruence.

Proof. By [Jen07, Theorem 3.16], possession of RPOs is a sufficient prerequi-
site for the desiderata. !

We can now prove that the sorting of Definition 3.8 gives a congruential
bisimulation.

Theorem 3.16. LetS be the sorting given in Definition 3.8. Then the bisimulation
over the standard transitions of B̂ig(ΣS) is a congruence.

Proof. By Corollary 3.15, it is sufficient to show that S is a rigid control

sorting. Take φ(k,K) = k ∈ K. Clearly, Φ
(
(m, sm)

f−→ (n, sn)
)

is equivalent to
i < m =⇒ sm(i) = sn(∗ f (i)) and v ∈ f =⇒ φ(ctrl f (v), sn(f ∗(v))). !

We have developed Plato-graphical models in this chapter. In the next
chapter we continue with another theoretical development, namely the
representation of the MiniML programming language with references in
Bigraphs, which we shall need for our bigraphical model in Chapter 5.

72 3. Bigraphical Models of Context-aware Systems

4
Encoding MiniML with References in Bigraphs

4.1 Purpose

In this chapter we encode a MiniML-like calculus with references, Ξ, in
Bigraphs. The motivation is two-fold: (1) We would like to be able to
express some parts of our bigraphical location model (see Chapter 5) in Ξ
using the Plato-graphical ability to combine several languages. (2) It is an
interesting study in itself to investigate how one may model references in
Bigraphs, because to the best of our knowledge no previous encodings of
calculi with side effects have been studied in Bigraphs.

Recall that we found it useful to be able to express some parts of our
system in a high-level language, Chapter 3. We claim that Ξ is such a
language. We need references for the location model part L and the agent
part A of our location model in Chapter 5. For now, we ask the reader to
trust us when we say that references are needed for encapsulating the state
of the location model with respect to the agent and the sensor.

We investigate the use of closed links in Local Bigraphs as defined in
[Mil04c, Mil07]. This chapter aims to

• further investigate a question of Chapter 3, namely which high-level
languages that can be encoded in Bigraphs for use in Plato-graphical
models,

• communicate a few humble insights about the behaviour of closed
links (edges) to readers with some knowledge of Bigraphs,

• to experiment with and illustrate some non-trivial matches,

• and to show how references can be encoded in (Local) Bigraphs using
closed links.

73

74 4. Encoding MiniML with References in Bigraphs

First, we find that closed links can not interfere with outer names (open
links) or with each other, and that they behave as they do in Binding Bi-
graphs when they are replicated as part of a parameter. Second, we find
that a calculus with references can be encoded in (Local) Bigraphs using
closed links. There are some subtleties associated with the encoding and
the resulting reaction relation, which we address as we go along.

4.2 Non-interference of closed links
Recall that the binding arity of a control K : b→ f is a pair of finite ordinals,
b is the binding arity and f the free arity. Consider the following binding
signature Σ with a parametric reaction rule.

Control Activity Arity Comment
loca active 0→ 1 Nested location (e.g. a room)
devi atomic 0→ 1 Mobile device

loca!(−0) ! /x.loca!(devix | −0) (4.1)

Notation 4.1. We introduce the operator /x.B as a generalisation of /x◦B, in the
sense that /x.B works for all widths of B, and it marks where identities are implicit
in a composition. It binds less than |, ‖, and /. | binds tighter than ‖ which binds
tighter than /.

By Definition 3.2 (parametric reaction rule) of [Mil04c] and the additional
clarification in Section 3 of [Mil07], our parametric reaction rule (4.1) is of
the form

(R : I→ K,R′ : I′ → K, η,$ι)

where I = $X and I′ = $X′ are partitions (i.e. disjoint) with widths m and m′,
and η : m′ → m is a map of ordinals. The fourth component is a vector of
bijections$ι j : Xη(j) → X′j for each j ∈ m′.

A parametric rule generates ground rules of the form

((R ⊕ ω) ◦ a, (R′ ⊕ ω′) ◦ a′)

where I ⊕H, I′ ⊕H′ and K ⊕ L are interface extensions with H′ = η(H)1. Let
ω : H → L and ω′ : H′ → L be wirings that agree on the names of H′ and
have the same support, i.e., |ω| = |ω′|. Then for any a : I ⊕ H, complete the
ground rule by defining a′ = η$ι(a) : I′ ⊕H′.

1η is the instantiation map.

4.2. Non-interference of closed links 75

Notation 4.2. We follow the short-hand notation of [Mil04c] and write a local
interface as a vector of names. We omit the parentheses if the vector is of size one,
and the curly brackets if the set is a singleton. We omit the empty inner face ε of
ground bigraphs.

The components of rule (4.1) are as follows:

R = loca!(−0) : ∅ → !
R′ = /x.loca!(devix | −0) : ∅ → !
η = Id1

$ι = (Id∅)

where Id1 is the identity function on the finite ordinal 1 = {0}, and $ι is
a vector of isomorphisms relating located names in the parameters (none
in this case). We see that x ! ! since otherwise cod(R) ! cod(R′). Thus,
we could just as well have chosen R′ = loca!(/x.devix | −0), since these
two terms denote the same bigraph, which is apparent graphically, and
justified by Proposition 2.7 (open decomposition) of [Mil04c]. In the term
language, however, one must be careful when choosing names; if x = !,
then loca!(/x.devix | −0) ! /x.loca!(devix | −0) = (id! ⊕ /x) ◦ loca!(devix | −0)
because id!⊕/x is not defined when ! = x. We see that when writing reaction
rules we need not worry about a closed link “capturing” outer names by
accident during reaction. This is how it should be.

Now consider, informally, the following situation: What happens if we
apply rule (4.1) twice consecutively? If we think of a device’s outer name
as its identifier, can we accidentally reuse (the name of) a closed link and
thereby identify two different devices? That is, can we formally have the
following sequence of reactions:

locap() ! / f .locap(devi f) ! / f .locap(devi f | devi f) ?

The answer is no; the second reaction is not allowed. Let us convince
ourselves by looking at an example.

Consider a bigraph B1 = locap(), then B1 ! B2 if and only if there exist
C,ω, a,ω′, a′ such that

B1 = C ◦ (R ⊕ ω) ◦ a
B2 = C ◦ (R′ ⊕ ω′) ◦ a′

where ω is a wiring and parameter a is discrete (for ∅ and !). Clearly, we

76 4. Encoding MiniML with References in Bigraphs

must have

a = 1 : ∅
ω = id∅ : ∅ → ∅
C = p/! : !→ p
a′ = a
ω′ = ω

where B2 = / f .locap(devi f) = locap(/ f .devi f) for any f ! p (forced by the
rule). Clearly, the choice of the name f is insignificant, because it does not
appear in the outer (or inner) face of B2 when closed, and since edges (closed
links) do not have identity in abstract bigraphs. Thus, / f .locap(devi f) =
/k.locap(devik) for any f , k ! p.

We wish to apply (4.1) to B2. B2 can be matched by (4.1) in (at least) two
ways depending on whether the closure of f is done in the wirings ω,ω′
or in the context C. If we close f in the context then the wirings ω,ω′ will
be placings, and Proposition 3.5 (placings suffice) of [Mil04c] states that it
suffices to consider such ground rules. To accentuate this we write π,π′ for
the wirings (placings), and we have

a = devi f : f
π = id f : f → f
C = p/! ⊕ / f : {!, f }→ p
a′ = a
π′ = π

where B3 = /h./ f .locap(devih | devi f) for arbitrary f , h ! p. Graphically, it
is clear that the order of closures is insignificant so this also holds in the
term language. Could we have chosen f = h? No, because that would
render C undefined. We conclude that closed links can not interfere with
one another, which is apparent in the graphical representation.

Now, let us consider replication of parameters involving closed links in
Local Bigraphs. To illustrate, we consider the “replication rule” of [JM04]
(p. 78):

R = rep(−0) : ∅ → ∅
R′ = −0 | rep(−1) : (∅, ∅)→ ∅
η = {0, 1 6→ 0}
$ι = (Id∅, Id∅)

4.3. Encoding references via closed links 77

Notice how this rule does not say anything about linking. Applying this
rule to the bigraph B = /l.rep(ul | vl) we obtain B′ = /l.(ul | vl) | rep(ul | vl)
because

a = ux | vy : {x, y}
π = id{x,y} : {x, y}→{ x, y}
C = /l.(l/x | l/y) : {x, y}→∅
a′ = (ux | vy) ‖ (ux | vy)
π′ = id{x,y} | id{x,y} : ({x, y}, {x, y})→ {x, y}

The closure resides in C so the global outer names of the two replicas are
identified (must point to the same edge). If one wishes each replica to have
its own private link, one should use binding ports or replicate using, e.g.,
the following rule, which is a one-time replication rule for simplicity.

R = /x.rep(−0〈x〉) : {x}→∅
R′ = /x.−0〈x〉 | /y.−1〈y〉 : (x, y)→ ∅
η = {0, 1 6→ 0}
$ι = (x 6→ x, x 6→ y)

With this rule we have B = /l.rep(ul | vl) ! B′ = (/l.ul | vl) | (/l.ul | vl). We
show the components of the match to illustrate the “trick” of closing the
links in the rule so that the context can not identify outer names before
closing them. The intuition is that the context C has no handle on the links
and thus can not manipulate them; x is closed in R so u and v in a can not
have different outer names because C can not reunite them.

a = ux | vx : x
ω = id∅ : ∅ → ∅
C = id∅ : ∅ → ∅
a′ = ux | vx ‖ ui | v j : (x, y)
ω′ = id∅ | id∅ : (∅, ∅)→ ∅

This concludes our treatment of closed link non-interference.

4.3 Encoding references via closed links
Consider the following MiniML-like call-by-value calculusΞwith pairs and
projections, references, datatype constructors and deconstructors, fixed-
points, and natural numbers. We need some notation.

78 4. Encoding MiniML with References in Bigraphs

Notation 4.3. Denote the dereferencing operation by ! (bang). n ranges over the set
N of natural numbers (including zero). x, f range over an infinite setV of variable
names with members x, y, z and so forth. l ranges over a setL of reference cells. D
ranges over an infinite setD of data type names. C ranges over an infinite set C of
constructor names with members C0,C1,C2 and so forth. The setsV, L,D, and
C are pairwise disjoint. We use the shorthand notation ’case e of Ci xi ⇒ e i=0..n

i ’
for ’case e of C0 x0 ⇒ e0 | C1 x1 ⇒ e1 | . . . | Cn xn ⇒ en’. Likewise for data-type
declarations.

Here is the calculus Ξ in form of a BNF grammar with programs p, terms
e, values v, and evaluation contexts E. Notice that we allow base type
declarations ti when declaring new data types. The reason is that we want
to use the SML runtime system in the implementation.

Definition 4.4 (Syntax).

p " datatype D = Ci of t i=0..n
i ; p | e

e " x | e1 e2 | (e1, e2) | fst e | snd e | let x = e1 in e2 end |
ref e | !e | e1 # e2 | C e | case e of Ci xi ⇒ e i=0..n

i | v
v " λx.e | fix f (x) = e | (v1, v2) | unit | l | C v | n
E " [] | (E, e) | (v,E) | fst E | snd E | let x = E in e end |

let x = v in E end | E e | v E | ref E | !E | E # e | v # E |
C E | case E of Ci xi ⇒ e i=0..n

i

A program is a possibly empty sequence of data-type declarations followed
by an expression. Concrete cell constants (ranged over by l) only arise in
terms that are the intermediate results of evaluation; they are not in the
language in which programmers write. The evaluation strategy is call-
by-value (CBV). We have chosen to explicitly include several constructs in
the calculus that could have been encoded instead. This is done to avoid
cluttering the presentation and use of the calculus with encodings. Should
we, however, wish to formally prove properties about this calculus then
encodings would be preferred to limit the number of cases in inductive
analyses.

We introduce a store to keep track of store cell values, and define dyna-
mics via a single-step evaluation relation −→ on configurations. We use the
following notational conventions.

Notation 4.5. σ ranges over stores, i.e., partial functions from locations to values,
(σ, l 6→ v) denotes binding of location l to value v, σ[l 6→ v] denotes updating of

4.3. Encoding references via closed links 79

store σ with location l now bound to value v, and {v/x}e is the result of replacing
all free occurrences of variable x in expression e by value v.

Before defining the semantics we need to define substitution of values in
place of variables in terms.

Definition 4.6 (Substitution).

{v/x}x def
= v

{v/x}y def
= y

{v/x}(e1e2) def
= ({v/x}e1)({v/x}e2)

{v/x}(fst e) def
= fst ({v/x}e)

{v/x}(snd e) def
= snd ({v/x}e)

{v/x}(let y = e1 in e2 end) def
= let y = {v/x}e1 in {v/x}e2 end ,

if y ! x

{v/x}(ref e) def
= ref {v/x}e

{v/x}(!e) def
= !{v/x}e

{v/x}(e1 # e2) def
= {v/x}e1 # {v/x}e2

{v/x}(C e) def
= C ({v/x}e)

{v/x}(case C jv′ of Ci xi ⇒ e i=0..n
i) def

= case C jv′ of Ci xi ⇒ ({v/x}ei) i=0..n

{v/x}(λy.e) def
= λy.{v/x}e , if y ! x

{v/x}(fix f (y) = e) def
= fix f (y) = {v/x}e , if f , y ! x

{v/x}unit def
= unit

{v/x}l def
= l

{v/x}n def
= n

Notice that in the case for lambda abstractions and fixed-point constructs
there is no need for a side-condition stating that y $ fv(v), where function fv
returns the free variables of a term, because only values v, which are closed
terms by definition, are inserted.

We call the following rules basic.

80 4. Encoding MiniML with References in Bigraphs

Definition 4.7 (Semantics).

〈fst (v1, v2), σ〉 −→ 〈v1, σ〉
〈snd (v1, v2), σ〉 −→ 〈v2, σ〉

〈let x = v in e end, σ〉 −→ 〈{v/x}e, σ〉
〈ref v, σ〉 −→ 〈l, (σ, l 6→ v)〉 , l ∈ L f resh

〈!l, σ[l 6→ v]〉 −→ 〈v, σ[l 6→ v]〉
〈l # v′, σ[l 6→ v]〉 −→ 〈unit, σ[l 6→ v′]〉

〈(λx.e) v, σ〉 −→ 〈{v/x}e, σ〉
〈(fix f (x) = e) v, σ〉 −→ 〈{v/x, (fix f (x) = e)/ f }e, σ〉

〈case Cj v of Ci xi ⇒ e i=0..n
i , σ〉 −→ 〈{v/xj}ej, σ〉 , if j ∈ {0, . . . ,n}

Notice that stores are not terms. We briefly explain the last rule. It allows
evaluation of a case construct provided that the expression to be matched
is a value, and that it matches one of the constructors declared. The result
of the evaluation is a substitution of v for xj in the jth branch of the case
construct. There is only one variable on the left-hand side in each branch,
which means that if one wishes to match a constructor with a value that is,
e.g., a pair then the variable xj has to be manually deconstructed (in this
case projected) on the right-hand side of the matching branch. We will see
an example of this in Chapter 5. We close evaluation under contexts:

Definition 4.8. If 〈e, σ〉 −→ 〈e′, σ′〉 then there exists a unique E such that e = E[r],
〈r, σ〉 −→ 〈r′, σ′〉 is a reduction by one of the basic rules, and e′ = E[r′].

We encode Ξ in Local Bigraphs [Mil07]. The signature is shown in Figure
4.1 to be explained shortly.

For now, let i0, i1, i2, . . . represent natural numbers. These are used
instead of a more cumbersome bigraphical representation, which will be
presented in Section 4.3.1, of natural numbers using only constants zero and
successor. Binding ports are used to delimit variable scope (see e.g. letb, lam,
and casee). The controls letb, casee, lam, and fix, are passive to prevent
evaluation “under them”. The val control explicitly marks values such that
we know when to lift the exp controls delaying evaluation. val is active to
allow for substitutions to move “under it”, a point to which we will return
shortly. The last six controls are not images of Ξ-terms, but are introduced
to implement a store, call-by-value (CBV) evaluation, and substitution. cell
denotes a reference cell generated by evaluation. cell′ denotes a store cell,
i.e., it resides in store, holding the value of a reference cell, which it refers

4.3. Encoding references via closed links 81

Control Activity Arity Comment
var atomic 0→ 1 Variable
app active 0→ 0 Application
appl active 0→ 0 Left part of application
appr active 0→ 0 Right part of application
pair active 0→ 0 Pair
pairl active 0→ 0 Left component of pair
pairr active 0→ 0 Right component of pair
fst active 0→ 0 Left projection on pair
snd active 0→ 0 Right projection on pair
let active 0→ 0 Let construction
letd active 0→ 0 Declaration of ’let’
letb passive 1→ 0 Body of ’let’
ref active 0→ 0 Reference request
deref active 0→ 0 Dereference
assign active 0→ 0 Assignment
acell active 0→ 0 Cell component of assignment
aval active 0→ 0 Value component of assignment
case active 0→ 0 Case construct
casel active 0→ 0 Constructor to be matched of ’case’
casee passive 1→ 0 Case branch of ’case’
Cn active 0→ 0 A control for each member of C
val active 0→ 0 Value
lam passive 1→ 0 Lambda abstraction
fix passive 2→ 0 Fixed-point construction
unit atomic 0→ 0 Unit, for side effects
i0, i1, i2 . . . atomic 0→ 0 Natural numbers
cell atomic 0→ 1 Generated reference cell (term)
cell’ active 0→ 1 Generated store cell
store active 0→ 0 Store
exp passive 0→ 0 Delay evaluation
sub active 1→ 0 Term to undergo substitution
def active 0→ 1 Term to be inserted

Figure 4.1: Signature ΣΞ.

82 4. Encoding MiniML with References in Bigraphs

to by a closed link. The store and its cells are active so that the contents of
the store and its cells can be updated, but no computation takes place in
the store or the cells, because only values are stored there. As will become
apparent when translatingΞ-terms into Local Bigraphs, exp is used to delay
evaluation certain places in terms to implement the CBV semantics. sub and
def are used to perform explicit substitution, sub holds the term to undergo
substitution for some x and def holds the value to be inserted instead of x.
The purposes of the other controls should be clear.

In Figure 4.2 we provide a formal translation of Ξ into Local Bigraphs
assuming well-formed Ξ-programs. The semantic function "·# translates
programs p, and the semantic function %·& translates expressions e. The
idea is to preserve the call-by-value semantics by inserting passive exp
controls to hinder premature evaluation. Binding ports are used to limit
the scope of variables, like lambda abstractions in the λ-calculus.

Notation 4.9. We write f ◦! as f! and datatype as dt. Composition binds tighter
than prime product (on the right-hand sides of Figure 4.2).

Consider Figure 4.2. The subscript set X on the translation includes the
names of all free variables (fv) in e. Thus, each term e has many bigraph
images. All the images of %·&X are ground so they all have the empty
inner face ε, and the subscript set as outer face. We require λ-terms to be
α-converted in such a way that the binding variables are all different. α-
convertible Ξ-terms have equal images, e.g. %λy.y&∅ = %λz.z&∅. Notice how
we do not translate configurations, merely terms. This is because the store
is implicit in the Ξ-world, but we need to model it explicitly in Bigraphs.
The store is assumed to be empty at the beginning of evaluation. The sites
−n (for n ∈ N) are really identity morphisms.

The parametric bigraphical reaction rules corresponding to the dynamic
single-step semantics of Ξ are presented in Figure 4.3. There is a dynamic
correspondence between −→ and !, namely that −→ can be mimicked by
one or more uses of !.

During evaluation some variables and cells may disappear and new
cells may be created. We demand that fv(e) ⊆ X, which is an invariant.

The first rule we wish to emphasise is rule (4.6). Evaluation of a ’let’
expression results in a substitution. We emphasise the fact that −0 in the
redex can have x in its outer face and maintain it in the reactum as explained
earlier in this chapter.

Rule (4.7) is wide because we wish to have the store at “top level”
and not embedded in the program as such. The link is closed outermost

4.3. Encoding references via closed links 83

"dt D = Ci of t i=0..n
i ; p#X = "p#X

"dt D = Ci of t i=0..n
i ; e#X = %e&X | store()
%x&X7{x} = X ⊕ varx

%(e1, e2)&X = (pair ⊕ idX)(
(pairl ⊕ idX)%e1&X |
(pairr ⊕ idX)(exp ⊕ idX)%e2&X

)

%fst e&X = (fst ⊕ idX)%e&X

%snd e&X = (snd ⊕ idX)%e&X

%let x = e1 in e2 end&X = (let ⊕ idX)(
(letd ⊕ idX)%e1&X |
(letb(x) ⊕ idX)%e2&X7{x}

)

%λx.e&X = (val ⊕ idX)(lam(x) ⊕ idX)%e&X7{x}
%fix f (x) = e&X = (val ⊕ idX)(fix(f ,x) ⊕ idX)%e&X7{ f ,x}

%e1 e2&X = (app ⊕ idX)(
(appl ⊕ idX)%e1&X |
(appr ⊕ idX)(exp ⊕ idX)%e2&X

)

%ref e&X = (ref ⊕ idX)%e&X

%!e&X = (deref ⊕ idX)%e&X

%e1 # e2&X = (assign ⊕ idX)(
(acell ⊕ idX)%e1&X |
(aval ⊕ idX)(exp ⊕ idX)%e2&X

)

%C e&X = (C ⊕ idX)%e&X

%case e of Ci xi ⇒ e i=0..n
i &X = (case ⊕ idX)

(
(casel ⊕ idX)%e&X |
(casee(x0) ⊕ idX)(C0 ⊕ idX)%e0&X7x0

...

(casee(xn) ⊕ idX)(Cn ⊕ idX)%en&X7xn

)

%unit&X = (val | X) unit
%n&X = (val | X) in , ∀n ∈ N

Figure 4.2: A translation of Ξ into Local Bigraphs.

84 4. Encoding MiniML with References in Bigraphs

pair(pairl(val(−0)) | pairr(exp(−1)))
! pair(pairl(val(−0)) | pairr(−1)) (4.2)

pair(pairl(val(−0)) | pairr(val(−1)))
! val(pair(pairl(val(−0)) | pairr(val(−1)))) (4.3)

fst(val(pair(pairl(−0) | pairr(−1)))) ! −0 (4.4)
snd(val(pair(pairl(−0) | pairr(−1)))) ! −1 (4.5)
let(letd(val(−0)) | letb(x)(−1〈x〉))! sub(x)(−1〈x〉 | defx(val(−0))) (4.6)
ref(val(−0)) ‖ store(−1)

! /l.val(celll) ‖ store(cell′l (val(−0)) | −1) (4.7)
deref(val(celll)) ‖ store(cell′l (−0) | −1)

! −0 | l/ ‖ store(cell′l (−0) | −1) (4.8)
assign(acell(val(celll)) | aval(exp(−0)))

! assign(acell(val(celll)) | aval(−0)) (4.9)
assign(acell(val(celll)) | aval(val(−0))) ‖ store(cell′l (−1) | −2)

! val(unit) ⊕ {l} ‖ store(cell′l (−0) | −2) (4.10)
app(appl(val(−0)) | appr(exp(−1)))

! app(appl(val(−0)) | appr(−1)) (4.11)
app(appl(val(lam(x)(−0〈x〉))) | appr(val(−1)))

! sub(x)(−0〈x〉 | defx(val(−1))) (4.12)
app(appl(val(fix(f ,x)(−0〈 f , x〉))) | appr(val(−1)))

! sub(f)(sub(x)(−0〈x〉 | defx(val(−1))) |
def f (val(fix(f ,x)(−0〈 f , x〉)))) (4.13)

C(val(−0)) ! val(C(val(−0))) (4.14)
case(casel(val(C(−0))) | casee(x)(C(−1〈x〉)) | −2)

! sub(x)(−1〈x〉 | defx(−0)) (4.15)
varx ‖ defx(val(−0)) ! val(−0) | {x} ‖ defx(val(−0)) (4.16)
sub(x)(−0 | defx(−1)) ! −0 (4.17)
sub(x)(val(lam(y)(−0〈x, y〉)) | defx(val(−1)))

! val(lam(y)(sub(x)(−0〈x, y〉 | defx(val(−1))))) (4.18)
sub(x)(val(fix(f ,y)(−0〈x, f , y〉)) | defx(val(−1)))

! val(fix(f ,y)(sub(x)(−0〈x, f , y〉 | defx(val(−1)))))(4.19)

Figure 4.3: Reaction rules for Ξ.

4.3. Encoding references via closed links 85

immediately upon creation to only grant the freshly generated reference cell
celll access to that store cell. Thus, we know that l is not in cod(−0), cod(−1).

Dereferencing and assignment also work as one would expect, (4.8),
(4.9) and (4.10), the extra outer name l being necessary to maintain the outer
face. This prime product is always defined because we know that −0 is a
value and thus has outer width 1 (like l/). Location l is closed, but this is not
explicit in rules (4.8)-(4.10) because the context has to be able to identify the
name l of different regions. In the second assignment rule (4.10) we extend
val(unit) with the wiring {l} : ε→ {l} to maintain l in the outer face of the first
region of the reactum.

Applying the fixed-point construction to a value results in a nested
substitution, as one would expect. We have a rule pair (4.14) and (4.15) for
each declared constructor in the source program.

Rules (4.12), (4.16), and (4.17) are reminiscent of Milner’s encoding of aλ-
calculus with explicit substitutions into Local Bigraphs [Mil07]. Rule (4.12)
is application of a lambda abstraction (to a value), rule (4.16) performs a
substitution, and rule (4.17) discards an explicit substitution. The difference
between our rules and those of [Mil07] is that we have val controls, and we
have written the implicit prime product with set {x} in rule (4.16).

In rule (4.16) we exploit Local Bigraphs by using a wide reaction rule in
connection with binding to substitute “at a distance” one occurrence at a
time. (This does not work in Binding Bigraphs because here a name can not
reside in multiple locations. However, one can tediously obtain the same
behaviour by means of more reaction rules.)

Rule (4.17) terminates the substitution when used; it can not be applied
before we are actually done substituting, because −0 can not contain x in its
outer face since in that case cod(R) ! cod(R′).

Rules (4.18) and (4.19) propagate explicit substitutions under lambda
abstractions and fixed-point constructs. We will discuss this further in
Section 4.4.

Notice how we have written two sites as −0 in R′ implicitly defining
$ι = {0, 1 6→ 0}. The rest of the rules should be clear.

4.3.1 Encoding of natural numbers
Here we present an encoding of natural numbers in Bigraphs using a Peano-
like representation with zero and successor. We also encode rules imple-
menting simple operations like equality on these using an encoding of Boo-
lean constants True and False. There should be no surprises in Figure 4.4.
The rules presented in Figure 4.5 should be straightforward, but do notice

86 4. Encoding MiniML with References in Bigraphs

Control Activity Arity Comment
true atomic 0→ 0 True
false atomic 0→ 0 False
z atomic 0→ 0 Zero (i0)
s active 0→ 0 Successor
argl active 0→ 0 Left argument
argr active 0→ 0 Right argument
eqi active 0→ 0 Equality operator
lti active 0→ 0 Less than operator
addi active 0→ 0 Addition operator
subi active 0→ 0 Subtraction operator
muli active 0→ 0 Multiplication operator

Figure 4.4: Signature for natural numbers encoding in Local Bigraphs.

that we use non-negative subtraction on integers (so really we restrict our-
selves to natural numbers) in rule (4.31) and that multiplication is computed
according to the equation (m+ 1) ∗ (n+ 1) = (n+ 1)+m ∗ (n+ 1) in rule (4.36).
As mentioned in Chapter 4 we introduce a shorthand notation for natural
numbers; i0 means z, i1 means s z, i2 means s (s z), and so forth.

In an implementation of a bigraphical rewrite engine, it is probably too
inefficient to work with bigraphical integers (and Booleans) so one would
perhaps choose to work with the integers (and Booleans) of the imple-
mentation language instead. Using i−controls is a more human-readable
representation.

4.3.2 An example exploring references
In this chapter we wish to explore the encoding of references, and this only
uses a fragment of Ξ. We shall return to the other parts of Ξ in Chapter 5.
Consider the program shown in Figure 4.6. It is written inΞ, and translated
into Bigraphs. Clearly, the result of evaluating this program should be the
value 4 (i4). This program uses aliasing, and we intend to see if the encoding
behaves correctly. We have presented the bigraph in short-hand notation
leaving wirings implicit.

By A0 we denote the bigraph shown in Figure 4.6. The initial state
A0 rewrites to A14 = /l.val(i4) | store(loc′l (val(i4))) via the reduction path
(4.7) − (4.6) − (4.16) − (4.6) − (4.16) − (4.17) − (4.9) − (4.10) − (4.2) − (4.16) −
(4.17) − (4.8) − (4.3) − (4.5). The most interesting steps are the uses of rules
(4.7), (4.10), and (4.8), but we also show how rules (4.6), (4.16), and (4.17) are

4.3. Encoding references via closed links 87

eqi(argl(z) | argr(z)) ! true (4.20)

eqi(argl(s(−0)) | argr(s(−1))) ! eqi(argl(−0) | argr(−1)) (4.21)

eqi(argl(z) | argr(s(−0))) ! false (4.22)

eqi(argl(s(−0)) | argr(z)) ! false (4.23)

lti(argl(z) | argr(z)) ! false (4.24)

lti(argl(s(−0)) | argr(s(−1))) ! lti(argl(−0) | argr(−1)) (4.25)

lti(argl(z) | argr(s(−0))) ! true (4.26)

lti(argl(s(−0)) | argr(z)) ! false (4.27)

addi(argl(z) | argr(−0)) !−0 (4.28)

addi(argl(−0) | argr(z)) !−0 (4.29)

addi(argl(s(−0)) | argr(s(−1)))
! s(addi(argl(s(−0)) | argr(−1))) (4.30)

subi(argl(z) | argr(−0)) ! z (4.31)

subi(argl(−0) | argr(z)) !−0 (4.32)

subi(argl(s(−0)) | argr(s(−1))) ! subi(argl(−0) | argr(−1)) (4.33)

muli(argl(z) | argr(−0)) ! z (4.34)

muli(argl(−0) | argr(z)) ! z (4.35)

muli(argl(s(−0)) | argr(s(−1)))
! addi(argl(s(−1)) | argr(muli(argl(−0) | argr(s(−1))))) (4.36)

Figure 4.5: Operations on integers in Local Bigraphs.

matched because there are some subtleties here. We only show the maps η,$ι
in the matches where they are important and non-trivial. The reader may
want to look up these rules when inspecting the matches in what follows.

Notation 4.10. We use S,T,U to denote certain sub-terms of a bigraph when these
sub-terms are not important for the particular match, to increase readability when
presenting the matches.

88 4. Encoding MiniML with References in Bigraphs

let z = ref 5
in let y = z in
snd (y:=4,!z)

--

let(letd(ref(val(i5))) |
letb_(z)(
let(letd(var_z) |

letb_(y)(
snd(pair(

pairl(assign(
aloc(var_y) |
aval(exp(i4)))) |

pairr(exp(deref(var_z))))))))) |
store()

Figure 4.6: A Ξ-program and its translation into Bigraphs.

We begin to evaluate the declaration part of the outermost let; A0 mat-
ches (4.7) because we find

a = i5 ‖ 1 : (∅, ∅)
ω = id2 : (∅, ∅)→ (∅, ∅)
C = let

(
letd(−2) | letb(z)(S)

)
| −3 : (∅, ∅)→ ∅

a = a′

ω′ = 1 ⊗ (id∅ | id∅) : (∅, ∅)→ (∅, ∅)

where S denotes the content of the outermost letb in A0. It is easy to convince
oneself that A0 = C ◦ (R ⊕ ω) ◦ a. Consider an A1 such that A0 ! A1:

A1 = /l.let
(
letd(val(locl)) | letb(z)(S)

)
| store(loc′l (val(i5)))

Notice how in A1 the closure is done “outermost” whereas in the rule it is
done in R′. This situation is essentially the question whether

(
F(−0) | G(−1)

)
◦ /l.Hl | Il = /l.F(Hl) | G(Il)

for some ions F,G,H, I. Looking at how composition is defined in Definition
8.3 (precategory of link graphs) of [JM04], we see that case one of the

4.3. Encoding references via closed links 89

definition of the composite link map applies so indeed the equation holds,
and this also applies to our setting. (It also holds for ‖.) Thus, A1 =
C ◦ (R′ ⊕ ω′) ◦ a′ as required. Intuitively, it may seem weird that one can
plug in two link-connected regions (when ‖ is used) into two separate holes
and keep the connection intact – especially when one looks at the graphical
representation. However, the closed link is a visual deception – formally
the link map just maps the outer name l of H and I to an edge, and this
relationship is maintained during composition.

We continue by showing how A1 matches (4.6). We have η = Id2 and
$ι = (Id∅, Idx). When matching we can, without loss of generality, rename z
to x in A1 because the two terms denote the same bigraph.

a = locl ‖ S : (l, x)
ω = idl | id∅ : (l, ∅)→ l
C = /l.idl | store(loc′l (val(i5))) : l→ ∅
a′ = a
ω′ = ω

A2 = /l.sub(z)
(
let(letd(varz) | letb(y)(S)) | defz(val(locl))

)
| store(loc′l (val(i5))).

Next up is application of the substitution rule (4.16). We have η = {0, 1 6→
0} and$ι = (Id∅, Id∅).

a = locl : l
ω = l/ ‖ idl : l→ (l, l)
C = /l.sub(x)

(
let(letd(−2〈x, l〉) | letb(y)(S)) | −3〈x, l〉

)

| store(loc′l (val(i5))) : ({x, l}, {x, l})→ ∅
a′ = locl ‖ locl : (l, l)
ω′ = idl ‖ idl : (l, l)→ (l, l)

So, A3 is:

A3 = /l.sub(z)
(
let(letd(val(locl)) | letb(y)(S)) | defz(val(locl))

)

| store(loc′l (val(i5))) .

Now, we rewrite A3 with rule (4.6) and then rule (4.16) to obtain

A_5 = /l . sub_(z)(
sub_(y)(snd(pair(

90 4. Encoding MiniML with References in Bigraphs

pairl(
assign(
aloc(val(loc_l)) |
aval(exp(val(i4))))) |

pairr(exp(deref(var_z))))) |
def_y(val(loc_l))) |

def_z(val(loc_l))) |
store(loc’_l(val(i5))) .

These two steps unfolded the innermost let to a sub, and then substituted
in the value of x for y. We see that there are no more free occurrences of the
name y so we can terminate that substitution with rule (4.17). Notice that
η = Id0.

a = T ‖ val(locl) : ({z, l}, l)
ω = id{z,l} | idl : ({z, l}, l)→ {z, l}
C = /l.sub(z)

(
−2〈z, l〉 | defz(val(locl))

)
| store(loc′l (val(i5))) : {z, l}→∅

a′ = T : {z, l}
ω′ = id{z,l} : {z, l}→{ z, l}

where T denotes the sub-term snd(. . .) of A5. State A6 is:

A6 = /l.sub(z)
(
T | defz(val(locl))

)
| store(loc′l (val(i5))) .

Now, simply remove the exp from aval in T with (4.9) to obtain:

A_7 = /l . sub_(z)(snd(pair(
pairl(assign(

aloc(val(loc_l)) |
aval(val(i4)))) |

pairr(exp(deref(var_z))))) |
def_z(val(loc_l))) |

store(loc’_l(val(i5))) .

A7 can be rewritten with (4.10) as follows. η = {0 6→ 0, 2 6→ 2}.
a = i4 ‖ val(i5) ‖ 1 : (∅, ∅, ∅)
ω = id∅ ‖ (id∅ | id∅) : (∅, ∅, ∅)→ (∅, ∅)
C = /l.sub(z)

(
snd
(
pair(pairl(−3〈l〉) | pairr(U))

)
| defz(val(locl))

)
| −4〈l〉

: (l, l)→ ∅
a′ = val(i4) ‖ 1 : (∅, ∅)
ω′ = 1 ‖ (id∅ | id∅) : (∅, ∅)→ (∅, ∅)

4.4. Dynamic correspondence 91

The result is state A8:

A8 = /l.sub(z)

(
snd
(
pair(pairl(val(unit)) | pairr(U))

)
| defz(val(locl))

)

| store(loc′l (val(i4))).

Notice how the store has changed. It is here that we realise why the link
l has to be open in the definition of (4.10). Had it been closed we would
not be able to supply a proper context C because there would be no way to
identify the location inside defz with the locations inside R (that are plugged
into the holes −3,−4), since these would be in an already closed link, and
thus not accessible (by composition) from the outside. This is an important
property of closed links. We may now rewrite A8 to

A11 = /l.snd
(
pair(pairl(val(unit)) | pairr(deref(val(locl))))

)

| store(loc′l (val(i4)))

by the non-controversial sequence (4.2) - (4.16) - (4.17). Finally, we may
rewrite using (4.8).

a = val(i4) ‖ 1 : (∅, ∅)
ω = 1 ‖ (id∅ | id∅) : (∅, ∅)→ (∅, ∅)
C = /l.snd(pair(pairl(val(unit)) | pairr(−3〈l〉))) | −4〈l〉 : (l, l)→ ∅
a′ = val(i4) ‖ val(i4) ‖ 1 : (∅, ∅, ∅)
ω′ = id∅ ‖ (id∅ | id∅) : (∅, ∅, ∅)→ (∅, ∅)

Again, the rule would not have worked with a closed link had there been a
dereference operation inside pairl of A11, for example. In this case, however,
it works out either way. We finish evaluation by trivially rewriting with
(4.3) and then (4.5). Thus, we have A14 = /l.val(i4) | store(loc′l (val(i4))) as
promised.

4.4 Dynamic correspondence
We have argued by example that there is a dynamic correspondence bet-
ween Ξ and the encoding hereof in Local Bigraphs. Informally, we claim
that every time we reduce a term in Ξ by −→ we can mimic that in the
bigraphical reactive system with one or more uses of !, because substitu-
tions are explicit and we need to propagate these (and also lift exp controls).

92 4. Encoding MiniML with References in Bigraphs

Consider the following example, where we have omitted controls val, appl,
and appr, to aid readability:

app(app(lam(x)(lam(y)(varx)) | exp(i4)) | exp(i2))
!2 app(sub(x)(lam(y)(varx) | defx(i4)) | exp(i2))
! app(lam(y)(sub(x)(varx | defx(i4))) | exp(i2))
!2 sub(y)((sub(x)(varx | defx(i4))) | defy(i2))

And now there are three reaction (computation) paths leading to i4 depen-
ding on the order of performed and discarded substitutions. In this case the
order does not matter as there is confluence. This example illustrates how
the rules (4.18) and (4.19) propagate substitutions so that we may have the
desired dynamic correspondence.

To formally prove the dynamic correspondence we would need a subs-
titution lemma, a lemma allowing us to separate a context from a redex, and
a lemma corresponding to Definition 4.8, but for Bigraphs. We comment
a little further on the desired theorem in Section 8.1.6. Proving that the
correspondence holds both ways would likely require us to keep track of
which bigraphs are actually images of Ξ-terms.

We conclude that references can be encoded in Local Bigraphs using
closed links, that they seem to behave as desired, and conjecture that this
can be proved formally.

4.5 Discussion
One may wonder, intuitively, why we chose to encode references via closed
links and not binders. We give such an intuition here.

Closed links were included in the Bigraphs to capture the notion of
name restriction from the π-calculus. Binding ports likewise capture the
π-calculus notion of prefix. In essence, the difference between closed links
and binding ports in (Binding and Local) Bigraphs is locality and the scope
rule. All binders are located (while edges are not) and have to obey the
scope rule, i.e., all peers of a certain binder must be located beneath that
binder in the place graph, roughly said.2 This means that using binders is
in general more restrictive, which may be preferred in some situations like
when modelling access control. In our case we have a global store located at
top level. Thus, in this case, it should be possible to encode references via a

2We merely aim to provide some intuition and thus refer the reader to [JM04] for precise
definitions.

4.5. Discussion 93

top-level vertex acting like a store by having a binding port for each created
location.

A reason for using binders could be to investigate whether there is a
simpler proof of the dynamic correspondence between Ξ and the encoding,
than with free closed links. The idea is to define a family of controls
storem, indexed by an ordinal m defining the set of (binding) ports on
store. The program resides within this control. Initially, we have store0(. . .)
with no ports meaning that no locations have been created. Then, every
time a location is created we replace the current storei with a new one,
namely storei+1, and bind this new location to the new port (keeping the
old bindings). When binding a new location to the store we also create a
value node holding the value of the newly created location, and link this to
the new binding port of the store. This idea resembles one of Robert Harper
[Har00] (Chapter 16), though in another setting.

Summing up, we can say that closed links were chosen because they do
not have locality, which enables us to avoid worrying about the locality of
the store holding the references, which is the natural way to think about a
store.

94 4. Encoding MiniML with References in Bigraphs

5
A Real-life Location Model

In this chapter we make more precise what is meant by the term “reflective”
building. Having a clear idea of which properties such a building should
possess we move on to exhibit a Plato-graphical model corresponding to
such a building. Some parts of the model are formulated directly in Bi-
graphs, and some parts are expressed in a slightly enhanced and sugared
form of Ξ, named Ξsu!ar. In a sense, this chapter brings together the work
of the Chapters 2, 3, and 4.

5.1 A reflective building
We define a reflective building in more detail. In [Hop00] on “sentient com-
puting” the following three “location categories” are stated as important.

• Containment

• Proximity

• Coordinate systems

Containment refers to an object being within a container (location). Proxi-
mity is the notion of being close to something. Coordinate systems provide
location in space (subject to some error value). We have seen containment
before as a spatial relationship on locations. We interpret proximity to co-
ver two situations: (1) Near measured in physical distance, and (2) near as
within the same symbolic range, that is, within the same container (at some
level in the topology/hierarchy). Our starting point is a symbolic model so
we abstract away from coordinates in this treatment.

We do, however, add some additional properties to our list of reflective
building properties:

95

96 5. A Real-life Location Model

• Device positioning

• A fixed set of uniquely identifiable mobile devices

When considering a reflective building we think of located-objects as being
mobile devices (and henceforth refer to them as such) such a mobile phones
and PDAs.

In our modelling effort we abstract the reflective building by abstracting
over location types (floors, wings, rooms etc.) and device types (PDA,
mobile phone, laptop etc.).

We capture systems where, e.g., a user arrives at a museum and receives
a mobile device to be used together with the positioning system and the
location model at this museum.

5.2 The model

Before the presentation of the Plato-graphical model it is instructive to
explain the key design choices made.

5.2.1 Design choices

Several choices have been made regarding the languages used, the repre-
sentation of locations and devices, and the location hierarchy. We treat these
considerations in turn.

Languages used

We have used two languages in the model. The parts C and S of the model
are written using the bigraphical term language, and parts L and A in a
sugared version Ξsu!ar of the calculus Ξ presented in Chapter 4. We prefer
to work within Bigraphs except when it becomes too inconvenient. We
show that Bigraphs are well-suited for modelling C and S, and not just C
as suggested in Chapter 3. The location model L is, however, sufficiently
complicated to write natively in Bigraphs for us to prefer writing it inΞsu!ar.
A communicates with L so it makes sense to write A in Ξsu!ar, apart from
the fact that it is easier to program A in Ξsu!ar than natively in Bigraphs, as
will become apparent. Thus, we have a real world C written in Bigraphs,
a proxy P = S ‖ L spanning both Bigraphs and Ξsu!ar, and a location-aware
application A written in Ξsu!ar.

5.2. The model 97

A key issue in this setup is how to realise the communication between
the “bigraph world” and the “Ξsu!ar world” in P. Later in this chapter we
explain how Ξsu!ar-programs correspond to Ξ-programs.

Representing locations and devices in C (and S)

We use one control loc : 0→ 0 to represent locations and one dev : 0→ 0 to
represent devices abstracting away different location types. Another option
is to use different controls for the “different” types of locations in a building;
wing, floor, room and so forth. The reasons for choosing one loc control are
(1) to limit the number of reaction rules to be written – we do not need to
have a rule for each combination of the different location (and device) types
where one location is source and the other target, and (2) identity and type
of a location can be represented conveniently in another way (to which we
return below). Devices are simply represented by a device control.

Known devices

As mentioned in Section 5.1 we consider a reflective building to have a fixed
set of known devices, which pertains to all parts of the model. Some may
be in use and some may not. A device is in use when it is in a location
which is not the special “unused devices” location. Initially, each device
is either in this location or in one of the locations of the location hierarchy
(to be addressed next). This property should be invariant under reaction.
No new devices can appear while the system is running. As mentioned in
Section 5.1 this is a realistic choice, and technically it significantly simplifies
our task. This is due to the fact that when a device is discovered in C we have
to mirror this by a discovery in L via S, and thus generate a corresponding
fresh identifier for this device in L. It is difficult to ensure this automatically.

A static tree-structured location hierarchy

It is a simplifying choice to work with a static location hierarchy as opposed
to a dynamic one. It is reasonable to have a static location hierarchy in
this case because a (reflective) building in the real world seldom changes.
Thus, the location hierarchy in the model needs to be altered only on rare
occasions. According to [Leo98] location hierarchies are typically static.
Furthermore, we organise locations in a tree utilising the structure of place
graphs. This is a limiting choice, but not an uncommon one. The same
hierarchy is present in C and L, but represented differently.

98 5. A Real-life Location Model

Modelling the real world

For our purposes the following abstraction is suitable: Devices can enter,
move around in, and leave a (reflective) building which is observationally
equivalent to being turned off. These reconfigurations should be modelled
in C.

Identification of locations and devices in C and L

A location in the bigraphical part of the model can be identified by a link
or by an embedded identity control. We assume that locations are uniquely
identified which requires an equality operation on their identifiers. Such
identifiers could, e.g., be natural numbers or strings. We have chosen
natural numbers for simplicity and to keep our focus. Strings can also
be encoded. The property that no two locations or devices have the same
identifier is invariant under reaction, i.e., maintained by every reaction rule.

Now, consider the two approaches; identification via a link or an em-
bedded control. Links can be open (outer name) or closed (edge). Using
closed links in C is not a viable solution because they do not in fact reveal
any identity information to the context and thus can not be distinguished,
which is required to support certain basic queries. Open links could be used
because the location hierarchy is static; location identifiers are assumed to
be unique initially, and new locations are not introduced under reaction.
Thus, there is no risk of an identifier (outer name) being reused, i.e., two
different locations being identified. As no new devices are introduced we
are safe. The same reasoning applies to device identifiers.

Another option is to place a unique identity control as a child of each
location and device control, which is what we choose. Our choice is suppor-
ted by the following two considerations: (1) The model becomes simpler.
Had we chosen link identifiers in C we would have to relate these links to
location identifiers in L which could be natural numbers (or strings). This
can be done by “exporting” the location identifiers of L to top level of the
Plato-graphical system, which is not entirely straightforward as will become
apparent later. (2) Given the intuition that controls represent entities and
links represent (wireless) connections between entities it seems appropriate
to model identity of an entity as part of that entity (e.g. like a MAC address
of a device or the name of a room), i.e., via an identity control. Initially,
C and L have the same location hierarchy (in their respective languages).
Next we discuss how closely coupled C and L should be.

5.2. The model 99

Relating C and L via S

An argument for a high degree of coupling between C and L is a low mode-
lling effort, whereas a low degree of coupling implies stronger modularity,
which is an argument against a tight coupling. Let us consider the setup to
decide on a design choice here. The setup is that the initial configuration of
the system is given, and in particular that the location hierarchies in C and
L are coherent. For simplicity, take locations and devices to be identified by
Ξ-integers in L. Encoding integers (or rather natural numbers) in Bigraphs
yields an easy correspondence, defined in S, between identifiers in C and L.
This is a rather tight coupling, but not an unreasonable one since the user
of the system is obliged to define the location hierarchy and the devices
in both C and L initially. Furthermore, decoupling C and L merely comes
down to a mapping in S.

Location systems as Plato-graphical systems

Consider Figure 5.1. Location-aware applications (agents) are captured by

Actuators

Sensed information

Position updates

Queries

Application

Location model

Positioning system

Physical world

A

L

S

C

L

L

S

Figure 5.1: Overall location system model seen as Plato-graphical.

the part A. The location model including queries (and actuators) is part L.
We have included both queries and actuators in L because they are really
interfaces to the location model. The positioning system including sensors

100 5. A Real-life Location Model

is part S. S informs L of location updates. The physical world is part C.

5.2.2 Introducing the model
We begin by briefly recalling Plato-graphical models. Consider a Plato-
graphical model X = (CX,PX,AX) as defined in Chapter 3. This model
consists of a world cX ∈ CX, a proxy PX with constituents sX ∈ SX (sensor)
and lX ∈ LX (the location-aware system’s representation of the world), and
a location-based application aX ∈ AX. The notation used, e.g. cX ∈ CX,
signifies that cX is the state of the BRS CX.

The overall intuition about the system is as follows: cX reconfigures
as it pleases. Essentially, we have three reconfigurations in CX; discovery
of a device in some location, movement of a device from a location to a
parent or sub-location, and loss of a device (the system loses track of the
device). Much like in the real world, changes in cX occur in an unpredictable
and non-deterministic manner. The system SX observing the state cX of the
world tries as best it can to inform lX of change to cX by invoking certain
“interface functions” in LX to update its internal representation of the world
(building). SX has access to CX and LX by shared controls (with CX) and an
outer name (with LX). Due to the asynchronicity between CX and LX we are
likely to experience some discrepancy in the states of the two parts. This is
perfectly realistic with respect to real-life indoor positioning systems such
as Ekahau.

To make our model even more realistic we envision introducing time
so that events from SX to LX can be timestamped and thus ordered. This
should enable LX to update its internal representation to more accurately
match cX as observed by SX. AX can query LX via a specific set of “interface
functions”. Recall that CX and SX are native BRSs whereas LX and AX are
the BRSs resulting from a translation ofΞsu!ar-programs into Local Bigraphs
along with the bigraphical reaction semantics defined in Chapter 4. Thus
using the “multi-lingual feature” of Plato-graphical models.

Having briefly given the intuition behind the workings of the model we
proceed to define it as a Plato-graphical model.

Our reflective building

We choose an example which holds the essential conceptual challenges
arising from the previous discussion, but it is also kept simple for the sake
of clarity. A more complex building, e.g. the IT University of Copenhagen,
can likely be modelled without problems.

5.2. The model 101

Introducing the simple reflective building We model a piece of ITU. Before
showing the building as a tree and a bigraph, we briefly state the intention.
We model the building, the atrium (in reality spanning all five floors) in
the centre of the building, two of the four wings, two of the six floors, a
hallway, and two rooms. The building (i1) contains the atrium (i2) and the
wings B (i3) and C (i4). Wing C spans two floors, namely the third floor (i5)
and the fourth floor (i6). The fourth floor contains a hallway (i7) which in
turn contains two rooms, namely room 4C16 (i8) and 4C10 (i9). We assume
six known devices numbered i10 through i15, all in use. One device is in
the building, two devices are in the atrium, one is on the third floor, one is
in room 4C16, and one is in room 4C10.

We could have made other choices, which we address shortly, but for
now, we ask the reader to consider the informal graphical representation in
Figure 5.2. Do notice that the id-controls around location identifiers have
been left out for simplicity. Some choices were made to arrive at exactly the
location hierarchy of Figure 5.2, each one is addressed in turn.

• The ordering of wings and floors.

• Where devices can reside.

Of course, we could have included more wings, floors, rooms etc. easily.
First of all, notice how wings are considered to be above floors in the
hierarchy. This indicates that one has to be within a wing to move from one
floor to another. At the ITU we have stairways that allow this movement.
However, it is also possible to move from a wing to the building, into an
elevator, and to another floor. This is not possible in this model, but we
consider it to be a cosmetic problem that is irrelevant with respect to our
purposes at present. Switching the ordering of wings and floors would yield
a similar problem. Thus, we can either stick with an ordering and accept
the limitation, or model the location hierarchy using two trees (views), one
with wings above floors and the other with floors above wings. That would,
however, complicate things because devices would then have to be situated
in both trees and make a movement in both trees at once. This movement
would be between siblings in one tree, but not in the other tree. As we argue
below, the movement between siblings is the most reasonable and realistic
having chosen a tree structure to organise locations. Alternatively, links
could be used to indicate paths between locations, but that would defeat
the purpose of having imposed a structure on locations in the first place.

A brief detour: The link graph is usable for supporting the connected-to
and distance relationships of Chapter 2 that allow for nearest neighbour

102 5. A Real-life Location Model

dev

i12

loc

loc

loc

loc

locloc

loc

locloc

dev dev

dev dev

i3

i1

i5

i6

i7

i8 i9

i10 i11

i13 i14

devs

i2 i4

dev

i15

Figure 5.2: The building β as a tree where the id-controls around location
identifiers have been left out, for simplicity.

and navigation queries.
We have decided that devices can reside in any location, and that loca-

tions can contain both devices and other locations. This is flexible and does
not cause any modelling problems.

The reader can easily imagine the containment relation of Fig. 5.2. As a
bigraph, identifiers (natural numbers) would be represented by nodes with
atomic controls and depicted as black boxes.We proceed by presenting the
model as a Plato-graphical system.

5.2.3 X as a Plato-graphical model

We divide the presentation into four parts: The native bigraphical parts (1)
CX and (2) SX, and the Ξsu!ar-parts (3) LX and (4) AX.

5.2. The model 103

Recall that we work in Local Bigraphs so the arity of a control is binding
→ free. Furthermore, we consider activity and atomicity to be integral parts of
Bigraphs, but as shown in [Jen07] activity and atomicity could be considered
place-sortings on basic bigraphs. We refer to [Jen07] for the details.

The world part CX

We begin by showing the building β as a bigraph in our term language (as
before, omitting details such as identity wirings etc.), and then proceed to
define the signature and dynamics of the BRS CX.

loc(i1 | dev(i15) |
loc(i2 | dev(i10) | dev(i11)) |
loc(i3) |
loc(i4 | loc(i5 | dev(i12)) |

loc(i6 | loc(i7 | loc(i8 | dev(i13)) |
loc(i9 | dev(i14))))))

| devs()

As mentioned, β is a tree. Having made that choice it is reasonable to model
device movement by allowing devices to move from a location l2 into a
sub-location l3 of l2, or into the parent location l1 of l2. To justify this claim,
think of β; device i13 is situated in location 4C16 (i8), and the only doorway
of 4C16 is into the hallway (i7), and the hallway does allow movement
into another office, namely 4C10 (i9). All devices are in use in this start
configuration. Remember that a device is either in a location or in devs.

The signature and dynamics of CX are defined as follows in Figure 5.3;
context CX = (KCX ,RCX). First, notice how we have allowed ourselves to
represent natural numbers by i−controls instead of using the more low-level
representation with zero and successor. Equality and other basic operations
can be implemented by a countably infinite set of reaction rules, capturing
all combinations. Rule (5.1) discovers a device by moving it from devs to
some loc. The rule is parametrised over the identity of the location, its
content before the discovery, the set of known devices, and the identity of
the device being discovered. Rule (5.2) performs the opposite operation,
namely to lose track of a device. Notice how a device can be discovered
and lost in any location which allows us to model a device being switched
off (manually or because the battery runs out, e.g.) and turned on again in
another location by rule (5.1). The rules (5.1) and (5.2) are dual in a sense.
The rules (5.3) and (5.4) are likewise dual and move a device up or down one
step in the location tree. We argued earlier that this is a fair representation

104 5. A Real-life Location Model

Context CX.

Control Activity Arity Comment
id passive 0→ 0 Hosts identifier control
loc passive 0→ 0 Possibly nested location
dev passive 0→ 0 Mobile device
devs passive 0→ 0 Hosts unused devices
i0,i1,i2. . . atomic 0→ 0 Infinite family of identifiers

loc(−0) ‖ devs(−1 | dev(−2)) ! loc(−0 | dev(−2)) ‖ devs(−1) (5.1)

loc(−0 | dev(−2)) ‖ devs(−1) ! loc(−0) ‖ devs(−1 | dev(−2)) (5.2)

loc(−0 | loc(−1 | dev(−2))) ! loc(−0 | loc(−1) | dev(−2)) (5.3)

loc(−0 | loc(−1) | dev(−2)) ! loc(−0 | loc(−1 | dev(−2))) (5.4)

Sorts:
(5.1) : KCX ,KCX

(5.2) : KCX ,KCX

(5.3) : KCX

(5.4) : KCX

Figure 5.3: Part CX of the Plato-graphical model X, with sorts.

of movement having chosen a tree structure as location hierarchy. One may
wonder why we do not simply have one rule to move a device from one
location to any other since we do not impose any restrictions on movement.
There are two reasons for that: (1) It contradicts the choice of a tree structure
of locations, and (2) we would need two rules. We believe the first point
has been covered already and proceed to justify the second. Consider the
following rule.

loc(−0 | dev(−1)) ‖ loc(−2) ! loc(−0) ‖ loc(−2 | dev(−1))

This wide rule is not what we want. It can, as expected, perform the
following reaction:

loc(−0 | loc(dev(−1))) | loc(−2) ! loc(−0 | loc()) | loc(−2 | dev(−1))

More generally, it can move a device from one location into another location
provided that there is a context which assigns them a common parent, which
is not one of the locations in question. However, it can not perform the
following reaction:

B = loc(−0 | dev(−1) | loc(−2)) ! loc(−0 | loc(−2 | dev(−1))) = B′ $

5.2. The model 105

That is, it can not move a device from a location l1 to a sub-location of l1. To
realise this let us try to construct a match; it suffices to argue that for all C
we have B ! C ◦ (R ⊕ ω) ◦ a:

R = loc(−0 | dev(−1) ‖ loc(−2)) : (∅, ∅, ∅)→ (∅, ∅)
a = i1 ‖ i2 ‖ i3 : (∅, ∅, ∅)
ω = (id∅ | id∅) ‖ id∅ : (∅, ∅, ∅)→ (∅, ∅)
C = id∅ | id∅ : (∅, ∅)→ ∅

Clearly, this is not a match, and can not be made so. The intuition is that the
context C must have two holes because R has two regions. Intuitively, the
trouble is that the context can not take something from one of these holes
and put it into the other – it sees the regions of R (and R′) from above, so
to speak. One could try to circumvent this mechanism by including one
location in the other through a parameter a, but that also fails, because the
context can not get rid of either one of the parameters it absorbs, and will
thus have one location too many for the match. Thus, for the scheme with
the wide rule to work as intended, we must include another rule that can
move a device into a sub-location. We have such a rule above, namely (5.4)
which can be applied consecutively. We conclude that the two movement
rules chosen, (5.3) and (5.4), are the better choice.

With this analysis in mind, we remark that the suggested rule (3.10) of
Chapter 3 perhaps should be replaced by two rules.

This concludes our treatment of CX. We proceed with SX and then LX
before gluing together CX and LX via SX.

The sensor part SX

SX is the representation of a simple sensor system that can (1) observe
(sense) that a device is in a certain location (in cX), and (2) observe that
a device is not located (sensed), i.e., residing in “location” devs. There
could be (at least) two reasons for losing track of a device: (1) It was
turned off, and (2) the positioning system simply did not pick up on the
signal from the device (for a certain amount of time). Recall that the set
of devices is fixed and known. SX informs LX about these observations
by invoking certain “interface functions” provided by LX, where LX is the
MiniML representation of LX. We use similar notation for AX. We will
examine this communication in Section 5.2.3.

Using the terminology of [RCS06], in our work we assume that sensors
are active meaning that they observe the world and then react to changes

106 5. A Real-life Location Model

herein. They do not just sit idle by and let other system parts change their
state, which would be passive.

Because we have chosen a rather tight coupling between cX and lX,
namely to represent location and device identifiers by the same natural
numbers in both worlds, sX does not need to maintain a mapping from
one world to the other. We do require that Ξ-integers are represented in
the same way as integers in CX – namely by i-controls. SX is written in
Bigraphs, but also has access to bigraphical representations of Ξ- terms.

The signature and dynamics of SX are defined as follows in Figure 5.4;
sensor SX = (KSX ,RSX).

Rule (5.5) models the case where sX observes a device in a location, and
informs Lx of this. This is done by “calling” the function in lX, exported by
! as the first component in a tuple, with the bigraphical representations of
the device and the location. invoke models a pool of pending function calls
and must have name f uns and be empty in the initial configuration of sX.
In the rule we have that var! refers to exactly the same name as invoke! to
force the var-control to refer to precisely the name exported from Lx. To fire,
the context of the rule must identify ! and f uns. We need to encapsulate
the location identifier in a id-control to distinguish it from sub-locations
and thus make the rule work for any location (identifier) −0. Rule (5.6)
applies when SX observes a device inside the devs control. We will show
the relevant functions in Section 5.2.3.

Notice how SX merely observes cX (sensing) and informs LX (acquisi-
tion). This may very well lead to discrepancy between cX and lX. To make
the system more precise, i.e., to ensure a tighter correspondence between
cX and lX one could allow SX to also observe lX, and then only inform LX of
the location of a device when cX and lX disagree. This is not the way posi-
tioning systems work in reality, but may be useful for simulation purposes.
For now, we leave SX as is. This concludes our treatment of the positioning
system SX.

The location model part LX

This part is implemented in Ξsu!ar because writing it natively in Bigraphs
proved too cumbersome. We saw the “findall” query in Section 3.A of
Chapter 3, and it is significantly more involving to encode more advanced
queries. Here we explain the ideas involved in this part of the model, and
in Section 5.2.4 we explain how to go from a Ξsu!ar-program to a Ξ-program
automatically. The presentation of LX is divided into the following parts:

5.2. The model 107

Sensor SX.

Control Activity Arity Comment
fst active 0→ 0 First part of pair
snd active 0→ 0 Second part of pair
app active 0→ 0 Application
appl active 0→ 0 Left part of application
appr active 0→ 0 Right part of application
var atomic 0→ 1 Variable
exp passive 0→ 0 Delay evaluation
i0,i1,i2 . . . atomic 0→ 0 Infinite family of identifiers
invoke active 0→ 1 Hosts “function calls”

loc(id(−0) | dev(−1) | −2) ‖ invoke!(−3)
!

loc(id(−0) | dev(−1) | −2) ‖
invoke!(−3 |

app(appl(app(appl(fst(var!)) |
appr(exp(−1)))) |

appr(exp(−0)))) (5.5)

devs(−0 | dev(−1)) ‖ invoke!(−2)
!

devs(−0 | dev(−1)) ‖
invoke!(−2 | app(appl(fst(snd(var!))) | appr(exp(−1)))) (5.6)

Sorts:
(5.5) : KCX ,KSX

(5.6) : KCX ,KSX

Figure 5.4: Part SX of the Plato-graphical model X, with sorts.

• Data-type declarations.

• The building configuration.

• The interface to SX; reconfigurations.

• The interface to AX; location-based queries.

• Communication between LX and SX.

108 5. A Real-life Location Model

When these pieces are in place we glue them together to form a presentation
of (the structure of) Lx as a whole. To keep the discussion focused we take
the liberty of being very brief when treating auxiliary functions in Ax – we
are interested in the reconfigurations of lX and the queries supplied to AX.

Data-type declarations are a convenient way to abstract away from the
underlying type when programming in (a fraction of) SML. In Lx we choose
to work with just one basic data-type for location and device identifiers;
natural numbers. Natural numbers and equality on them can be easily
encoded in Bigraphs, as seen in Chapter 4. We could have used strings
instead, but natural numbers are simpler and suffice for our purposes.

The data-types used in Lx are as follows.

type lid = int
type dev = int
datatype hierarchy = (* id, devices, sublocations *)

Loc of lid * dev list * hierarchy list

A hierarchy represents the aforementioned location tree. A location has
an identifier, a list of devices, and a list of sub-locations. Both types and
data-types belong to the set C of constructors. For now, we assume lists
as a predefined data-type. We also assume a few basic operations on lists,
namely cons (’::’), append (’@’), reverse (’rev’), and ’map’. We address how
to encode lists and the associated operations in Ξ in Section 5.2.4.

The building configuration The building looks like this in Ξsu!ar and co-
rresponds exactly to the one in CX. The initial configuration lX is shown
below along with some enclosing Ξsu!ar code.

val funs =
let val state =
ref (Loc(1,[15],

[Loc(2,[10,11],[]),
Loc(3,[],[]),
Loc(4,[],

[Loc(5,[12],[]),
Loc(6,[],

[Loc(7,[],
[Loc(8,[13],[]),
Loc(9,[14],[])])])])]))

val devs = ref []

5.2. The model 109

...
in ... end

As can be seen, we implement devs as (a reference to) a list. We use
references to update the internal representation of lX. The Ξ-locations
are translated into Bigraphs by the translation given for constructors in
Chapter 4. The dynamics of Lx, i.e., reconfigurations of this configuration
are implemented by Ξ-functions, to which we will return later. Three dots
signify place-holders, ignore them for now. We explain what happens to
the ’val’ declaration in Section 5.2.4.

The interface to SX; reconfigurations LX supplies SX with some interface
functions. The purpose of these functions is to allow SX to inform LX of
events (movement of devices), which SX has observed in CX. As mentioned,
SX can do two things:

• Observe that a device is in a certain location, and inform LX.

• Observe that a device is not sensed in any location, i.e., currently not
in use and residing in “location” devs, and inform LX.

These two situations give rise to two reconfigurations, i.e., Ξsu!ar-functions.

fun sobserved d =
fn l =>
let val state’ = delete d (!state)

val devs’ = del_list d (!devs)
val state’’ = insert d l (!state)

in state:=state’’; devs:=devs’ end

fun slost d =
let val state’ = delete d (!state)

val devs’ = del_list d (!devs)
val devs’’ = d::devs’

in state:=state’; devs:=devs’’ end

The function sobserved is called by SX (we will return to what a “fun-
ction call” means) when SX observes that device d is in location l in cX.
The function makes sure to delete d everywhere from the state hierarchy
lX, and then inserts it in the (possibly) new location l. Like in cX this gua-
rantees that d is either in exactly one location or in devs at any point in

110 5. A Real-life Location Model

time. This is under the assumption that it is called with an existing loca-
tion. The function slost is similar, but it places d in devs. The auxiliary
functions delete, del_list, and insert are functions internal to lX, and
state and devs are two private data structures in lX constituting the current
configuration. We show these functions below for completeness.

(* remove an element from a list *)
fun del_list e =

fn [] => []
| (x::xs) => if e=x then del_list e xs

else x :: del_list e xs

(* delete device ’dev’ from hierarchy ’id’ *)
fun delete dev =

fn (Loc(id,ds,ls)) =>
Loc(id, del_list dev ds, map (delete dev) ls)

(* insert device ’dev’ into location ’lname’
in hierarchy ’id’ *)

fun insert dev =
fn lname =>
fn (Loc(id,ds,ls)) =>
if lname=id then Loc(id,

dev::ds,
map (insert dev lname) ls)

else Loc(id, ds, map (insert dev lname) ls)

They should be straightforward and the comments sufficient. We do,
however, note that the functions are curried and thus take exactly one
parameter. Also, notice how sX does not know the internals of lX, but
merely the names of the two interface functions ’sobserved’ and ’slost’.

The interface to AX; location-based queries The interface to AX is currently
defined by two functions visible to AX, but with internal workings local to
LX. It is possible for the application (AX) to enquire to the whereabouts of a
certain device, and to enquire about all the devices to be found in a certain
location.

fun awher d = whr d (!state)
fun afind lname = flocs (pickloc lname (!state))

5.2. The model 111

These functions have no side effects, in particular they do not alter lX.
The function ’awher’ is based on the following auxiliary functions, which
should be read bottom-up.

(* find the identifier of a device’s location *)
fun whr dev =

fn l =>
case l of

(Loc(_,[],[])) => NONE
| (Loc(id,d::ds,ls)) =>
if dev=d then SOME(id)
else whr dev (Loc(id,ds,ls))

| (Loc(_,[],ls)) =>
let fun whr’ =

fn list =>
case list of
[] => NONE

| (loc::locs) =>
case whr dev loc of
SOME(i) => SOME(i)

| NONE => whr’ locs
in whr’ ls end

We believe that the comments are sufficient explanation. We address
’NONE’, ’SOME(x)’ (which can also be used in AX) and embedded functions
in Section 5.2.4. The function ’afind’ uses the following auxiliary functions.

(* find all devices in a hierarchy - depth first *)
fun fall (Loc(_,ds,[])) = ds
| fall (Loc(_,ds,l::ls)) =
let fun fall’ [] = []

| fall’ (loc::locs) = (fall loc) @ (fall’ locs)
in ds @ (fall l) @ (fall’ ls) end

(* pick the subtree with id ’loc’ from a hierarchy *)
fun pickloc lname =

fn (Loc(id,ds,ls)) =>
if lname=id then SOME(Loc(id,ds,ls))
else let fun pickloc’ [] = NONE

| pickloc’ (loc::locs) =

112 5. A Real-life Location Model

case pickloc lname loc of
SOME(l) => SOME(l)

| NONE => pickloc’ locs
in pickloc’ ls end

(* unpack option, return list of devices *)
fun flocs option =

case option of NONE => []
| SOME(l) => fall l

Again, we refer to the comments for explanation.

Communication between LX and SX We promised to address the question
of what it means to call a Ξsu!ar-function (in this case living in LX) from a
native BRS (in this case SX). We need to be able to somehow export selected
function names from LX to SX. Such a mechanism is not present in Ξ, so
we introduce it by means of additional syntax. The effect is that Lx has the
following form:

export <name> from <exp>

The idea is to export the names of some functions from Lx to other parts
of the system. One can think of it as a special form of val f = exp known
from SML. This is done by making a particular name global in the Plato-
graphical system (by closure), and then to make sure that the translation of
relevant functions in ’exp’ in Lx refer to this name. The translation of this
new syntactic construction is:

%export f from exp&X = def f (%exp&∅)

We emphasise the fact that we export one name f , which can possibly name
a tuple of function names (as is the case for lX). Thus, we can use projections
on the name (’val’) f to refer to the individual function names of the tuple
(nested pairs). This was done in SX where we used an explicit projection
on a name ! that must match the exported name f .

The Plato-graphical system with function export has the form

/ f .CX ‖ SX ‖ def f (%exp&∅) ‖ %AX& f

where AX is the component AX before translation into Bigraphs. Notice that
exp is translated from Ξsu!ar into Bigraphs using an empty set. This ensures

5.2. The model 113

that f $ fv(exp). f will be referred to from SX. For example, f could be funs
and export a tuple of function names sobserved and slost.

It is important to be aware of the fact that SX accesses the function
’sobserved’ etc. by linking controls (vars in this case) to the projections
on the exported name f . As we saw in the treatment of SX above, SX can
produce function calls in LX by introducing applications of var controls
to (bigraphical representations of) arguments. We presented LX in a form
where functions take exactly one argument to match the way SX introduces
function calls.

To sum up, Lx has the following form:

export funs from
let val ...

fun sobserved d = fn l => ...
fun slost d = ...
...

in (sobserved, slost, ...) end

This concludes our treatment of inter-component communication bet-
ween SX and LX.

LX collected We present the structure of Lx as a whole, but we leave out
(denoted by three dots) the auxiliary functions and comments, for readabi-
lity.

export funs from
type lid = int
type dev = int
datatype hierarchy =

Loc of lid * dev list * hierarchy list
...
let val state =

ref(Loc(1,[15],
[Loc(2,[10,11],[]),
Loc(3,[],[]),
Loc(4,[],

[Loc(5,[12],[]),
Loc(6,[],

[Loc(7,[],
[Loc(8,[13],[]),

114 5. A Real-life Location Model

Loc(9,[14],[])])])])]))
val devs = ref []
fun sobserved d =

fn l =>
let val state’ = delete d (!state)

val devs’ = del_list d (!devs)
val state’’ = insert d l (!state)

in state:=state’’; devs:=devs’ end
fun slost d =

let val state’ = delete d (!state)
val devs’ = del_list d (!devs)
val devs’’ = d::devs’

in state:=state’; devs:=devs’’ end
fun awher d = whr d (!state)
fun afind lname = flocs (pickloc lname (!state))

in (sobserved,slost,awher,afind) end

The signatureKLX for LX

Apart from the controls given in Figure 4.1 we obtain the following controls
by the translation given in Chapter 4. They are shown in Figure 5.5.

Model LX.

Control Activity Arity Comment
Loc active 0→ 0 Location hierarchy constructor
Nil passive 0→ 0 Empty list constructor
Cons active 0→ 0 List constructor
NONE passive 0→ 0 Empty option constructor
SOME active 0→ 0 Option constructor

Figure 5.5: Additional controls for the signature of LX.

This concludes our treatment of LX.

Dynamic correspondence between CX and Lx

CX and LX uphold the same invariants:

• A device is either in devs or exactly one location at any time.

• Locations and devices are uniquely defined, and in one-to-one corres-
pondence between CX and LX.

5.2. The model 115

We remark that it is reasonable to extend Lx with a parent map without doing
so in CX because the internal representation and data structures in Lx are of
no concern to the model of the real world as long as the invariants are kept.
We stress the fact that these two worlds must agree on the representation
of location identifiers, that is, natural numbers. CX uses i−controls, and so
does LX because of the translation defined. It is, however, up to the specifier
to make sure that the same numbers are given to corresponding locations
in both worlds.

The application part AX

This part should be a simple Ξsu!ar-program that uses the queries supplied
by Lx. An example application could be “find the nearest printer” with
respect to the current location of my mobile device. We do not actually
give such a program here, but merely state that such a program should be
straightforward to construct given what we have done in LX. For an exam-
ple of an interesting real-life location-aware application we refer the reader
to the implementation of the Lancaster tour guide GUIDE of Appendix
A.2.2, which is discussed in Section 6.4.

5.2.4 From Ξsu!ar to Ξ
Ξsu!ar is a sugared version of Ξ which additionally has a mechanism to
export function names to top level of Plato-graphical systems, as explained
earlier. Most constructs in Ξsu!ar can simply be unfolded to or encoded as
Ξ-constructs, but we also have the name-exporting enhancement adding
modelling power to the calculus.

We begin with the enhancement. This is the main difference between
Ξsu!ar and Ξ. The effect is that Ξsu!ar-programs p′ are not just expressions,
but are now encapsulated:

p′" export f from p

The rest of the constructions are syntactic sugar. They are:

• Comments.

• ’type’ and ’val’ constructs.

• Nested ’let’ construct.

• Tuples.

116 5. A Real-life Location Model

• Anonymous and nominal function declarations.

• ’if-then-else’ conditionals.

• Basic operations on natural numbers.

• Patterns.

We treat each item in turn.

Comments are enclosed by ’(*’ and ’*)’, and are simply discarded when
translating Lx into Bigraphs.

’type’ and ’val’ are handled as follows. Type declarations are treated as
textual substitution on the source program such that type dev = int is
discarded and dev is replaced by int everywhere in the source program,
for example. This, of course, requires that ’dev’ is not used as a variable
name, i.e.,V∩C = ∅, as mentioned earlier. This means that any constructor
name from C is legal in a Ξsu!ar-program, and that it is the programmer’s
responsibility to use the so constructed terms correctly, i.e., to make sure
that case expressions on a custom constructor have the right number of
branches corresponding to the constructor.

Let us consider Booleans and lists to see how the general constructor
and case terms of Ξsu!ar can be represented in Ξ. We would want to intro-
duce abbreviations for null-ary constructors; ’True’, ’False’, and ’Nil’. For
Booleans the following terms are legal:

• ’True unit’,

• ’False unit’, and

• ’case e of True x1 ⇒ e1 | False x2 ⇒ e2’.

For lists:

• ’Nil unit’,

• ’Cons (x1, x2)’, and

• ’case e of Nil x⇒ e1 | Cons x⇒ let h = fst x in let t = snd x in e2 end end’.

We could also introduce syntactic sugar for the ’case’ construct on lists:

′case e of Nil⇒ e1 | Cons (h, t)⇒ e′2 .

5.2. The model 117

As an example we show the semantics of lists (in Ξ and Ξsu!ar), which are
more interesting than for Booleans, would then be (leaving out the store
since there is no side-effect):

case Nil of Nil⇒ e1

| Cons x⇒ let h = fst x in let t = snd x in e2 end end
−→ e1

case Cons (v1, v2) of Nil⇒ e1

| Cons x⇒ let h = fst x in let t = snd x in e2 end end
−→ (let h = fst x in let t = snd x in e2 end end){(v1, v2)/x}

The operations (functions) in lists, namely ’::’, ’@’, ’rev’, and ’map’ can
clearly be coded in Ξsu!ar (and Ξ). The two functions ’::’ and ’@’ are used
infix, but can easily be made prefix.

We have just seen how to represent Booleans and lists. Another used
data-type in LX is options, that is, ’NONE’ and ’SOME(x)’. Having presen-
ted lists we trust that the reader is convinced that options can be represented
similarly. A ’val’ declaration inside a ’let’ expression is discarded, so

let val x = exp1 in exp2 end

becomes
let x = exp1 in exp2 end .

Nested ’let’ constructs can simply be unfolded. Thus,

let val x = ...
val y = ...

in ... end

becomes

let val x = ... in
let val y = ... in ... end

end

where the ’val’ and ’end’ keywords are discarded under translation.

Tuples are simply nested pairs such that (a, b, c) = (a, (b, c)) and so forth.

118 5. A Real-life Location Model

Anonymous and nominal function declarations We use two different
ways of declaring functions in LX; anonymous and nominal. The anony-
mous functions are of form fn x => e and are translated into ’λx.e’. No-
minal functions on form ’fun f x = e ...’, where the dots signify the rest
of the program, are translated into ’let f = (fix f(x) = e) in ...’, be-
cause they can be recursive.

’if-then-else’ conditionals are simply unfolded using the ’case’ construct
so ’if b then e1 else e2’ becomes ’case b of True => e1 | False =>
e2’.

Basic operations on natural numbers are assumed to exist as primitives in
Ξsu!ar because we have already shown that we can encode them in Bigraphs.
The operations used are ’=’, ’<=’ (less than or equal to), and ’-’ (subtraction)
on natural numbers.

Patterns are used heavily in LX. It is perhaps easiest to see how patterns are
unfolded by seeing and example. Consider the function del_list shown
above:

fun del_list e =
fn [] => []
| (x::xs) => if e=x then del_list e xs

else x :: del_list e xs

First, unfold the ’fun’:

val del_listl = fix del_list(e) =
fn [] => []
| (x::xs) => if e=x then del_list e xs

else x :: del_list e xs

Then, unfold the pattern:

val del_listl = fix del_list(e) =
lambda y. case y of [] => []

| Cons z => let x = fst z in
let xs = snd z in
if e=x then del_list e xs
else x :: del_list e xs

5.2. The model 119

where ’lambda’ signifies λ. This Ξsu!ar-expression can be translated into a
Ξ-expression by the methods shown above.

There are also more advanced patterns in use, i.e., patterns where we
do not match merely a constructor like ’List’, but a composite constructor
such as ’Loc(5,Nil,Nil)’. Consider this case:

case exp of Loc(5,Nil,Nil) => e

We unfold this into

case exp of Loc p =>
let a = fst p in
let b = fst (snd p) in
let c = snd (snd p) in e
end

end
end

adhering to the restriction that the left-hand side of a ’case’ branch must
consist of a constructor and a variable.

This concludes our justification of the claim that Ξsu!ar-programs can be
translated into Local Bigraphs, via Ξ.

5.2.5 The model X is Plato-graphical
Having explained the model we state and prove that it is actually Plato-
graphical. This proposition relies on the fact that a given implementation
of AX uses a subset of the controls of the LX as given above.

Proposition 5.1. The model X is Plato-graphical.

Proof. It is enough to observe that CX ⊥ AX, and that $x = f uns.

This concludes our presentation of the bigraphical location model. We
proceed by relating the presented model to those of Chapter 2.

5.2.6 Relating our model to the location model classification
In Chapter 2 we introduced and classified location models. We justify our
claim that our model is representative for a class of the presented models
presented in Chapter 2. It is important for our model to be representative
because that property renders our work relevant for a wide range of location
models, and thus a wide range of location systems.

120 5. A Real-life Location Model

Classifying the model

Clearly, the modelX is symbolic, but not geometric. Thus, there is no notion
of metric distance. We have shown that the location model Lx supports loca-
tion queries and certain reconfigurations, and also the accumulating “find
all” query, among others. We have not shown how to support range and
navigation queries, but these queries can be easily programmed by introdu-
cing an explicit parent map to the location hierarchy. A range query is then
a little primitive in the sense that ranges are determined by location con-
tainment. One could consider adding weights to edges and thereby enable
shortest-path navigation queries. We have implemented these queries, but
do not show them here because they do not add anything conceptual to this
treatment. Some non-trivial work still remains to support “nearest neigh-
bour” queries, namely to instrument the model with geometric information.
To this end we could perhaps instrument each location with a coordinate
control holding an ordered triple of integers.

We propose to look at the location hierarchy and queries supported for
deciding when a given model correctly implements a specification. We
conclude that the model is representative in the sense that it captures the
essentials of an exclusive symbolic location model.

5.3 Concluding remarks
First, we consider whether we are any closer to answering the five questions
of Chapter 3:

1. What languages L can we encode?

2. How close are Plato-graphical models to real systems?

3. What challenges have we found for bigraphical models?

4. What uses do we envision for Plato-graphical models?

5. How do we reason about Plato-graphical models?

Ad. 1. We have successfully encoded an extended version of MiniML,
which should to enable us to encode a wide range of location-aware appli-
cations. It turns out that reaction rules are enough for CX (and SX).

Ad. 2. We have enough structure to represent an exclusive, symbolic
location model. We have found possible uses for DAGs, timed and proba-
bilistic events, and continuous space. Such extensions can be used to lift
the model to real-life systems.

5.3. Concluding remarks 121

Ad. 3. We found that one may use closed links in a clever way (see
Chapter 3) to handle that something is not present in the context under
reaction. We do, however, envision that this so-called “negative” context
information will be needed in the bigraph theory in the long run, and
conjecture that a safe sorting exists to enforce this.

Ad. 4. We envision to implement Plato-graphical models according
to specifications of location models (and also context models) when a tool
allows us to perform automated reactions. This is the basis of the simulation
challenge.

Ad. 5. This is still an open question. One question is: To what extend
can we transfer reasoning about Ξ-programs to Bigraphs? As an example
we could mention contextual term equality. That is, if two Ξ-terms f and
! are contextually equivalent, then are their images under %·& equal? One
could argue that this question should be studied in a simpler and better
understood framework than Plato-graphical systems. Another questions
is: What does it take for us to be able to substitute one component for
another in a Plato-graphical system (recall Proposition 3.4.1 and Definition
3.4.4 of Chapter 3)? This is indeed an important question for future work.

5.3.1 Conclusions on our modelling effort
We draw the following conclusions:

• We can encode an extended version of MiniML in (Local) Bigraphs.

• We can represent an exclusive symbolic location model and all the
desired query types on it in Bigraphs. (We ask the reader to trust that
we can program symbolic range and navigation queries as we have
not shown these explicitly.)

• We can represent the world and a simple positioning/sensor system
in Bigraphs.

• We have taken one more step in evaluating Plato-graphical systems
and thereby Bigraphs as a modelling formalism for GUC.

• We have argued that Plato-graphical systems enable convenient mo-
delling of location-aware systems, i.e., facilitate programming of a
location-aware application in Ξsu!ar querying a location model.

• The modelling effort was not low, but we now have a fairly accurate
base system to support many other agents (location-aware applica-
tions).

122 5. A Real-life Location Model

This concludes the chapter on a real-life location model. We proceed with
a chapter on simulation to “close the circle”.

6
Simulation of Location-aware Systems

In this chapter we present some results of simulation of a location model.
Using Plato-graphical models we can simulate not just which output the
positioning systems yields, but also the sensor part itself and the following
processing in the location model part. There are at least three ways to
benefit from a bigraphical (location) model:

• A specification of how a (location) model should behave.

• An implementation of a (location) model.

• A layer of abstraction to facilitate the creation of location-based servi-
ces.

Describing the intended behaviour formally as a bigraphical model can be
advantageous for several reasons. First, it helps to clarify unclear points
in the informal specification. Second, in a model one often omits some
unimportant details allowing one to distill the essence. Seen as an im-
plementation it is useful because one very often encounters issues when
operationalising a (declarative) system specification. Furthermore, when a
system is implemented we may actually experiment with it. Finally, when
seen as a layer of abstraction, one can simply run the model and try out
different LBSs interfacing with it. The model is a dynamic execution envi-
ronment for location-aware applications; the programmer need not worry
about details of the location model while programming the application. The
key to exploiting these aspects is simulation, because without computer aid
it is infeasible to work with large(r) systems. Furthermore, simulation is a
cheap and quick method of prototyping applications and protocols, which
will play a key role in development and testing [RCS06].

The core of this chapter is an abstract version of the model presented in
the previous chapter. The reason is two-fold:

123

124 6. Simulation of Location-aware Systems

• It provides a more tangible case study aiding presentation.

• The BPL tool can not currently handle a model of the magnitude of
the one in Chapter 5.

We discuss the second point in a little more detail below. The model is
abstract in the sense that the operational details are no longer apparent,
in particular in the location model part. In fact, we consider two different
abstract models. We consider each one in turn.

6.1 An abstract location model
The main change in the model is a simplifaction of L, but we have also
made some changes to the other parts of the model. We remark that arities
are given for Binding Bigraphs, although we use no binding ports in this
model, but the implementation is in Binding Bigraphs using the BPL tool.
Without further ado we present the particulars of the abstract model.

6.1.1 World, C′

The world part C′ is more or less as before, however, it no longer maintains
a list of unused devices in a devs node. Thus, rules to discover and lose
devices are no longer needed. There is just a fixed set of devices in the, say,
building. Another difference is that identification of locations and devices
is now implemented by links. Notice that the sort of each control is KC′ ,
and that both redex and reactum contain controls of this sort only.

signature world =
sig % arity is: (binding -> free)
loc : passive (0 -> 1)
dev : atomic (0 -> 1)

end

using world

rule moveup =
loc_l([0] | loc_l’([1] | dev_d))
->

loc_l([0] | loc_l’([1]) | dev_d)

rule movedown =

6.1. An abstract location model 125

loc_l([0] | loc_l’([1]) | dev_d)
->

loc_l([0] | loc_l’([1] | dev_d))

Devices may move up or down one step in the tree hierarchy. The state of
C′ is a location tree (nested loc nodes) with devices embedded.

6.1.2 Sensor, S′

The sensor part S′ makes sure that the list of devices and their location, in
L′, is updated with knowledge acquired from C′.

signature sensor =
sig % arity is: (binding -> free)
end

rule observe_update =
loc_l(dev_d | [0]) || devs(location_l’,d | [1])
->

loc_l(dev_d | [0]) || devs(location_l,d | [1])

rule observe_new =
(/d . loc_l(dev_d | [0])) || devs([1])
->

/d. (loc_l(dev_d | [0]) || devs(location_l,d | [1]))

rule lose =
loc_l([0]) || (/d. devs(location_l’,d | [1]))
->

loc_l([0]) || devs([1])

The signature of S′ is empty because the sensor’s only functionality is to
observe C′ and communicate what it sees to L′. It only uses their controls,
as it has no state by itself.

There are three reaction rules. As before, it can still observe and lose
devices, however, there is no invoke node because in the abstract model there
is no need to control function calls and buffers with spin-locks and so forth,
because all operations are atomic in the sense that they are implemented
by a single reaction rule. The sort of each rule is KC′ ,KL′ . This is in
harmony with the fact that S′ observes C′ and L′, and informs the latter if
a discrepancy is discovered.

126 6. Simulation of Location-aware Systems

The rule for updating can fire whenever a device is in another location
in C′ than in L′. The result is that L′ has its state updated directly by the
sensor part with the current world location of the device, and the obsolete
information is removed. If a device is seen in C′ but does not appear in the
state of L′ (if the device identifier d is closed) then S′ simply adds it. If a
device is known in L′ but not in C′ then it is removed from L′.

6.1.3 Location model, L′

The abstraction consists mainly in simplifying L′, both because this is the
model part causing the problems with magnitude for the tool, but also
because we do not lose much information by the simplification, and the
overall picture becomes clearer. There is no great necessity that L′ should
represent C′ very accurately. The abstract location model part, L′, merely
maintains a collection of observations about where devices were last seen.
This limits which queries can be supported, but still we may ask “where is
device d” and “find all devices”.

Having everything expressed natively in Bigraphs, with no MiniML
code, simplifies things greatly. This, in itself, may be useful with respect to
formal reasoning.

The devs node simply holds all the location nodes, and each of these
represents that a particular device (identified by a link) is at a particular
location (also identified by a link). Both controls are of sortKL′ .

signature repr =
sig % arity is: (binding -> free)
devs : passive (0 -> 0)
location : atomic (0 -> 2) % linked to loc and dev

end

Evidently, there are no rules in L′. The state of L′ will be of form

devs(locationl1,d1 | . . . | locationln,dn) ,

so device di is in location li.
Because the representation in L′ does not reflect the complete hierarchy

there is no reason to require or formulate that C′ and L′ should agree on the
initial state of the world.

6.2. A pedagogical scenario 127

6.1.4 Application, A′

The application part A′ can perform “where is” and “find all” queries.
Finding all devices is simple as it is just the content of the devs node of
L′. “Where is” looks in the list of devices maintained by L′, which is easy
because we now have an identifying link, cf. the modificaton of C′.

signature agent =
sig % arity is: (binding -> free)
findall : atomic (0 -> 0)
whereis : atomic (0 -> 1) % linked to the device sought

end

using agent

rule findall =
devs([0]) || findall
->

devs([0]) || [0]

rule whereis =
devs(location_l,d | [0]) || whereis_d
->

devs(location_l,d | [0]) || location_l,d

The two queries in question are represented by corresponding controls.
Two rules implement their functionality. Both rules have sort KL′ ,KA′ .
They observe the state of L′ and directly report the finding. If a “find all”
query is present, by means of a findall node, then all devices known to L′ at
that point in time, are returned. “Where is” simply looks in L′ to return the
location of the device in question.

This concludes the presentation of the abstract model. The reader will
hopefully agree that the model is simple, and that it is a reasonable abstrac-
tion to work with.

6.2 A pedagogical scenario
In this section we take the reader through an example, the purpose of which
is to unveil some minor subtleties in the abstract model. The reader may
already have discovered the forthcoming issues, but mind you that this is
only a simple example – there is no guarantee that one would realise these

128 6. Simulation of Location-aware Systems

points at the time of design of the model (or system), let alone all possible
potential issues.

Consider the following initial state of our abstract model, a Plato-
graphical system, where we use non-ASCII notation:

c′ = locl′(locl(devd)) l′ = devs(locationl′,d) a′ = whereis

The scenario is as follows:

1. A “whereis” query for device d is issued.

2. A move of d occurs in c′.

3. An answer to the query appears in a′.

4. Another “whereis” query is issued, this time for device d′.

5. S′ discovers that d′ occurs in c′ but not in L′ and reacts.

This scenario is rather simple. Nevertheless, it reveals some points that will
be discussed as we progress with the system’s evolution.

First, what does it mean to “issue a query”? Well, we chose that vague
formulation on purpose to illustrate that a decision has to be taken on
whether queries are just in a′ by initialisation, or whether they are generated
as the system evolves. Let us pick the second solution, as this is most
realistic. Thus, we add two rules to A′ to generate queries, one for each.
They look as follows, again using non-ASCII notation:

−0 !−0 | findall and −0 | (d/ ⊗ 1) !−0 | whereisd .

This is not extremely elegant as the idle name clutters the presentation.
Nevertheless, it is necessary because of the condition cod(R) = cod(R′) for
reaction rules. Do notice that we do not have to initialise the A′ part of the
system with idle names corresponding to the names of all the devices in c′,
because this idle name can be added by the context for matching purposes.

Now, assuming that a “whereis d” query has been generated in A′, we
may continue with our scenario. The next event is that d moves up in C′
yielding a new state:

c′ = locl′(locl() | devd) .

Suppose that rule whereis fires in A′. That changes the state of A′

from a′ = whereisd to a′ = locationl′,d .

6.2. A pedagogical scenario 129

There is at least one thing wrong with that answer; it is incorrect. The reason
is, of course, that it reports the latest sighting recorded in l′ as opposed to
the actual location of d in C′. This discrepancy is realistic, as discussed in
earlier chapters. In this simple model there is, however, no bound on how
wrong an answer can be. In this case, device d just moved up one level
so the answer is a reasonable approximation. (Had it moved down, we
would have had an even better approximation.) Of course, this may not be
the case, d could have moved an arbitrary number of times since the query
was generated, so it may be anywhere in the, say, building represented by
the state of C′. The second problem with the answer is that location is not
of sort KA′ , it is of sort KL′ only. This can be easily mended, though. We
merely add location in the signature of A′; atomic with arity (0 → 2) just
like in L′. Sorting helps us to discover such non-sensical terms (bigraphs),
just like traditional static type systems of programming languages.

We continue with step 4 of the scenario: another “whereis” query is
issued, this time for device d′. This query will linger in a′ forever as there is
no such device in c′ or l′ so the whereis rule in A′ can never fire. We may
think of changing the rule that generates these queries in A′ to only ask
for the location of existing devices. This, however, relies on the unrealistic
assumption that a location-aware application always knows which other
mobile devices exist, not just in its vicinity, but everywhere.

Now, assume that d′ actually exists in c′, for instance in location l. The
state (c′ ‖ p′ ‖ a′), where p′ = l′ because S′ has no state of its own, of the
system is:

locl′(locl(devd′) | devd) ‖ devs(locationl′,d) ‖ (locationl′,d | whereisd′) .

Step 5 of the scenario; S′ discovers that d′ occurs in c′ but not in l′ and reacts
by rule observe_new to produce:

locl′(locl(devd′) | devd)
‖ devs(locationl′,d | locationl,d′)
‖ (locationl′,d | whereisd′) .

Now, rule whereismay fire, let us assume that it does, to produce:

locl′(locl(devd′) | devd)
‖ devs(locationl′,d | locationl,d′)
‖ (locationl′,d | locationl,d′) .

130 6. Simulation of Location-aware Systems

And so completes the scenario. Clearly, we may move d down into l,
generate another “whereis d” query, update l′ via S′, and finally fire whereis
in A′ to produce:

locl′(locl(devd′ | devd))
‖ devs(locationl,d | locationl,d′)
‖ (locationl′,d | locationl,d′ | locationl,d) .

There is a catch, though. We have cheated a little bit in S′. The rule for
updates does not adhere to the requirement that cod(R) = cod(R′), because
the global outer name l′ is not present in cod(R′). Thus, we must augment
R′ by tensoring with l′/ in the A′-part to obtain:

loc_l(dev_d | [0]) || devs(location_l’,d | [1])
->

loc_l(dev_d | [0]) || devs(location_l,d | [1]) * l’/

where * is the ASCII-representation of tensor product ⊗. The same is the
case for the S′-rule lose.

Now, consider the last state again. Evidently, there are now two answers
for the location of d in a′. We would like some sort of garbage collection to
get rid of obsolete answers. One idea is to alter the rules in A′ to update
answers instead of just adding them, but then we would like to somehow
ensure that the answers are not updated before they have been read by the
person or program asking A′ for results. This issue is, however, beyond the
scope of our example. Another option would be to introduce time stamps
on queries and answers, but then we move into the territory of extending
Bigraphs, as discussed in Chapter 5.

A final point to make is that we still have to use closed links on the top
level of the system to maintain the invariant that an outer name x in one
BRS is the same as outer name y in another BRS. Recall that locations and
devices are now identified by outer names. Even experienced modellers
may not have realised all of these points in advance, even though it is a
simple scenario for a small model.

The reason that we have not implemented this model and simulated it
using the BPL tool is that there are still some problems with matching of
links in the tool. Instead, in the next section, we recast the abstract model to
a version not using links, we implement that model, we extend the scenario,
run some simulations, and comment a bit on the some of the code.

6.3. Simulation with the BPL tool 131

6.3 Simulation with the BPL tool
The following link-less model exhibits different problems from the previous
one, but let us not get ahead of ourselves in the discussion of these issues.
Here is the model.

6.3.1 World, C′′

The world is represented much like before, with one-step moves up and
down the location hierarchy. The difference is that locations and devices are
now identified by controls instead of links. To keep track of the identity of
a location we place its identifier inside a node with an id control. Identifiers
are representations of non-negative integers, as discussed in Chapter 4.
Devices have exactly one node inside each of them; an identifier. Thus,
there is no need to encapsulate those. In ASCII notation we denote the sort
KC′′ of C′′ by C, for instance.

signature world =
sig
loc : active (0 -> 0)
dev : passive (0 -> 0)
id : passive (0 -> 0)
i0,i1,i2... : atomic (0 -> 0)

end

using world

rule moveup = (* sort: C *)
loc(id([0]) | [1] | loc(id([2]) | [3] | dev([4])))
->

loc(id([0]) | [1] | loc(id([2]) | [3]) | dev([4]))

rule movedown = (* sort: C *)
loc(id([0]) | [1] | loc(id([2]) | [3]) | dev([4]))
->

loc(id([0]) | [1] | loc(id([2]) | [3] | dev([4])))

The state is of form

loc(id(n) | loc(. . .) | dev(id(m)) | . . .) .
Do also notice that the control loc representing a location is now active (and
has no free ports). This is to allow sufficient matches in nested locations.

132 6. Simulation of Location-aware Systems

This is a subtle point. In the definition of reaction, Definition 4.3 of [JM04],
it is stated that the context must be active. That means active everywhere.
So no holes may reside under passive controls. If so, the context is not
active, and even though there may be a match, there will be no reaction.
Nevertheless, Milner and Høgh comment that the theory of Wide Reactive
Systems of which Bigraphical Reactive Systems are an instance, just as well
supports the case where only the part of the redex to be rewritten must lie at
an active site in the context. These more refined rules are not implemented
in the BPL tool, though. Therefore, we make our model more liberal by
changing the activity of the control loc to ’active’. Below, we will identify
the point in the simulation, where this makes a crucial difference.

6.3.2 Sensor, S′′

The sensor still has three rules and no state. Two of the rules are actually
schemas. There is a rule for each choice of n ∈ N , that is, for each control
i0, i1, i2 and so forth. In fact, there are infinitely many such rules. As can
be seen in the implementation, cf. App. A.2.1, we have explicitly given the
needed instances of some of these rules.

signature sensor =
sig end

(* rule schema, one for each n in i0,01,i2... *)
rule observe_update = (* sort: C,L *)
loc(id([0]) | [1] | dev(n)) ||
devs(location(l([2]) | d(n)) | [3])
->

loc(id([0]) | [1] | dev(n)) ||
devs(location(l([0]) | d(n)) | [3])

(* need a NAC to ensure that the iN node in [2]
is not in [3] *)

rule observe_new = (* sort: C,L *)
loc(id([0]) | [1] | dev([2])) ||
devs([3])
->

loc(id([0]) | [1] | dev([2])) ||
devs([3] | location(l([0]) | d([2])))

6.3. Simulation with the BPL tool 133

(* need a NAC to ensure that the iN node in [3]
is not in [0] *)

rule lose = (* sort: C,L *)
loc([0]) || devs([1] | location(l([2]) | d([3])))
->

loc([0]) || devs([1])

Unfortunately, we need negative application conditions (NACs) to control
the use of two of these rules, i.e., to ensure that they only fire under the
proper conditions. We need this to enforce that reaction can only happen
when something, a control, is not present somewhere in the system. Such a
condition can not be expressed directly in Bigraphs. This is a weakness in
comparison with other graph rewriting formalisms; a point which will be
discussed in the next chapter on related work, Chapter 7.

The problem arises because we can no longer use the programming trick
of declaring a link closed in some part of the system, which implies that
no other controls link to that name. The usual way to try to enforce such
constraints is to use a sorting. Unfortunately, we see no way to impose such
NACs by sorting. The trouble is that we do not wish to outlaw the redeces
as bigraphs, but only to disallow the contexts that enable a reaction under
the wrong circumstances. The hacker’s solution to this problem would be to
program the simulation in such a way that reactions with these rules are
only attempted when the structural condition that the NACs represent is
met. For our purposes we settle for a solution where we produce all of the
matches – also the illegal ones – and then just pick the legal ones.

We do best to consider invariants of the system. These are structural
conditions on the state (bigraph) of the system, which must hold for the
initial state of the system, and must also be preserved during reaction. The
invariants are:

• If a node has control loc then it contains at least one node, which has
control id.

• If a node has control id then it contains exactly one node, which has
control iN. (iN ranges over i0, i1, i2...)

• If a node has control dev then it contains exactly one node, which has
control iN.

• If a node has control location then it contains exactly two nodes, one
which has control l and the other control d.

134 6. Simulation of Location-aware Systems

• If a node has control l then it contains exactly one node, which has
control iN.

• If a node has control d then it contains exactly one node, which has
control iN.

• If a node with control iN occurs inside a node with control id, then
there does not exist a node with the same control iN inside a node with
control dev, and vice versa.

They should appear quite natural. We will construct the initial state of our
assembled Plato-graphical system such that these invariants hold.

6.3.3 Location model, L′′

The location model is now link-less. Apart from that it is as before.

signature repr =
sig
devs : passive (0 -> 0)
location : passive (0 -> 0)
l : passive (0 -> 0)
d : passive (0 -> 0)

end

The state is on form:

devs(location(l(n),d(m)) | . . .) .

Finally, we present the application part.

6.3.4 Application, A′′

This part now has rules for generating queries, and it is link-less.

signature agent =
sig
findall : atomic (0 -> 0)
whereis : passive (0 -> 0)
i0,i1,i2... : atomic (0 -> 0)
id : passive (0 -> 0)
location : passive (0 -> 0)
l : passive (0 -> 0)

6.3. Simulation with the BPL tool 135

d : passive (0 -> 0)
end

using agent

rule findall = (* sort: L,A *)
devs([0]) || findall
->

devs([0]) || [0]

rule whereis = (* sort: L,A *)
devs(location(l([0]) | d(id([1])) | [2])) || whereis([1])
->

devs(location(l([0]) | d(id([1])) | [2]))
|| location(l([0]) | d(id([1])))

rule genFindall = (* sort: A *)
[0] -> [0] | findall

(* rule schema, a rule for each n in i0,01,i2... *)
rule genWhereis = (* sort: A *)
[0] -> [0] | whereis(n)

Again, we use rule schemas to generate q rule for every n ∈ N .

6.3.5 Rules preserve invariants

By inspecting each rule of this model, one can be convinced that the inva-
riants are preserved under reaction.

This completes the abstract, link-less model. We will now present the
initial state and the scenario to be simulated. During the presentation we
will interleave a few code snippets to illustrate how the simulation proceeds.

6.3.6 Initial state and extended scenario

This time around we have provided the full model up front. The model
exhibits a few characteristics different from the previous model.

136 6. Simulation of Location-aware Systems

The initial state of the system c′′ ‖ l′′ ‖ a′′ is as follows:

c′′ = loc(id(i1) | loc(id(i2) | dev(i3) | dev(i4))) ‖
l′′ = devs(location(l(i2) | d(i3))) ‖
a′′ = 1 .

This initial state respects the invariants stated above. We wish to simulate
the following extended scenario:

1. A “whereis” query for device i3 is issued.

2. A move of device i3 occurs in c′′.

3. An answer to the query appears in a′′.

4. Another “whereis” query is issued, this time for device i4.

5. S′′ discovers that device i4 occurs in c′′ but not in l′′ and reacts.

6. An answer to this query appears in a′′.

7. A “findall” query is issued.

8. An answer to this query appears in a′′.

As mentioned, the model and the above scenario have been implemented
and simulated using the BPL tool. The code can be found in Appendix
A.2.1.

Given the initial state the BPL tool provides 17 matches with rule
genWhereis. Perhaps that is surprising. Inspecting the matches reveals
that most of the matches are essentially the same, but for the placement
of a single site in the context. Even for link-less bigraphs there are many
possibilities. When linking is involved there is an explosion in the number
of possibilities. Recall that links can be renamed, even back and forth. We
pick a match that suits us to obtain an altered a′′:

c′′ = loc(id(i1) | loc(id(i2) | dev(i3) | dev(i4)))
l′′ = devs(location(l(i2) | d(i3)))
a′′ = whereis(i3) .

For the next two reactions, we pick the match that moves device dev(i3) up
in c′′, and then return the location of device dev(i3), as recorded in l′′. The

6.3. Simulation with the BPL tool 137

result is:

c′′ = loc(id(i1) | loc(id(i2) | dev(i4)) | dev(i3))
l′′ = devs(location(l(i2) | d(i3)))
a′′ = location(l(i2) | d(i3)) .

Like before, the answer is imprecise. Step 4: Where is device dev(i4). Denote
the result s4:

c′′ = loc(id(i1) | loc(id(i2) | dev(i4)) | dev(i3))
l′′ = devs(location(l(i2) | d(i3)))
a′′ = location(l(i2) | d(i3)) | whereis(i4) .

Finally, we arrive at a crucial point. It is here that we discover the design
choice made in the BPL tool. Given refined rules as mentioned above, we
would have the following two matches:

C1 = −0 ‖ −1 ‖ location(l(i2) | d(i3))|whereis(i4)
p1 = i1 ‖ loc(id(i2) | dev(i4)) ‖ i3 ‖ location(l(i2) | d(i3))
C2 = loc(id(i1) | −0 | dev(i3)) ‖ −1

p2 = i2 ‖ 1i4 ‖ location(l(i2) | d(i3)) | whereis(i4) ,

with the redex R = loc(id(−0) | −1 | dev(−2)) ‖ devs(−3). It is easy to verify
that s4 = C1 ◦ R ◦ p1 = C2 ◦ R ◦ p2, as required.

The BPL tool merely provides the first one of these as the context of the
second one is not active (at all sites). When inspecting the matches one sees
that in C2 site −0 is within a node with control loc, and if this is passive then
that site is not active. This is not an insight about the model, but about the
implementation of the BPL tool. It is interesting because it illustrates the
importance of activity for modelling – it is like a programming construct or
a primitive in a calculus.

Now, performing the change in l′′ with rule sobsnew and then comple-
ting step 6 with the rule whereiswe obtain:

c′′ = loc(id(i1) | loc(id(i2) | dev(i4)) | dev(i3))
l′′ = devs(location(l(i2) | d(i3)) | location(l(i2) | d(i4))
a′′ = location(l(i2) | d(i3)) | location(l(i2) | d(i4)) .

Evidently, there are two observations in l′′ and two corresponding answers
in a′′. This is about to change as we generate a “find all” query and answer

138 6. Simulation of Location-aware Systems

it by rules genFindall and findall, respectively. The resulting state, after
steps 7 and 8, where the query is replaced by an answer, is as follows:

c′′ = loc(id(i1) | loc(id(i2) | dev(i4)) | dev(i3))
l′′ = devs(location(l(i2) | d(i3)) | location(l(i2) | d(i4))
a′′ = location(l(i2) | d(i3)) | location(l(i2) | d(i4)) |

location(l(i2) | d(i4)) | location(l(i2) | d(i3)) .

Behold the mess. It is impossible to tell – by just observing a′′ – which
answer(s) correspond to which querie(s). We will not go further into this
detail here, because the aim of the simulation was to show that the model is
an approximation or abstraction of the full model, albeit a coarse one. The
techniques we use in this simulation code scale to the full model.

6.3.7 Properties of the abstract model
The model is very simple so its properties are not very deep or elaborate.
Nevertheless, we may consider whether the answer to the two queries are
correct. In the simulation above, they are. In this case it seems that there is
no way to get wrong answers, but to be certain we should try out all possible
interleavings of the events and consider the resulting matches and states.
Surely, picking different matches – for example moving device dev(i4) up
instead of device dev(i4) – will make a drastic difference to the rest of the
scenario. We would obtain other answers. Not wrong ones, just other ones.

Did the small, controlled simulation tell us anything that we did not
know beforehand? Did it unveil something that we did not expect? Unless
we had anticipated all the above-mentioned issues beforehand, the answer
to the questions would be positive. Then imagine what simulation can help
us realise on a grand scale.

6.3.8 Concluding remarks
A feature that we did not use in this case study was that of tactics. Tactics
are a way for the user of the BPL tool to realise priorities of rules. With a
tactic one can specify in which order, how often, and under which simple
conditions (an if-then-else construct where the Boolean condition depends
on the successful application of another rule) a rule should be applied. This
is likely a useful programming construct for larger systems.

This concludes our treatment of simulation. The BPL tool helps us
realise decompositions that we may otherwise have neglected and it cat-
ches mistakes like, for instance, missing idle names in rules and that some

6.4. Case study: a tour guide 139

controls should be active. We claim that through our experiments we have
justified that bigraphical simulation is useful for exploring the design space
of even small systems. We retain a hope that the BPL tool can scale to exe-
cute realistic location models. Nevertheless, enhancements of Bigraphs and
the BPL tool are needed to reach the goal of having a model for ubiquitous
computing. We discuss future work within simulation in Chapter 8.

Now, we take a brief detour considering a case study for the application
part A of our Plato-graphical model.

6.4 Case study: a tour guide
In our model of Chapter 5 we had a simple application part A. The Plato-
graphical framework allows for much more elaborate examples than that,
though.

In Appendix A.2.2 there is SML code implementing the core functiona-
lity of the tour guide GUIDE of [CDMF00]. That is a real-life location-aware
system in Lancaster, England. The code is written using only the parts of
SML that can be translated into MiniML, as shown on Chapter 4. We have
included it to demonstrate that the Plato-graphical idea does indeed scale
to realistic systems.

The tour guide is a piece of software running on hand-held computers,
which are lent out to visitors to Lancaster. The guide is context-sensitive
in that it has knowledge of the physical location of the device on which it
is running, and it can be customised according to user preferences. This
knowledge is used to display information and perform services specific
to both user and location. For example, if a user is interested in particular
historic artefacts such as castles, then the GUIDE device is able to construct a
walking tour which takes account of this interest. It also supplies directions
on how to get from one location to the next. As the user arrives at each
destination the device displays a description of the site from a historical
perspective. The devices obtain their information and communicate via a
wireless communications link. They even support interactive services such
as ticket booking or enquiries, communications with other users and with
the tourist information service, and access to the Internet.

We could, in principle, insert the implemented tour guide as part A
of our Plato-graphical model and have our MiniML-to-bigraphs compiler
produce a bigraphical version of it. We have not done so yet because the
BPL tool currently can not run examples of that magnitude – the MiniML
code unfolds to a very large bigraph with thousands of nodes. The location
model presented in Chapter 5 is even worse. The reason that it can not be

140 6. Simulation of Location-aware Systems

run is that the matching [BDGM06] of agents with rules is a computatio-
nally difficult problem – there are simply too many ways of decomposing
bigraphs. We need to improve the efficiency of the BPL tool; the BPL tool
was implemented very closely according to the theory and thus designed
to be correct. We have, of course, tested the tour guide program in isolation
to convince ourselves that it works properly.

6.4.1 Properties
One of the goals of modelling and simulation is to be able to provide guaran-
tees about a model, and ultimately, the system that the model represents.
In the case study of the tour guide one might consider which properties
are desired to have established, and which are feasible to establish, either
formally or by simulation.

Here is a list of possible such properties:

• Obtain information about the attractions there are at the current loca-
tion. Property: The guide displays the correct information.

• Navigation help: “You are in Half Moon Bay, to get to Humbugs
Sweetshop you should...”. Property: The guide displays the shortest
path.

• From a list of attractions can the guide display a tour that visits all
locations. Property: “The shortest route, all attractions visited.”

• The interface to the location model part L of the system; what must L
provide to be a reasonable model of C. See Leonhardt’s dissertation
[Leo98] for a discussion on this.

• The relation between C, L (and A). Can one say something about how
C and L develop in relation to each other?

It is future work to actually test whether these properties, and perhaps
others, hold for the model. It seems impossible to do so formally by hand,
however, simulation may provide us with sufficiently good answers.

In [RCS06], sensors, actuators, an application framework, and environ-
ment modelling are claimed to be typical ubiquitous computing compo-
nents. Hence, our efforts with location models, which have all of these (a
sensor part, communication from A to L, the MiniML framework for ap-
plications, and a model of the environment C), are not far from ubiquitous
computing. We may even encompass the diversity of devices in ubiquitous
computing by simply introducing more controls into our model.

7
Related Work

In this chapter we discuss related work for the second part of this disserta-
tion, namely with respect to modelling and simulation.

7.1 Modelling
In the second part we have taken an experimental approach to testing whet-
her Bigraphs is useful for modelling and programming context-aware (and
in particular location-aware) systems. In this chapter we assess to what
degree other formalisms can answer the challenge of modelling and pro-
gramming context-aware systems.

Bigraph theory has roots in process calculi, and in particular Action
Calculi [Mil96] and Reactive Systems (RSs) [Lei01, LM00b], but it is formu-
lated in category theory. Thus, we consider formal approaches to explicit
context-awareness based on process calculi and RSs to be closely related
work. We also review a logic for specifying context-aware systems, which
has a tuple space-based middleware supporting it. Due to the completeness
(from theory to practice) of this approach we merit the presentation of it
ample space.

We do not consider Algebraic Graph Transformation (AGT) [EEPT06]
in this part because there has, to the best of our knowledge, not been
attempts to formalise context-awareness via AGT. It is, however, related
work regarding Bigraphs, so relating Bigraphs and Plato-graphical models
to AGT will be relevant, at least from a theoretical point of view, at some
point. There are also several toolkits and middlewares available to support
the implementation of context-aware systems, and some systems have such
support built into them. We refer to [JPR04] for an overview of these as we
do not in this piece of research consider implementations. Studying such
systems in more detail could become relevant when implementing a context

141

142 7. Related Work

toolkit on top of a bigraphical rewrite engine. In our work we do not try to
develop new location models and thus do not consider work in that area to
be related, i.e. relevant for this chapter. We have merely provided a digest
of that literature in Chapter 2 of this part.

Having narrowed the scope of what we consider related work in this
part, we proceed to give a method for treating the selected works.

7.1.1 Method
We treat each piece of related work in turn. For each piece of related work
we take the following approach:

1. Report on the purpose/aim of the work and its strengths and weaknes-
ses. Include in this part the aspects that are important for modelling
and programming context-aware and location-aware systems.

2. Evaluate the work with respect to how the formalism can be used to
model and program context-aware (location-aware) systems:

• Negative context information.
• Control structures.
• Representing a location topology.
• Queries on the topology.
• Interaction between a location-aware application and the loca-

tion topology.
• The modelling effort.

3. Reasoning in practise.

The first item is natural. We try to tailor the treatment of each piece of related
work such that we can draw on it when relating the work to our own. We
have pinpointed six items that are important to consider when estimating
a formalism for modelling and programming location-aware systems, and
location models in particular. This focus on the location aspect of context
reflects the focus of our own work, and we are aware of the fact that some of
the related works treated here capture a more general notion of context. The
third item is about reasoning which is one of the main reasons for taking a
formal approach to the study of context-aware systems. We emphasise that
we wish to reason about concrete systems, i.e., really experiment with and
challenge the techniques to give guarantees about real systems. Admittedly,
this is a hard task.

7.2. Context UNITY 143

At a later stage when more applications have been studied (and the
formalisms are perhaps more advanced) it would be interesting to try to
estimate how well they can be used for simulation, but for now we restrict
ourselves to the evaluation above.

We proceed to treat each piece of related work in turn, and then we
draw conclusions based on the treatment.

7.1.2 Context calculi versus process calculi

In [RJP04] the difference between context calculi and process calculi is con-
sidered to be the presence of constructs to explicitly model context inter-
action. Another way to express the difference is given in [Bra03], where
process calculi are described as formal theories of concurrent, distributed
systems taking advantage of algebraic reasoning, and context calculi should
separate process behaviour from the (multiple notions of) computational
context. This is our criterion for picking related calculi. This rules out
traditional process calculi such as the π-calculus.

7.2 Context UNITY

In this section we treat the Context UNITY framework of Roman, Julien,
and Payton [RJP04, JPR04].

7.2.1 Report

Context UNITY is a specialisation of Mobile UNITY [RM02, RMP97] to pro-
vide constructs to reason about interaction with the context. There are two
goals; (1) to simplify development of context-aware applications, and (2) to
gain a better understanding of the essential features of the context-aware
computing paradigm. Context UNITY programs can be translated into Mo-
bile UNITY programs (with the exception of non-deterministic assignment),
which means that Context UNITY can largely be considered a syntactically
sugared version of Mobile UNITY. Underlying the Mobile UNITY syntax is
a translation into a first-order Hoare-style temporal logic [RM02].

The next two sections (7.2.1 and 7.2.1) give a quite detailed walk-through
of Mobile UNITY and the additions to obtain Context UNITY. We have
devoted ample space for this treatment, but the reader may be satisfied
with the résumé given first.

144 7. Related Work

Context UNITY, very briefly

“Context UNITY represents an application as a community of interacting
agents.” [RJP04]. Each agent is uniquely identified and its behaviour ex-
clusively defined by a program describing its interaction with variables.
An agent interacts with its context by reading and writing (actuation) spe-
cial variables and can itself decide which parts of the context that it finds
interesting. The variables are governed by agent-specified (guarded) ru-
les, thus separating the management of an agent’s context from its internal
behaviour. The unpredictability of context-aware systems is implemented
by non-deterministic assignment statements. Agents have a location im-
plemented by a special variable, which can be manipulated by the agent
itself (subjective movement) or by the operational environment (objective
movement). Agents run concurrently. A simple museum guide system was
briefly sketched in [RJP04].

Mobile UNITY

We review Mobile UNITY as a basis for Context UNITY highlighting some
important features to give the reader an intuition of the approach. Mobile
UNITY captures the notion of location and movement across logical spaces
while providing formal reasoning via assertions. To this end the formalism
has a notation for expressing mobile computations and a logic for reasoning
about their temporal properties. Thus, Mobile UNITY can be said to extend
the UNITY [Cha88] model of concurrent computation by adding constructs
for component location and transient interactions among components. Mo-
bile UNITY aims to decouple a program’s internal functionality from its
interaction with the computational context.

Here is an overview, which will be explained in more depth afterward,
of a Mobile UNITY program:

• A system consists of program declarations, a components section, and an
interactions section.

• A program has a location, declares local variables with their initial va-
lues, and specifies clauses to control subsequent assignment to these
variables. A clause can be the asynchronous conditional when or the
synchronous conditional reacts-to. Assignments can also be enclo-
sed in an inhibit-when statement, which disallows assignment under
certain conditions.

• The components section instantiates the programs.

7.2. Context UNITY 145

• The interactions section defines how the programs can interact be-
cause it has access to the variables of the programs.

In Mobile UNITY one specifies a system consisting of programs (processes)
running in parallel, non-deterministically scheduled in a weakly-fair man-
ner. The key elements of program specification are variables and (labelled)
conditional multiple assignment statements.

Programs are sets of conditional assignment statements, and each pro-
gram has a location, which is a variable outside the Mobile UNITYmodel
(and thus parametrises the model). Programs have declare and initially
sections much like imperative programs. The assign section defines a pro-
gram’s behaviour. The transient interactions in Mobile UNITY consist of
four additions to UNITY: Transactions (sequential critical regions), globally
unique labels (on statements), inhibitors (strengthening of guards by pre-
dicates), and reactive statements which are to be executed to fixed-point,
interleaved, after any other executed statement including those in transac-
tions. One observes that the reactively augmented statements make up the
basic atomic state transitions of the Mobile UNITY model. The components
section defines which programs that make up the system and their initial
locations. The interactions section defines interaction between the programs.
Programs interact solely via shared variables.

Regarding location it is worth remarking that programs have subjective
(or local) movement, i.e., they can access their own location variable. This
can, e.g., be used to enforce co-location during process communication.

Shared variables are transient in the sense that sharing is controlled by
a predicate (when) guarding the assignment.

Comparing reactive statements and when-conditions, one one can think
of reactive statements as providing context information in an eager man-
ner, while when-conditions are lazy. The logic is used for reasoning, e.g.
about safety and liveness properties of the system, see [RM02] for a formal
definition of these properties.

As mentioned in [RM02], the Mobile UNITY notation is very expressive,
but should be restricted in practice to obtain, e.g., termination guarantees
and a more efficient implementation.

From Mobile UNITY to Context UNITY

In [RJP04] it is stated that context models should have the following pro-
perties:

146 7. Related Work

• Expansive: The scope of context of a particular agent should not have
a priori limits.

• Specific: It must be possible to specify tailor-made context definitions
for an agent – context definitions should be modifiable.

• Explicit: Agents control their contexts – this requires an explicit notion
of context.

• Separable: An agent’s context specification can be separated from its
behaviour specification.

• Transparent: The agent should be freed from the operational details
of discovering its own context.

In Context UNITY context is defined from the perspective of a single com-
ponent. One can think of a component (agent) as a state transition system;
state change (representing change in context) occurs spontaneously without
agent control (cf. the weakly-fair scheduling). Behaviour (and state) of a
program is defined exclusively through its interaction with variables.

There are three important variable types. Internal: These are not acces-
sible/visible outside the agent. Exposed: Public variables that can be part
of other agents’ context. (These have access control associated with them.)
Context: Variables that directly model, access, and modify context in a pro-
gram by getting and putting information from/to exposed variables of other
agents according to the agent-specific context rules (see below). In addition
to context variables a program now has a context section, which provides ru-
les to manage an agent’s interaction with its desired context, i.e., sensing of
information from the operational environment1, and affecting other agents
by impacting their exposed variables. The context section thus secures de-
coupling of an agent’s internal behaviour and management of its context;
it is said to allow projections, i.e., local change can imply global change.

An agent can also feed back information into its own context. We
take a short digression into exposed variables before continuing with non-
deterministic assignment. Exposed variables have an in-built access control
policy; exposed variables consist of six components, one being a function
from the reference agent’s2 credentials (see below) to a set of operations on
that variable (e.g. read or write). Four such exposed variables are built-in:

1In Context UNITY, the operational environment consists of everything that could po-
tentially effect a program (computational agent), and the part that does is named context.

2By reference agent we mean the agent whose context we are considering [JR06].

7.2. Context UNITY 147

Location, type, agent identifier, and credentials. The type variable holds
the program’s name, while the agent identifier is the unique global ID of
the agent. In the credentials variable a profile of attributes for the program
is stored for querying by other agents regarding access to their exposed
variables.

Returning to non-deterministic assignment; to handle the lack of a priori
knowledge about the operational environment, Context UNITY introduces
non-deterministic assignment statements to be used in context rules. A
context rule governs the interactions associated with a certain context va-
riable. The rule can quantify over variables that are place-holders for other
agents’ exposed variables (via the uses construction), and it can define res-
trictions (via the given construction) and interactions (via the where-becomes
construction) with these. Context rules can be declared reactive.

Systems in Context UNITY also have a governance section, which con-
tains rules to capture behaviours that have universal impact across the
system. This happens through assignment to exposed variables, and go-
vernance rules are assumed to be safe (and thus do not involve credentials).
Objective (so-called global) movement can, e.g., be implemented via gover-
nance rules.

Formal differences

Formally, there is only one difference between Mobile UNITY and Context
UNITY, namely an additional proof rule for non-deterministic assignment
to context variables modelling the unpredictable real world. It is claimed
that the other constructs can be translated into Mobile UNITY constructs
[RJP04]. This sounds plausible.

Middleware support

Two middlewares have been used in conjunction with Context UNITY;
EgoSpaces and LIME.

EgoSpaces [JR02, JR06] is a middleware that provides context informa-
tion to applications in an abstract form. EgoSpaces evolved from LIME. As
the authors write in [JR06]: “LIME requires strong assumptions about the
operating environment that fail to hold as the number of devices, connec-
tions, and the degree of mobility grows.” EgoSpaces is claimed to overcome
these weaknesses. EgoSpaces is compared to the Context Toolkit in [JR06],
and there EgoSpaces is found to be more suitable for supporting develop-
ment of context-aware applications (in an ad hoc network scenario) because

148 7. Related Work

it addresses an application’s need to dynamically discover and operate over
a constantly changing context.

An important notion in EgoSpaces is a view. A view is a projection of all
data available to the reference agent. Views can be created, redefined, and
deleted, and are defined over network, host, agent, and data constraints.
Views are updated when agents access them, and thus provide asymmetric
coordination. EgoSpaces provides triggered reactions and also “migrate”,
“duplicate”, and “event” primitives, since these have been found common
and useful in practise. EgoSpaces is implemented in Java using tuple spaces
(via Elights), the CONSUL framework is used to collect context information
from sensors and other agents close by, and the SICC protocol for making a
network tree and sending messages. There is, surprisingly, no discussion of
whether such a location tree suffices for these purposes, we would suspect
not. Performance simulation has been done via the OMNet++ discrete
event simulator.

The LIME [MPR06] coordination middleware is an implementation of
a LINDA-like tuple space calculus supporting mobility, and it has been
specified using Mobile UNITY, and also in CRSs (see below). To demons-
trate how LIME can be used as a context-aware middleware supporting
context-aware applications, an example application for tracking users via
GPS called TULING [MP04] was modelled. A lightweight version of LIME
is Limone [FcRH04], which “...centers the coordination tasks around ac-
quaintances, and knowledge of specific coordinating partners is essential to
Limone’s functionality.” [JR06]. Thus, it fails to capture the unpredictability
of ad hoc networks.

Numerous other middleware systems exist, but we refer to [MP04] for
an overview of these, since middleware as such is not the focus of this
dissertation. We do, however, mention Klaim, which is a formalism (process
calculus) to support computing with mobile processes and explicit localities.
It uses LINDA-like tuple spaces. Furthermore, a modal logic has been
developed. There is also a programming language X-Klaim, based on
Klaim, for programming distributed applications with mobile code. A
compiler from X-Klaim into Java using the Klava package (run-time system
for Klaim) exists.

The Context UNITY logic

As mentioned, the logic underlying Context UNITY is a first-order Hoare-
style modal logic. Properties are proven by constructing proof trees.

7.3. Contextual Reactive Systems (CRSs) 149

7.2.2 Evaluation

Negative context information is represented by using inhibitors, i.e., guards
on context variables. Thus, rules only fire when the guards allow it.

There are different types of variables and guarded assignments to these.
We also have transactions, inhibitors, context rules, credentials and so forth.
Context UNITY is convenient for programming.

All agents are “on the same level” topologically, like in CRSs (see be-
low). Thus, it is not clear how one would represent a hierarchical location
topology.

If we implement a graph-based topology, then symbolic range queries
are not supported.

Probably, agents would interact with the topology via context variables.
An agent could then inform other agents of its movements.

The modelling effort may not be low because of the location topology
problem, but Context UNITY is well-suited for many other context aspects:
Context interaction (sensing and actuation) is sharply separated from inter-
nal program behaviour, and is possible via context variables (in the context
section). Non-deterministic assignment statements capture the a priori un-
predictable operational environment.

To the best of our knowledge no location model has been formalised
in Context UNITY, but we imagine that formally it would resemble the
approach of [Leo98], because a first-order logic is used there also. However,
some examples using location information have been encoded.

7.2.3 Reasoning in practise

To the best of our knowledge, the logic has not been used to reason about the
examples implemented. All Context UNITY constructs can be translated
into logic formulae, and it would then in principle be possible to build
proof trees establishing certain properties. It does seem cumbersome, and
formally handling and proving things about systems with non-determinism
is notoriously hard.

This concludes our discussion of Context UNITY.

7.3 Contextual Reactive Systems (CRSs)

In this section we treat Braione and Picco’s theory of CRSs [Bra03, BP04].

150 7. Related Work

7.3.1 Report
CRSs is a generalisation of Leifer and Milner’s RSs [LM00a] in the sense
that interactions between computational agents (processes) and the context
are disciplined. In CRSs it is possible to specify the computational contexts
under which a class of behaviours is allowed, and the contexts under which
it is not. CRSs is a category theoretical approach inspired by that of Reactive
Systems and Bigraphs [LM00a, JM04]. The motivation for CRSs is two-fold:

• To separate the process behaviours from the computational context.

• To allow the specifier to define the notion of context and the rules
governing how it affects the processes.

The goal of CRSs is to devise a formalism for modelling real middleware,
in particular LIME. It is claimed that process calculi have been successfu-
lly used for specifying the semantics of coordination models and langua-
ges, but that these do not sufficiently address the modelling of a changing
computational context; many such calculi have a rather rigid built-in con-
text notion, i.e., a tight coupling between context and process. We agree.

In CRSs computational steps are described as transitions that rewrite
terms and thus change the state of the system. The trouble with RSs, in the
scenario of context-awareness, is that every computational context may host
any interaction which makes it difficult to represent dynamic, subjective
behaviour. We think of RSs as specifying the internal semantics of a system.
In CRSs, it is possible to specify the computational context under which
a class of interactions is allowed (via enablers), and under which it is not
(via inhibitors). Context is a first-class element of the formalism. We recite
the relevant definitions (1, 2, 3, and 4) of [BP04] to make the following
discussion more clear.

Definition 7.1 (Reactive System). A reactive system (RS) is a (C, I,R,D)
quadruple, where C is a category, I ∈ ObC,R ⊆ ∪x∈ObCC(I, x) × C(I, x), and
D ≤C is composition-reflecting, i.e., D0D1 ∈MoD =⇒ Di ∈MoD, i = 0, 1.

The morphisms of C are contexts (“terms with a hole”), and ground
contexts are processes (“terms where the hole is replaced by a compatible
sub-term”, by morphism composition), denoted by C(I, x). Notice that
contexts have exactly one hole. D specifies reactive contexts, i.e., contexts
under which a rule may fire, and R is the set of elementary rewrite rules
on processes; rewrite rules are pairs (l, r) of ground contexts, where l is
named redex and r contractum. Extending (composing) elementary rules

7.3. Contextual Reactive Systems (CRSs) 151

with reactive contexts, along with the following reaction relationship, yields
composite rules:

Definition 7.2 (Reaction relationship). The reaction relationship,→, is defi-
ned as follows: a→ a′ ⇐⇒ ∃(l, r) ∈ R, D ∈MoD . a = Dl ∧ a′ = Dr.

This relationship contains both elementary and composite rules of the
RS so R ⊆→⊆ ∪x∈ObCC(I, x) × C(I, x). A motivating example of context-
aware printing is given and it is remarked that “it is not possible to forbid
the reduction of a redex based on the properties of the context it is immersed
in” [BP04]. (It is this example that we encoded in Chapter 3.) To alleviate
this, CRSs are proposed which allow elementary rules to be extended only
be some instead of any active contexts. The following definition captures
exactly this:

Definition 7.3 (Contextual Reactive System). A contextual reactive system
(CRS) is a (C, I,R,D,D%l, r&) quintuple, such that (C, I,R,D) is a RS, andD%l, r&
is a function mapping any elementary rule (l, r) ∈ R to a composition-reflecting
sub-category ofD.

The reaction relationship is altered correspondingly:

Definition 7.4 (Reaction relationship for Contextual Reactive Systems). The
reaction relationship,→, is defined as follows:
a→ a′ ⇐⇒ ∃(l, r) ∈ R, D ∈MoD%l, r& . a = Dl ∧ a′ = Dr.

We see that different elementary rules may have different contextual
constraints so some expressivity was gained. We remark that internal transi-
tions performed by a group of processes still does not affect the surrounding
context, i.e., there is no actuation.

Using enablers and inhibitors, for (elementary) rules, one can control what
may and may not be present in the context for a rule to fire. Essentially, an
enabler is a set, closed under morphism composition, which has as elements
predicates on tuples. Such a set precedes a rule and guards applications
of this, so to speak. Likewise for inhibitors. We refer to [Bra03, BP04] for
the formal definitions, as we here merely wish to pass on intuition. We
do, however, recite an example from [BP04]. Here is a rule printing on a
’raw’ printer, which does not fire if a Postscript printer is present, assuming
a print primitive and a simple tuple space process calculus (cf. Table 1 of
[BP04]):

{− | 〈v〉 . v ! pr:ps}- print(txt).P | 〈pr:raw〉 −→ P | 〈job,txt,raw〉 |〈 pr:raw〉

152 7. Related Work

where ’−’ denotes a hole in a context, and angle brackets denote tuples; 〈v〉
is a tuple with value v, for example. This rule can be rewritten using an
inhibitor:

{− | 〈pr:ps〉}c- print(txt).P | 〈pr:raw〉 −→ P | 〈job,txt,raw〉 |〈 pr:raw〉

The small c signifies that the tuples mentioned in the set must not be present
in the context if the rule is to fire. Further, an enabler can be specified:

{− | 〈pr:ps〉}c- {− | 〈pr:raw〉}; print(txt).P −→ P | 〈job,txt,raw〉

It looks simple, but is underpinned by a few technical constructions. What
has happened in these two reformulation steps is essentially to move infor-
mation from the term to the context of a rule.

Application of CRSs

CRSs have been used to formalise the core of the LIME middleware [Bra03],
and also as a tuple space process calculus based on Linda. The idea is to
represent context by a global tuple space, thus separating specification of
behaviour from specification of context where it may occur. In [MP04] there
is a description of the TULING application which shows how location con-
text can be made available in LIME. Thus, for location context information,
LIME can be used much like a context toolkit, i.e., facilitate programming
of mobile applications that need access to location information.

7.3.2 Evaluation
Negative context information can be represented by inhibitors.

CRSs can be thought of as a meta-calculus, like Bigraphs. This has the
advantage that different domain-specific calculi can be encoded. There are
no in-built control structures to facilitate convenient programming. One
can achieve control by representing calculi with control structures, but then
the control structures depend on the calculus that is formulated as a CRS. As
an example: For a process calculus based on Linda there will be operations
for interacting with tuple spaces, and these will provide some control of
computation.

Only flat location topologies can be represented — if represented as a
term — and it is not feasible to have a hierarchical space reflected in the
syntactic term structure in the general case, as mentioned in [BP04]. This

7.4. A calculus for context-awareness (CAC) 153

means that whichever calculus we wish to represent as a CRS we can only
have flat terms.

Considering this limitation we can not support range queries in a natural
way, nor nearest neighbour queries. Position and navigation queries do
seem feasible, but we lack structure and this is likely to render programming
of queries harder than in Bigraphs and thus not convenient. As stated in
[MP04], a query such as “find all components within a radius r from point
(x, y)” can not be performed because that would require a range search
inside the tuple space, and LIME only provides value matching [MP04].

How interaction between a location-aware application a and the location
topology t would be realised depends on the calculus represented as a CRS.
No matter the choice of calculus, terms will be flat and a will live in the
same system and at the same level as t.

The modelling effort would probably be high because we lack structure
for our specific purpose despite encoding a suitable calculus.

7.3.3 Reasoning in practise
It is unknown to what extend the techniques of [LM00a] can be used in
the setting of CRSs, i.e., whether operational congruences can be derived
automatically (from a RS to a LTS, i.e., from internal to external seman-
tics). In [Bra03] it was necessary to restrict the definition of bisimulation to
ensure that bisimilar processes have sufficient contexts in common. Furt-
hermore, assessing whether adding negative context information increases
expressiveness, needs to be explored. No logics exist for CRSs.

Collecting these facts it is fair to say that reasoning in practise is not
feasible yet, and no such attempts have been made to the best of our kno-
wledge.

7.4 A calculus for context-awareness (CAC)
In this section we treat Zimmer’s calculus for context-awareness (CAC)
[Zim05].

7.4.1 Report
CAC “is a process calculus, whose aim is to describe dynamic systems
composed of agents able to move and react differently depending on their
location.” [Zim05]. CAC features a hierarchical term structure like Mobile

154 7. Related Work

Ambients [CG00], and a generic multi-agent synchronisation mechanism ins-
pired by the Distributed Join calculus [FGL+96], we remark that locations
are organised in a tree. One can think of the calculus as a hybrid between
the two calculi just mentioned, except that it also features non-local process
synchronisation. The motivation is to develop a calculus that models how
devices interact in a uniform way in wireless networks or mobile ad hoc
networks.

Ambients are called agents and these represent locations, which are
either physical or logical units of computation. Agents have definitions
that enable enclosed processes to perform reductions. The main feature of
CAC is multi-agent synchronisation of tuples of values on named channels.
Agents are not directly aware of their environment, but inform it of their
capabilities by asynchronously sending atoms.

The environment has definitions consisting of rules (think join patterns)
to perform global synchronisation on these captured atoms; this is novel
with respect to the Distributed Join calculus, where synchronisation hap-
pens locally and not across agent boundaries. There is a notion of priority
(or scope) of patterns, namely that the deepest rule (pattern) matches first.

Agents can move by the go primitive, but must give the explicit path to
the destination because movement happens one step (up or down in the
tree) at a time.

There is no way to open or close agents, just like in Boxed Ambients
[BCC01]. Definitions of a particular agent are activated (by a reaction rule)
by adding them to the enclosing agent’s definitions.

Reaction rules rewrite an agent if an enclosed process matches one of
the agent definitions (under some particular restrictions). We remark that
contexts can have any number of holes, and that parallel composition in
CAC is not commutative, which according to [Bra03] is unusual, with which
we agree. The reason for this is that the names in the redex of a rewriting
rule are bound point-wise in the process expressions in the reactum of the
rule.

Example encodings and expressiveness

A small location-dependent printing example is given to illustrate how
a process interacts with its enclosing agent. Further, a form of “remote
procedure call” and also a small packet routing protocol are encoded via
continuations.

Expressiveness is investigated by encoding a monadic asynchronous
π-calculus with replicated input, and a λ-calculus.

7.4. A calculus for context-awareness (CAC) 155

7.4.2 Evaluation

A basic model has been developed where agents may use different notions
of computation on different physical locations.

In the current version of CAC it is not possible to express negative
context information. The author suggests to add negated terms in pattern
rules. This would be like adding “not-controls” (or co-controls) to Bigraphs,
which is inelegant because then there would have to always be one or the
other. Introducing a notion of inhibitor like in CRSs or a sorting like in
Bigraphs is preferable.

The control structures in CAC are somewhat like those in Bigraphs; a
tree hierarchy of terms (agent processes), and a way to link agents – namely
by channels and name restriction. Rules (patterns) are used to control
reactions. These rules are part of the agents so contexts are not really
separated from processes, at least not to the same extend as in CRSs or
Bigraphs. Anyhow, when programming with the calculus these structures
and the movement primitive are useful. We emphasise the fact that each
agent has its own set of rules, which can grow as other agents move into it
so that it can activate their definitions. This is the way a changing context
is modelled.

The location topology is a tree just like in Mobile Ambients. In Bigraphs
there is a forest of trees available.

Queries by an agent — for example a location-aware application —
happen on the structure in which it resides. Probably, one would want to
program an auxiliary process to traverse the tree and collect information.
To do this the agent must know the topology of the entire tree because the
go primitive needs an explicit path. This is inconvenient and does not har-
monise with the unpredictability of context in general, but it is reasonable
for a location hierarchy like a building. Apart from that, programming in
CAC does resemble programming natively in Bigraphs, and is thus likely to
be equally inconvenient. In principle, it should be possible to support three
of the four query classes discussed in Chapter 2, but the nearest neighbour
queries require some notion of distance. Interaction is between processes
in the tree structure.

The modelling effort regarding the hierarchy is low because there is only
one tree, but it is high with respect to queries. We find that encodings of
larger examples are required to further test the modelling capabilities of the
calculus.

156 7. Related Work

7.4.3 Reasoning in practise
More work is needed with respect to the behavioural and equational theory
of CAC. Thus, the calculus is not yet ripe for reasoning about systems in
practise.

7.5 A formal model for context-awareness (CONAWA)
In this section we treat Baun Kjærgaard and Bunde-Pedersen’s effort to
define a formal model for context-awareness [KBP06a, KBP06b] based on
Mobile Ambients.

7.5.1 Report
Like other approaches, [KBP06a, KBP06b] argue that we lack formal support
for realistic context-awareness. Furthermore, it is claimed that existing
calculi [BP04, RJP04] only deal with very limited notions of context, and
that a flat space structure does not suffice while being difficult to navigate.
Also, context is not just physical location, but also logical information.

The approach taken in CONAWA takes origin in the Ambient calculus,
but instead of having one tree representing space it has several so-called
views, much like the place graphs of bigraphs. The intention is to have
one tree (view) for each category of context information needed by the
application, e.g., locations and printer types.

In CONAWA, ambients are divided into two syntactic classes: Context
and reference ambients.

Context ambients (views) have unique names, are static in the sense
that they can not move (navigate views), and can only be created (declared
initially) and opened (a standard capability).

Reference ambients are embedded in context ambients and navigate
these by exercising the capabilities in, out, enter, exit, coenter, coexit, and
open. in and out are not observable by the context, whereas enter and exit
are. Using the co-capabilities requires the context to allow these movements.

Capabilities are instrumented with two pieces of information; a Boolean
expression over contexts to define which contexts the owner of the capability
can be performed with respect to, and the names of the reference ambients
the owner of the capability can exercise the capability on. A wildcard name
is included to match all reference ambients.

Reference ambients can be replicated and can input/output names lo-
cally. A reference ambient will have a single (for consistency) presence in
one ore more views simultaneously by a reference, e.g., a printer ambient

7.5. A formal model for context-awareness (CONAWA) 157

has a type and a location. The capabilities in and out of the Ambient cal-
culus are proposed extended to enable navigation in several views at once.
A reference ambient navigates views by explicitly giving the path to co-
llect context information. This reflects the idea that computation is seen as
embedded in a number of contexts at the same time.

Communication is local, i.e., an ambient (or rather a reference to an
ambient) may communicate with other ambients which are its siblings or
parent in the tree where it currently resides. They communicate through the
ether of each view — much like a tuple space — with no channels involved.
Actions and capabilities are restricted by Boolean expressions over contexts.

Name scoping and general output paths have been left out of the cal-
culus for simplicity. This model is parametrised over the notion of “proxi-
mity”.

7.5.2 Evaluation

The authors evaluate their calculus by modelling examples of the four types
of context-aware applications described in [SAW94], to which we return in
Chapter 8. For now, it is enough to know that the four application types are
categorised from a user interface (UI) perspective according to whether they
provide information or supply commands, and whether they are invoked
manually or as a reaction to the current context. The authors find that
representatives (in the domain of “pervasive health-care”) of all four types
could be modelled in CONAWA. Two thematic examples are “find the
nearest available doctor” and “update a context/view using a reference
process”.

Contexts are special uniquely named ambients. Reference ambients may
move around in the contexts by exercising capabilities. These capabilities
may be instrumented with a “Boolean” expression stating which contexts
they match and which they do not, i.e., in which contexts the capability
can be used. This is decided by naming the matching contexts, and putting
a negation sign in front of the names of non-matching contexts. This is
not the same type of negative information as for example the inhibitors
of CRSs. The difference is that inhibitors limit reaction to certain contexts
where something is not present, but “Boolean” expressions discriminate
named contexts and not their contents. This is a gain of introducing views.
We also have views in Bigraphs in that a place graph is a forest of trees that
can be made uniquely identified by requiring each tree to have a unique
control on the root node.

158 7. Related Work

There are some important control structures; views, (guarded) capa-
bilities, and agent references. Agent references allow the specifier to re-
fer to an agent to partake in different contexts, i.e., different views on the
world/situation, simultaneously. The guards can be used to control in which
views a given capability can be exercised, which resembles programming
with conditionals.

The location topology is a forest of uniquely identified trees, i.e., a
collection of views.

The only query that lacks support is “nearest neighbour”. You have
to consider the entire system to formulate single ambients. Specifically, an
agent has to explicitly give a path for moving, which may be an unreasona-
ble assumption because it requires detailed a priori knowledge of the whole
operational environment and not just the context at hand. This does not
reflect the ad hoc nature of the real world, but is reasonable enough for a
location hierarchy.

Interaction between a location-aware application a and the location to-
pology t can happen by programming a to traverse t. An idea is to have
an auxiliary agent collect this information. The authors suggest to intro-
duce designated reference agents to update contexts, i.e., to act as carriers
of sensor information. An example is given in the discussion of [KBP06a],
which requires the ability for reference agents to output capabilities, and
not just names. Having reference agents invoke these “sensor agents” could
be considered actuation. Still, there is no representation of the world (like C
in Plato-graphical systems).

We remark that reference ambients can not remove themselves from
views, so a device will always have some location once it has been located
once. This is not a problem for location models, as seen in Chapter 5.

The modelling effort is probably on level with that of CAC since both
are Ambient-based process calculi, albeit with some differences (patterns
versus guarded capabilities and views).

7.5.3 Reasoning in practise

No behavioural or equational theory has been established for the calculus,
nor any expressivity results. There is no formal semantics of the calculus,
merely a few examples of what reduction rules could look like.

We conclude that much work is needed before any formal reasoning can
be carried out.

Here are some suggestions for corrections:

7.6. Other approaches 159

• Considering Table 1 of [KBP06a], presenting the syntax of CONAWA,
it can be seen that there is no base case for the syntactic categories C
and R, thus the inductive definition is not well-founded.

• The important example in Figure 11 is not syntactically correct because
(1) a reference agent ’FNDAP2’ is (illegally, see Table 1) used as prefix
to a capability, and/or (2) the square brackets do not match.

It should, however, be possible to correct these errors.

7.6 Other approaches
We mention a work where a location model is formalised in first-order logic,
two works in progress, and one piece of research formalising context from
the viewpoint of artificial intelligence (AI).

• A formal location model in Z/Eves [Leo98].

• The Agent Distributed π-calculus (AgDpi) [Hen05, Hen04].

• The N. programming language effort [WBB06].

• “Formalizing Context” [MB97].

In appendix C of [Leo98] three location services are specified in the Z for-
malism, which is a first-order logic [MS97]. Here, we merely give the reader
a taste of the approach. A service consists of a location hierarchy, upda-
tes on this hierarchy, and some queries. We briefly consider the symbolic
one. First, two object types are declared; LOCATION and OBJECT. A lo-
cation hierarchy is then declared as an asymmetric and transitive inclusion
ordering. Predicates in locations corresponding to the relevant spatial rela-
tionships are also defined. Here is a parametrised location query which for
all located-objects at a given location:

tar!et? : LOCATION ∧ result! : P(OBJECT) =⇒
result! = {x : OBJECT | (x, tar!et?) ∈ locatedAt}

where ’locatedAt’ is a predicate which decides whether a given object is in a
given location, andP is the power set. A sighting operation is also defined,
along with some other queries. Thus, set theory is used as a programming
language.

AgDpi is Distributed π-calculus (Dpi) with nominal agents. In AgDpi
there is mobile code running inside nominal agents. Dependent types

160 7. Related Work

are used to enforce selective access (read/write capabilities) to resources.
Locations are unique and organised in a flat structure. Communication is
local and authenticated (via types). A special kind of channel disc is used
by agents to discover local resources, and then the agents act accordingly.
This work is worth following should it progress from the current “work in
progress” status, e.g., emerge as a full-fledged process calculus.

In [WBB06] a first step is taken toward a programming language for
pervasive applications based on the Ambient calculus. The language is ca-
lled N. because its syntax resembles C. or Java. Communication is between
ambients, and processes are asynchronous. Named ports are adopted from
the π-calculus to facilitate easy message passing. A prototype compiler
exists.

In [MB97] context is formalised as a first-class object, and can be thought
of as a generalisation of a collection of assumptions (in a Gentzen style logic).
A context may even correspond to an infinite and only partially known
collection of assumptions. The point of origin is artificial intelligence, and
the formalism used is a first-order logic. There is no clear relation between
this work and our field of research so we refrain from further discussion of
this work.

7.7 Concluding remarks

We structure our remarks according to the method above.

7.7.1 Evaluations

Negative context information, e.g., in the form of inhibitors, is certainly
a useful feature. Whether it proves necessary for modelling ubiquitous
systems in Bigraphs and Plato-graphical models is uncertain. We suggest
more modelling experience for deciding this.

Control structures decide how convenient the programming task is. In
the calculi where hardly any are available, it seems unrealistic to model and
program realistic systems.

Hierarchical location topologies should feature in calculi for location-
awareness. Considering how other aspects of context may very well be
hierarchical in nature, for example the organisation of a company, we con-
jecture that flat topologies are not sufficient.

Like for location, queries on the context are best supported if the context
is structured. Furthermore, control structures help.

7.8. Simulation 161

Interaction between a location-aware application and the context topo-
logy can become complicated if the application itself is part of the topology.
Separating concerns, as in Plato-graphical models, is useful.

The modelling effort is high when programming directly in meta-calculi.
One can gain control structures by encoding other more domain-specific
calculi, though. As far as we know, it is a novelty to explicitly represent the
world as a system in its own right, as done in Plato-graphical models. It is
this feature that is the basis of our simulation idea.

7.7.2 Reasoning in practise
None of the works considered here have been used for reasoning in practise.
Nor have Bigraphs or Plato-graphical models. Tool support seems to be
required to really make progress in this area.

7.7.3 Summa summarum
On a high level we can say that further experimentation with large examples
is needed, and that tool support is essential in this effort. Much work in
improving the theories and tools also persists.

7.8 Simulation
In [RCS06], initial work on the design of a generic simulation tool for ubi-
quitous computing is described. Like in our work, they focus on sensors,
actuators, an application framework, and environment modelling. They
divide their architecture into three levels; an application level, an interface
which provides APIs similar to those of real ubiquitous systems (for exam-
ple a location system), and a simulator. Ubiquitous applications interact
via an API with the interface, which in turn interacts with the simulator.
Hence, the application programmer can have his program simulated, and
then install that program on a mobile device without any alteration. This
is very neat, but the system is still under development and in need for
experimentation. Furthermore, it is not underpinned by theory.

This concludes our review of related work.

162 7. Related Work

8
Future Work in Modelling and Simulation

This chapter is divided into future work on modelling and simulation.

8.1 Modelling
We have identified some directions for future work within modelling.

• Characterise context-awareness in terms of Plato-graphical models
and enrich our model to support this.

• Model a real-life system.

• Create a more extensive list of properties one wishes (to prove or
guarantee) for context-aware systems.

• Improve the BPL tool; efficiency and sorting.

• Investigate formal reasoning about Plato-graphical systems, perhaps
by studying a form of bisimulation between BRSs.

• Prove the dynamic correspondence between Ξ programs and their
bigraphical images under %·&X.

• Enhance Bigraphs as a theory.

We discuss each one in turn.

8.1.1 Characterising context-awareness
Motivated by the fact that the notion of context is still ill-defined [DA00],
we strive for a finer taxonomy of context with the purpose of a “context
checklist” for applications, which could help to define needed components

163

164 8. Future Work in Modelling and Simulation

in a library for context-aware programming. We believe that characterising
the context types of [SAW94] in terms of Plato-graphical models will aid
in understanding context-awareness as such by sharpening the definitions.
By formalising an application’s context interaction as interaction between
Plato-graphical components we gain precision.

We briefly recall the four types of context-aware applications that are
mentioned in [SAW94]. The types are along two axes: Manual vs. au-
tomatic, and information vs. command. Manual and automatic refer to
whether the user has to do something to make the application either fetch
information or perform an action specified by the command.

Proximate selection has to do with finding or emphasising the located-
objects that are nearby, and is a manual information task.

Automatic contextual reconfiguration is an automatic information task that
adds or removes components (typically software) or alters connections (ty-
pically wireless) depending on the context.

Contextual information and commands are commands whose execution
depend on the context – printing to the nearest printer will have a different
result depending on the user’s location.

Context-triggered actions are simple ’if-then’ rules used to specify how
context-aware systems should adapt, and context-triggered actions are in-
voked automatically according to these rules. This is enough knowledge
for our purposes.

Now, consider the following setup (suggested by Niss) depicted in Fi-
gure 8.1.

C A
Ac
L

1

2

S 3

4

Figure 8.1: The four categories of context-aware applications as Plato-
graphical interaction.

We imagine the following four interactions:

1. The proxy P possesses a sensor S, which senses reconfigurations in
the context C and informs the model L.

2. P is extended with an actuator component (Ac), which can affect C on
behalf of A, i.e., make it reconfigure.

8.1. Modelling 165

3. The agent A is informed of relevant context change by P (L).

4. A affects L, i.e., makes it change its conception of the context informa-
tion.

One can think of (2) as actuation, e.g., if the agent wished to turn on the
light in a dark room. (4) represents the ability to override the model if it,
e.g., has an inaccurate or wrong conception of the context. (3) can be either
“manual” or “automatic” (to use the terms of [SAW94]), with the manual
case being the agent asking for information, and the automatic case being
some sort of event or call-back. (1) can likewise be divided into manual and
automatic.

We claim that this setup generalises [SAW94]. “Automatic contextual
reconfigurations” are handled entirely in C. “Context-triggered actions” is
the call-back of (3) mentioned above. “Proximate selection and contextual
information” is the manual version of (3). “Contextual commands” are
more complicated. We think of this as a sequence of interactions; first A
asks P for the relevant context information and then it issues a command
by (2) and (4) above.

Once established the characterisation should be challenged by capturing
other informal characterisations of context-aware interactions. In [Sch95]
the following questions for determining situations are emphasised: Where
the user is, who the user is with, and which resources are nearby. The com-
ponents are device agents (that maintain status and capabilities of devices),
user agents (that maintain user preferences), and active maps (that main-
tain location information of devices and users). Another work to draw
challenges from is [DA00] where the computing environment consists of
CPUs, devices, and network connectivity. There is also a notion of user
environment characterised by location and nearby people. Furthermore,
the physical environment such as lighting and noise level is important. The
model requirements here include interpretation, acquisition, and storage
(history) of context.

This characterisation may serve as a framework for comparing concrete
context-aware models (of realistic systems).

8.1.2 Modelling real-life systems
We could try to establish a collaboration with engineers working on a real-
life ubiquitous system. This way, we would encounter massive challenges
to drive forward our research, and perhaps be able to solve some real
problems for real people.

166 8. Future Work in Modelling and Simulation

Another idea is to model a protocol for delivering messages in MANETs
such as Geocast [DR03]. Modelling a protocol like Geocast seems to require
devices to contain messages, and some sort of reachability information
inherent in the topology. Collaboration with people in model checking and
verification of wireless networks seems like the way to go here.

8.1.3 A list of properties
We should create a list of properties we want (to prove/guarantee) for
context-aware systems. All properties should be relevant for real-life sys-
tems and preferably also be provable by the reasoning principles available.
Some properties may not be provable with the current techniques so they
may give rise to research of new reasoning principles for Bigraphs or Plato-
graphical models.

8.1.4 Tool support
In the BPL group at the ITU, some members are currently working on a
prototype implementation of BRSs. Normalisation and matching of Bin-
ding Bigraphs has been implemented [BDGM06]. Perhaps it is an idea to
implement an add-on for Local Bigraphs.

This tool will be crucial for simulation purposes because realistic exam-
ples easily become too large to handle manually, let alone reason about.
We need tool support to truly conduct experiments with real systems. We
have already defined a translation from Ξsu!ar into the implementation of
binding bigraph terms. Extending the BPL simulator with fully automatic
location event generation – perhaps inspired by the generic location event
simulator of [SC02].

8.1.5 Formal reasoning
Proving properties about the bigraphical location model could be desira-
ble, but it is unclear which properties we wish to prove and with which
techniques. Certainly, one possible direction is to make precise some cri-
teria for when components of a Plato-graphical system can be substituted
(while maintaining properties of the system as a whole). This has to do
with bisimilarities between BRSs.

We may wish to prove properties such as, e.g., access control. This may
involve using BiLog [CMS05], or perhaps access control could be ensured
via sorting (only allowing devices with a particular access token to enter

8.1. Modelling 167

a room with a matching token), and then proving that the system can not
place an illegal device inside a protected room, by rule induction. Further
studies in desirable properties of context-aware systems are needed. We
have uniqueness of device locality by invariant (rule induction).

A technique for securing certain properties of our models could be
to use sortings further. We could perhaps impose a building sorting to
ensure that certain locations (perhaps identified by a internal type control)
are not within certain other locations, e.g., we do not wish for buildings
to be within rooms. To combine sortings, Debois, intuitively, combines
predicate sortings via conjunction by a pullback construction (Proposition
4 of [BDH06]), so we can combine an additional sorting with the Plato-
graphical sorting.

8.1.6 Dynamic correspondence
Ξ-programs and their images under %·&X evaluate in one-to-many corres-
pondence, i.e., the bigraphical representation takes one or more steps for
each Ξ-reduction step. Thus, we would like to prove something like the
following conjecture.

Conjecture 8.1.
∀e, σ,X, s, !. (∃ e′, σ′. 〈e, σ〉 → 〈e′, σ′〉 ∧ %〈e′, σ′〉&X = /$Y.! | s) =⇒
(%〈e, σ〉&X !+ /$Y.! | s) , where fv(e) ∪ fv(e′) ⊆ Y ⊆ X, and !+ is the transitive
closure of !.

The idea of a proof should be: Analyse each of the cases of possible reaction
in Ξ. We need a substitution lemma for the cases where evaluation results
in a substitution. If we can prove such a lemma, then the result can be lifted
to evaluation contexts by Lemmas 8.2 and 8.3.

Lemma 8.2. For any evaluation context E, term e, and set X such that fv(E[e]) ⊆ X,
it holds that %E[e]&X = %E&X ◦ %e&X.

Proof. A proof should be by structural induction on E.

Lemma 8.3. This lemma should correspond to Definition 4.8.

A proof should be by structural induction on evaluation contexts. One
could also consider studying other programming language issues in the
setting of Bigraphs. It would probably be wise to do it in as simple a setting
as possible. We do, however, not see this as important for our current
endeavours.

168 8. Future Work in Modelling and Simulation

8.1.7 Enhancing Bigraphs
Currently, the following extensions are on the wish list:

• DAGs: Replace the place graph (a forest of trees) with a DAG. The
motivation was given in Chapter 5, where organising a building with
rooms, wings etc. was a little troublesome.

• Time: Timed automata may inspire, we think of [D’A99].

• Continuous space (hybrid systems): Possible works of inspiration
(apart from the ones mentioned just above): [AD94, ACHH93, Hen96,
DB96].

We discuss each item in turn in a little more detail after considering the
overall purpose of them.

The visions mentioned in Chapter 3 remain; DAGs, time, continuous
space, and probabilistic information. Enriching the theory of Bigraphs with
these aspects is a demanding task, but certainly interesting.

DAGs

We decided to use the place graph for representing the location hierarchy
instead of merely by linking. On first thought, it might seem reasonable to
hierarchically order floors, wings, rooms, and devices in a building. Choo-
sing one ordering has its drawbacks, however. Should wings or floors be
higher in the tree? If we choose floors over wings then we could end up re-
presenting each wing on every floor, thereby introducing redundancy. This
can, however, be remedied by using DAGs instead of trees. Furthermore,
DAGs naturally support “shared locations” as, e.g., an auditorium residing
on the floors simultaneously. If we shy away from altering the theory of
Bigraphs then DAGs could be implemented using several trees (roughly
one for each “location sharing”), but navigating and keeping consistent se-
veral such views would complicate the modelling effort. In Chapter 7 we
discussed a piece of related work, where a sort of pointer is proposed to
address this idea.

Time

A notion of time in the model is required to be able to order events, i.e.,
for SX to be able to inform LX of the order of sightings to facilitate a closer
correspondence of the states cX and lX.

8.2. Simulation 169

Continuous space

Continuous space has to do with geometric coordinates. It should be pos-
sible to determine the geometric whereabouts of located-objects, and to
compute metric distances.

Probabilistic information

Stochastic Bigraphs [KMT08] may be a big help in this endeavour.

8.2 Simulation
We would like to test whether the properties of the tour guide mentioned in
Chapter 6 hold for the full model of Chapter 5. This will require extensive
simulations. This, in turn, will require us to develop further the BPL tool.
There are many directions in which we could go:

• Improve the efficiency of the BPL tool by reimplementing the mat-
ching engine to compositionally build matches from “submatches”, i.e.,
reuse parts of matches in a dynamic programming style.

• Tighten the normal forms for bigraphs to limit the search space.

• Improve the user interface, i.e., provide a more extensive high-level
graphical interface than is currently available at the BPL Web page1.

• Implement support for (semi-)automatically selecting appropriate bi-
graph matches from a given specification of their desired qualities.
This is important when many matches exist and the bigraph is large.
One such quality could be simplicity (number of nodes) of the para-
meters.

• To establish correctness we could link with work on model checking
and/or static analysis. The idea would be to write a model checker for
(some version of) the bigraphical term language (BTL), or to write a
compiler from BTL to the source language of known model checking
and static analysis tools.

This concludes the chapter on future work.

1https://tiger.itu.dk:8080/bplweb/

170 8. Future Work in Modelling and Simulation

9
Summary of Modelling and Simulation

In this part, the second part, we have investigated the modelling and simu-
lation of context-aware system in Bigraphs. In particular, we have modelled
an extensive location model in Bigraphs by use of Plato-graphical models.
Then, we have abstracted that model to obtain a more tangible model for
simulation purposes. Finally, we have presented some simulations of the
abstract model to illustrate the feasibility of the approach.

On the way, we have developed Plato-graphical models and en enco-
ding of MiniML into Bigraphs. Both theoretical advancements have been
motivated by modelling efforts.

Finally, we have given a thorough account of related work and pointed
out directions for future work.

In the next part, the third part, we will change focus. The third part is
more theoretical in nature than the second part, as we explore type systems
(and to some extent sortings) for Bigraphs.

171

172 9. Summary of Modelling and Simulation

Part III

Type Systems

173

175

“There are many ways of trying to understand programs. People
often rely too much on one way, which is called ’debugging’
and consists of running a partly-understood program to see if
it does what you expected. Another way, which ML advocates,
is to install some means of understanding in the very programs
themselves.”

– Robin Milner, Foreword to The Little MLer [FF97].

“If I had learned to type, I never would have made brigadier
general.”

– Brigadier General Elizabeth P. Hoi

176

10
Type Systems for Bigraphs

This chapter consists of a paper [EHS09] published at the 4th International
Symposium on Trustworthy Global Computing (TGC’08). I produced the
results of this paper along with their presentation under guidance of Davide
Sangiorgi and Thomas Hildebrandt. I made a major contribution both in the
research and writing phase, which is evidenced by a co-author statement
accompanying this dissertation. The paper has been insignificantly altered
to match the layout of this dissertation, and a few auxiliary definitions have
been admitted. Moreover, the full proofs from the accompanying technical
report [EHS08] have been included. Finally, the section on future work has
evolved.

177

178 10. Type Systems for Bigraphs

Abstract

We propose a novel and uniform approach to type systems for
(process) calculi, which roughly pushes the challenge of desig-
ning type systems and proving properties about them to the
meta-model of Bigraphs. Concretely, we propose to define type
systems for the term language for Bigraphs, which is based on
a fixed set of elementary bigraphs and operators on these. An es-
sential elementary bigraph is an ion, to which a control can be
attached modelling its kind (its ordered number of channels and
whether it is a guard), e.g., an input prefix of π-calculus. A mo-
del of a calculus is then a set of controls and a set of reaction rules,
collectively a bigraphical reactive system (BRS). Possible advanta-
ges of developing bigraphical type systems include: a deeper
understanding of a type system itself and its properties; transfer
of the type systems to the concrete family of calculi that the BRS
models; and the possibility of modularly adapting the type sys-
tems to extensions of the BRS (with new controls). As proof of
concept we present a model of a π-calculus, develop an i/o-type
system with subtyping on this model, prove crucial properties
(including subject reduction) for this type system, and transfer
these properties to the (typed) π-calculus.

10.1 Introduction
Type systems for calculi are important as they can: detect programming
errors statically; and classify terms enabling extraction of information that
is useful for reasoning rigorously about the behaviour and properties of
programs, among other things. Type systems are usually engineered to
enjoy subject reduction. The problem is that changing even small details
of such a type system might ruin properties. Therefore, to feel confident
that a tweak of the type system does not ruin any properties one really has
to redo the proofs. This is often tedious. Many such type systems can be
considered to be rather ad hoc so one would like a uniform way of proving
properties of a whole family of calculi, simultaneously.

In this paper we experiment with a novel approach to type systems
for (process) calculi, which roughly consists in pushing the problem of de-
signing type systems and proving properties about them (such as subject
reduction) to the more abstract level of Bigraphs [JM04, JM03] by Milner and
co-workers, a meta-model for (process) calculi. The main advantages are:

10.1. Introduction 179

a meta-model can describe several concrete calculi, therefore one can hope
that a result for a meta-model can be transferred to all of these calculi; and
understanding type systems at the level of meta-models can help to achieve
a deeper understanding of the type systems themselves. The theory of Bi-
graphs is rich as its expressiveness has been demonstrated in several works
in the literature; Petri nets [Mil04b, LM06], π-calculus [Jen07, JM04, JM03],
CCS [Mil06a], Mobile Ambients [Jen07], Homer [BH06], and λ-calculus
[Mil07]. Importantly for our work, a sound and complete term language
exists for Bigraphs [Mil05a, DB06].formulation of

One models a calculus in bigraphs by encoding its terms as bigraphs
and representing its reduction semantics by bigraphical reaction rules. All
bigraphs are obtained by combining elementary bigraphs via the operators
of categorical tensor product and composition. An essential elementary
bigraph is an ion, to which a control can be attached modelling its kind
(its ordered number of channels and whether it is a guard), e.g., an input
prefix of π-calculus. The semantics of a concrete calculus is represented as
reaction rules over a signature of controls.

A major effort so far has consisted in using Bigraphs to automatically
derive labelled transition semantics and congruential bisimilarities for con-
crete calculi with semantics defined by a reduction relation. In this paper
we propose a novel use of Bigraphs – to derive type systems for the concrete
calculi. Our approach can be described in three phases: 1) Define a core BRS
that can model the family of concrete calculi one is interested in. 2) Develop
bigraphical type systems (BTSs) for this core BRS and prove their properties
(such as subject reduction). 3) Transfer the type systems and their properties
onto the concrete calculi of interest. Transferring the type system rules onto
a concrete calculus C follows almost directly from the encoding of C’s terms
into the BRS and from the typing rules of the BTS. Our approach requires
a result of operational correspondence between a concrete calculus and its
bigraphical model, which is the most basic and fundamental property to
have when mapping a calculus into Bigraphs. Hence, we provide a point
of origin for studying type systems for (not in) bigraphs.

As proof of concept we study a strict (no summation), finite (no repli-
cation) and synchronous π-calculus, dubbed sfπ, along with an i/o-type
system with subtyping for its bigraphical model. sfπwith i/o-types is well-
suited for three reasons: The relationship between sfπ and Bigraphs has
been well studied in the literature [Jen07] allowing us to focus on type
systems for Bigraphs; sfπ is simple but important because it maintains the
essence of message-passing process calculi, and the i/o-type system with
subtyping is technically interesting without being very complex. This cons-

180 10. Type Systems for Bigraphs

titutes a first study of non-trivial types for bigraphs.

Related work In [BDH08], Debois and collaborators define a sorting as a
functor from a sorted s-category, where sorts (think types) are assigned to
interfaces (objects) as an extra component, into an unsorted s-category. A
sorting refines which bigraphs (morphisms) may be composed and thus
guarantees a certain structure of the well-sorted bigraphs. Hence, a sorting
reduces the set of terms that are considered for reaction. Sortings are not
defined inductively over bigraphs and give rise to different guarantees than
traditional type systems in that they do not attempt to approximate dynamic
behaviour of the terms. Thus, it is unclear whether one can recover existing
type systems by sortings (in the general case).

In [BS06] Bundgaard and Sassone develop polyadic π-calculus with ca-
pability types and subtyping in bigraphs by: defining and proving safe a
link sorting — called ’subsorting’ — which is crucial in securing the desired
i/o- and subtyping discipline; extending the theory of Bigraphs by introdu-
cing controls on edges to retain the type information of restrictions. They
inductively map type derivations of form Γ ; P : < to sorted bigraphs by
sending processes P to morphisms and typings Γ to sorted objects J. They
also derive an LTS yielding a coinductive characterisation of a behavioural
congruence for the calculus. A large effort in that work went into the sorting
and the derivation of the LTS.

In [IK04] Igarashi and Kobayashi propose a generic type system (GTS)
forπ-calculus enjoying subject reduction and type soundness. They express
typingsΓ as (abstract) CCS-like processes and then check the properties onΓ.
The GTS is parametrised over a subtyping preorder stating when two types
have the same behaviour. By adding rules to the basic subtyping relation a
type system instance for deadlock-freedom, among others, is obtained. This
approach differs from ours in that they consider type systems forπ-calculus
and not for a meta-model, but we too wish to transfer general results to a
family of calculi. In [K0̈5] König aims at generalising the concept of type
systems to graph rewriting and in particular the concepts of type safety,
subject reduction and compositionality. By working at the more abstract
level of graphs rather than terms the author claims to be able to simplify the
design of type systems, however we believe, at the cost of making it more
difficult to transfer back and understand the type systems in terms of the
concrete calculi.

In our approach we define type systems inductively on bigraph terms
and can thus hope to: directly recover existing type systems; and have a
computer verify whether a typed bigraph term is well-typed or not.

10.2. Bigraphs 181

send

a x

get

a

y
c

z ◦
k

z

=
c
k

send

0

get

1

x a

y ! 0 1

x

y

a

Figure 10.1: The ions send and get, bigraph composition, and the sfπ
reaction rule.

Contributions Our main contribution is conceptual: this work is a first
attempt in the novel direction of using bigraphs as a meta-model for type
systems through the first study of non-trivial inductive types for Bigraphs.
There are two main technical contributions: an i/o-type system (Table 10.2)
for a core BRS capturing the essence of message-passing calculi; and a proof
of Subject Reduction (Theorem 10.14) for this type system.

Outline In Section 10.2 we explain the necessary parts of Bigraph theory
by example and then we present a model of sfπ. On this foundation we
develop an i/o-type system for the model, prove important properties of it,
and transfer these to i/o-typed sfπ, all in the main Section 10.3. Finally, in
Section 10.4, conclusions are drawn and directions for future work outlined.
The full proofs reside in Section 10.A.

10.2 Bigraphs
Bigraphs is a model of computation that emphasis both locality and con-
nectivity aiming at trustworthy (safe and reliable) computation in global
ubiquitous computers [Wei93, BDE+06], in which highly dynamic topolo-
gies and heterogeneous devices are prominent. Mobile locality is captured
by a place graph and mobile connectivity by a link link graph, two largely
orthogonal structures that combine into a bigraph. The place graph is an or-
dered forest of trees representing nested locations of computational nodes,
and the link graph is a hypergraph representing interconnection of these
nodes. Dynamics are added to bigraphs by defining (parametric) reaction
rules. Consider Figure 10.1. It depicts two ions, bigraph composition, and
a reaction rule involving the ions. The two ions, depicted with solid circles,
model output prefix and input prefix of π-calculus, respectively. Each ion
consists of a node assigned a control determining its kind. In this case, both
controls have two ordered ports to which links (channels) can be attached.
send has its (free) ports linked to local outer names a (the ’channel’ port) and
x (the ’datum’ port), respectively. Global names are like unrestricted names

182 10. Type Systems for Bigraphs

in π-calculus, whereas local (think abstracted) names reside at regions/roots
(dotted rectangles) or sites (greyed rectangles). get has a binding port, which
binds a local inner name y with lexical scope below this node in the place
graph and thus resembles a variable of programming languages. Both ions
are contexts with a site (hole) into which another suitable bigraph can be
“plugged”, yielding another bigraph. This is known as vertical composition,
b1◦b0, and proceeds by plugging the roots of b0 into the sites of b1 (in order),
and fusing together the outer names of b0 with the inner names of b1, remo-
ving the names in the process. The sites and inner names of a bigraph b are
collectively called the inner face or domain (dom(b)); similarly, the regions and
outer names are called the outer face or codomain (cod(b)). Then, b1 ◦ b0 requi-
res cod(b0) = dom(b1). The second column of Figure 10.1 shows an example;
given b1 = c(z) : 〈1, ({z}), {z}〉 → 〈1, (∅), ∅〉 and b0 = ({z})Kz : ε → 〈1, ({z}), {z}〉
then b1 ◦ b0 : ε→ 〈1, (∅), ∅〉. The interface (or face) components are: a width;
a vector of local name sets drawn from the global name set; and a global
name set. They are projected by functor width, function loc, and function
globfor , respectively. Function glob projects all names of a face.

A notion that is not shown in Figure 10.1 is an edge (think restricted
name); inner names X and ports P can point to edges E instead of outer
names Y, via the so-called link map, link : X 7 P → E 7 Y. If the name x
is closed (restricted) then it becomes invisible to the context and any ports
which were pointing to this outer name will now instead point to an edge.
Edges have no name associated with them, just in the term language to
denote which points map to which edges. An edge is a “floating” binder in
that it has no lexical scope.

When representing a calculus in Bigraphs one is usually interested in
bigraph terms that are ground and prime (also known as agents), i.e., bigraph
terms that have no sites, no inner names, and outer width 1. Regions (or
sites) can be juxtaposed (composed horizontally) by the binary operator
tensor product ⊗, if the operands have disjoint name sets (both outer and
inner). A derived operator is the prime product |, which takes two regions as
operands, but allows them to share outer names, and also collapses the two
regions into one, while acting as tensor on sites. The third (basic) operation
on binding bigraphs is abstraction (X)P on a prime P, which localises a subset
of the global names of P. A face of width 0 without names is denoted by
the unique object ε.

The reaction rule models communication in sfπ. The redex has one
region signifying that a send and a get must be collocated and connected to
be able to communicate. The reactum shows that the bigraph has performed
an action, which has depleted the input/output capability. The outer name

10.2. Bigraphs 183

a is idle in the reactum, i.e., has no preimage under the link map, and the
inner name y points to the outer name x, explicitly representing meta-level
name substitution in π-calculi.

In Definition 10.1 reaction rules are defined formally. Here, we give
some intuition, but the formal definitions can be found in Appendix A.1.
It uses the notion of support equivalence (see Definition A.20), which for
our purposes can be thought of as bigraph equality (see Definition A.7).
Intuitively, a context D is active w.r.t a (ground) bigraph r if the sites of D
into which r is plugged are active, and sites are active if the path to the root
in the place graph only has (nodes with) active controls. An instantiation
essentially maps sites of the redex to sites of the reactum, and also maps the
possibly renamed local names of the reactum sites back to the redex sites
(see Definition A.29). A discrete parameter d is a ground bigraph with no
edges and a bijective link map.

Definition 10.1 (reaction rules for bigraphs, [JM04]). A ground (reaction)
rule is a pair (r, r′), where r and r′ are ground rules with the same outer face. Given
a set of ground rules, the reaction relation ! over agents is the least, closed under
support equivalence ("), such that D◦r ! D◦r′ for each active D and each ground
rule (r, r′).

A parametric (reaction) rule has a redex R and a reactum R′, and takes the
form

(R : I→ J,R′ : I′ → J, /)

where the inner faces I and I′ are local with widths m and m′. The third component
/ :: I → I′ is an instantiation. For every X and discrete d : X ⊗ I the parametric
rule generates the ground reaction rule

((idX ⊗ R) ◦ d, (idX ⊗ R′) ◦ /(d)) .

Note that d = d0 ⊗ · · · ⊗ dm−1 with each di prime. So the instance /(d) has factor
ej " / j ◦ d/(j) for each j ∈ m′; it takes the form

/(d) = X ‖ e0 ‖ · · · ‖ em′−1 : X ⊗ I′ .

Reaction is defined over concrete bigraphs, i.e., bigraphs where the nodes
and edges have identity. However, we are interested in abstract bigraphs.
Whenever b0 " b1 concretely we have b0 = b1 abstractly. Notice that inner
faces are local.

A signature is a set of controls each with: an arity map from its number f
of free ports to its number b of binding ports; and an activity map determining
whether it is active (an evaluation context), passive (guard), or atomic (a term).

184 10. Type Systems for Bigraphs

0 1
x

y

x1 · · · xn

x1 · · · xn

x1 · · · xn

K #»y (
#»X)

x11· · ·x1k · · · xm1· · · xmh

y1 · · · yn

p
ynl· · ·yn1· · ·m

ymk· · ·ym1

m-1
xmh· · ·xm1· · ·0

x1i· · ·x11

x11 · · · x1i xm1 · · · xmh y11 · · · y1k yn1 · · · ynl

Figure 10.2: The seven elementary binding bigraphs, graphically.

Bigraphs have an algebraic representation. All bigraphs can be genera-
ted from seven elementary bigraphs combined by (categorical) tensor pro-
duct and composition. One can think of these elementary bigraphs and the
operations on them as basic building blocks (language concepts) for proces-
ses and operators on processes. The faces of the bigraphs determine when
tensor product, composition, and abstraction are well-defined. Bigraphs
are bigraph terms up to the structural congruence given by the axiomatisa-
tion. The elementary bigraphs are depicted graphically in Figure 10.2 and
as syntactic terms with algebraic faces in Table 10.1.

Notation 10.2 (Placing, linking, wiring, sets). For interfaces we often omit:
names from placings (node-free place graphs); widths from linkings (node-free
link graphs); the enclosing 〈 and 〉 when the width is zero. A wiring is a bigraph
with zero width generated by composition and tensor of linkings. Curly brackets
are often omitted for singleton sets and names on ions. Sets (usually of names or
types) are denoted by capital letters such as X,Y,Z and S,T,U, ranged over by
minuscule letters. We write XY for the disjoint union 7 of sets X and Y.

Definition 10.3 (Flattening). Given a vector #»x of distinct names we write { #»x }
for the corresponding (one-to-one) set. Given a vector

#»
X = (X1, . . . ,Xn) of disjoint

name sets we define their disjoint union as { #»X} def
=
⊎n

i=1 Xi .

Consider Figure 10.2. First row: A barren root 1 is an empty region.
When plugging a bigraph with two regions and no outer names into join,
the two regions are merged into one. Name closure /x acts as a non-lexical
binder; it is put on top of a bigraph with a global inner name x and closes
(restricts) this name rendering it invisible to the context. Substitution y/X
links a set of global inner names X to a single global outer name y by a

10.2. Bigraphs 185

1 : 0→ 1 barren root
join : 2→ 1 join two sites
/x : x→ ∅ close global outer name x

y/X : X→ y link glob. name set X to glob. name y
#X$: (X)→ 〈X〉 globalise local outer name set X

K #»y (
#»X) : ({ #»X})→ 〈{ #»y }〉 ion: local name sets

#»
X , glob. names #»y

γm,n,(#»X ,
#»
Y) : 〈m + n,

#»
X

#»
Y , { #»X} 7{ #»Y}〉 → 〈m + n,

#»
Y

#»
X, { #»X} 7{ #»

Y}〉
transpose m with n regions or sites

Table 10.1: The seven elementary binding bigraphs as terms.

hyperlink; y is “substituted for” any x ∈ X; the widths are zero; X is “bound
inwards”; and y “binds outwards”. A special case is y/∅ which introduces
an idle name. The concretion #X$ bigraph globalises a set of local names X,
dually to the abstraction operator. Second row: An ion K #»y (

#»X) is a prime
bigraph with a single node of control K with free ports linked severally to
a vector #»y of distinct outer names, and each binding port linked to all local
inner names in name set Xi a vector

#»
X of sets of distinct names. Ions are

the essence of BRSs as they usually model the interesting entities of systems
or calculi. Third row: A transposition γm,n,(#»X ,

#»
Y) transposes regions keeping

their sites and local names. either be put on From here on we think of
bigraphs represented as terms.

10.2.1 A bigraphical model of sfπ
We consider sfπ. Following [Jen07] we add an axiom to the usual structural
congruence: νx (π.P) ≡ π.νx P, if x $ (fn(π) ∪ bn(π)). This axiom naturally
complements the similar axiom for parallel composition and secures that
structural congruence coincides with graph isomorphism yielding a nice
graphical representation of bigraphs. Equivalences on processes remain
unchanged even though more processes are related by ≡ with this axiom.
This axiom is not important for our development. However, we remark that
to represent, e.g., a replicated input prefix in Bigraphs one needs an outward-
binding control [Jen07]. Processes that are α-convertible are identified.

We model sfπ with the BRS of [Jen07] (a signature Σsfπ and a set of

reaction rules Rsfπ) but name it ´Bbgsfπ
def
= ´Bbg(Σsfπ,Rsfπ). Prefixes (in-

put and output) are modelled by the passive controls send and get of Figure

186 10. Type Systems for Bigraphs

10.1, because prefixes are guards. get has a binding port. The semantics
is modelled by a single reaction rule, where prime product models parallel
composition, name closure models restriction, and an insertion operator %
inserts a wiring into a bigraph b making composition b ◦ b′ well-defined,
typically by “wiring through” (and then localising) outer names of b′ that
are not to be lexically bound by b. (See Definition A.31 of Appendix A.1.)

Definition 10.4 (´Bbgsfπ, [Jen07]).

Σsfπ
def
= { send : 0→ 2 (passive) , get : 1→ 1 (passive) }

Rsfπ
def
= (R,R′, /) =

(
sendax | geta(y) : 〈2, (∅, {y}), ∅〉 → 〈1, ({a, x}), ∅〉,
(id1 | id1 % x/y) % a : 〈2, (∅, {y}), ∅〉 → 〈1, ({a, x}), ∅〉,
id2
)
.

The instantiation / = id2 has underlying function / : 2→ 2 with bijective
local substitutions /0 : (∅) → (∅) and /1 : ({y}) → ({y}). This (parametric)
reaction rule is linear, because its instantiation is bijective, so no parameters
are replicated or discarded. It is parametric to model arbitrary subterms
under prefixes. In bigraph terms the names a, x, and y are not meta-variables
so we stipulate that a ! x ! y, because the bigraph corresponding to the
term is different in the cases where some of these are equal. If a and x
need to be identified for a reaction, then the context does it. We name the
morphisms (bigraphs) of ´Bbgsfπ process bigraphs.

Processes are mapped to bigraph terms by the compositional, semantic
function %·& of Definition 10.5. For technical reasons the inactive process is
modelled by (X), an empty ground local prime.

Definition 10.5 (Encoding sfπ in ´Bbgsfπ, [Jen07]). The function %·&(X) maps
every process P of sfπwith fn(P) ⊆ X into the homset (ε, (X)) of ´Bbgsfπ as follows:

%ax.P&(X) = sendax % idX ◦ %P&(X) %P | Q&(X) = %P&(X) | %Q&(X) %0&(X) = (X)

%a(y).P&(X) = geta(y) % idX ◦ %P&(Xy) %ν xP&(X) = /(x) % idX ◦ %P&(Xx) .

The translation of P is indexed by a (local) name set X ⊇ fn(P) that
is needed to secure dynamic correspondence between sfπ and the model.
This is because reduction in sfπ can discard a channel (name) after use, i.e.,
reduce the set of free names, but outer faces (of agents) are preserved by
bigraphical reaction rules so here the name persists, although idle. (For
an example see [JM04].) P will have an image for each choice of X, i.e.,
countably many bigraphs. Not unusually, the translation requires that

10.3. A bigraphical i/o-type system 187

bn(P) ∩ fn(P) = ∅ and unique binding names. The model enjoys structural
and dynamic correspondence theorems, here combined.

Theorem 10.6 (Correspondence, [Jen07]).

1. The function %·&(X) is surjective onto the homset (ε, (X)) of ´Bbgsfπ ;

2. P ≡ Q iff %P&(X) = %Q&(X).

3. Given X ⊇ fn(P), then P −→ P′ iff %P&(X) !%P′&(X).

We are now ready to define a type system on ´Bbgsfπ.

10.3 A bigraphical i/o-type system
In this main section we develop a bigraphical i/o-type system and prove
important properties of it.

Definition 10.7 (Type environment). A type environment (or typing) is an
unordered finite assignment of types to names, ranged over by Γ and ∆. The
support supp(Γ) is the set of names. When regarded as a finite function from
names to types we write Γ(x) for the type assigned to x by Γ. The extension of
Γ with the assignment x : T is denoted Γ, x : T when x $ supp(Γ). The disjoint
union Γ,∆ is defined when supp(Γ) ∩ supp(∆) = ∅, and is (also) associative and
commutative. Γ∅ denotes the empty typing.

Definition 10.8 (Syntax of types and typings).

V" L | • L" #V | oV | iV Γ" Γ, x : V | Γ, x : L | Γ∅ .

A link is a name that may be used for communication. The values are
the objects (names) that can be communicated along links. The link types (L)
are the types that can be ascribed to links. The value types (V) are the types
that can be ascribed to values (names). Link types are value types so that
processes can exchange links, allowing mobility. Links can either be used
in input iV, output oV, or both #V (the connection type). The inhabitants of
unit type • are names. Names assigned type • are base values that can only
be passed around. There is no special unit value as this would clutter the
presentation.

In message-passing process calculi the channels (links) are the essential
part because communication is the primitive notion studied. Therefore, in
the present paper, we only type links, not nodes. Table 10.2 presents the
i/o-typing rules for ´Bbgsfπ. The idea is to syntactically define types for

188 10. Type Systems for Bigraphs

Placin!s :
Γ∅;Γ∅ ; 1 Γ∅;Γ∅ ; join

Γ1 ≤ Γ0 supp(Γ j) j=0,1 = Z

Γ0;Γ1 ; γZ

Linkin!s :
x : L;Γ∅ ; /x

Γ ; y : T
X : T;Γ ; y/X

Id & Conc. :

Γ1 ≤ Γ0
supp(Γ j) j=0,1 = glob(I)

Γ0;Γ1 ; idI

Γ1 ≤ Γ0
supp(Γ j) j=0,1 = X

Γ0;Γ1 ; #X$

Operators :
∆;Γ ; b
∆;Γ ; (X)b

∆0;Γ0 ; b0 ∆1;Γ1 ; b1

∆0,∆1;Γ0,Γ1 ; b0 ⊗ b1

Γ0;∆ ; b0 ∆;Γ1 ; b1

Γ0;Γ1 ; b1 ◦ b0

Ions : Γ ; a : oT Γ′ ; x : T
Γ∅;Γ,Γ′ ; sendax

Γ ; a : iS
y : S;Γ ; geta(y)

Subtypin! :
T ≤ T

S ≤ U U ≤ T
S ≤ T #T ≤ iT #T ≤ oT

S ≤ T
iS ≤ iT

T ≤ S
oS ≤ oT

T ≤ S S ≤ T
#S ≤ #T

Names :
S ≤ T

x : S ; x : T

Table 10.2: i/o-typing rules for ´Bbgsfπ.

elementary bigraphs and the operators on them following their structure
inductively. The i/o-type system guarantees that ions (images of processes)
use their links in accordance with their capabilities on them. The subtyping
preorder ≤ can be thought of as inclusion between the sets of the values of
the types. So we would have, e.g., Int ≤ Real. We write Γ1 ≤ Γ0 whenever
supp(Γ1) = supp(Γ0) = X and ∀x ∈ X.Γ1(x) ≤ Γ0(x).

Definition 10.9 (Judgments). A bigraph type judgment is of the form∆;Γ ; b,
where b is a bigraph term. A name type judgment is of the form Γ ; x : T.

Consider Table 10.2. Bigraphs are contexts and thus typed by two
typings; a typing∆ of the inner names and one Γ for the outer names. When

10.3. A bigraphical i/o-type system 189

assigning types it does not matter whether a name is local or global, we just
type the third component of interfaces, which is projected by function glob.
The type system is strong in the sense that the typings carry no information
about names that do not appear in the interfaces of the bigraph. The
reason for this will become clear later when we treat properties of the type
system. In the following we refer to the axioms that govern bigraphical term
equality, which are defined in [DB06, Mil05a], and recited in Definition A.32
of Appendix A.1.

Nameless elementary bigraphs, i.e., the barren root and join, are typed
using two empty typings. Transpositions allow subtyping because they
partially coincide with identities (by axioms (C7) γI,ε = idI and (C8) γJ,I ◦
γI,J = idI⊗J), which in turn partially coincide with substitutions (by axioms
(L1) x/x = idx and (L3) /y◦ y = idε), and substitutions must allow subtyping,
see below. We write γZ for γm,n,(#»X ,

#»
Y) when we are merely interested in the

names collectively.
A closure – name creation – can be given any link type. Actually, it

is only useful when it is a connection type (#V) because for two processes
to communicate over a link one needs to use the link for output and the
other for input, simultaneously. Bigraphical substitutions y/X demand that
all x ∈ X have the same type T (denoted by X : T), which is natural because
substituting in a y for any x really identifies these xj, namely they are y from
the viewpoint of the context. In harmony with the i/o-subtyping discipline
we must be able to assign to y a subtype of the xj so as to allow substitution
of names with a possibly smaller (more general) capability. In a sense this
corresponds to the usual substitution lemma for π-calculi.

Identities and concretions allow subtyping. Concretions merely globa-
lise outer names but are allowed to subtype. This enables a Narrowing
lemma.

Localising names does not affect types so the rule for abstraction is
straightforward. The rule for tensor product splits the typing in its two
branches according to the names of each tensor operand. The rule for com-
position demands the types of the common interface to be identical, which
is natural when considering that bigraphs are really categorical morphisms
between objects (interfaces).

The rules for ions are essential as they type the prefixes. Channels are
forced to be of output and input type, respectively. Notice the asymmetry
between how x and y are typed; the type of y is fixed in the inner typing
because it is a binder, just like the cases for the inner typings of closure and
substitution.

The rule for names encompasses subsumption, because the typings are

190 10. Type Systems for Bigraphs

strong rendering obsolete the need to have two separate rules.
The type system is not entirely generic. The following rules are indepen-

dent from the particular i/o-subtyping discipline: Barren root, join, name
closure, abstraction, tensor, and composition. The rules for transpositions,
substitutions, identities, and concretions all have a subtyping condition,
which would probably change depending on the particular typing disci-
pline under consideration. (Nevertheless, the rule for substitution seems
safe as it does not allow the elements of X to hve different types, nor to have
different types w.r.t y.) Obviously, the rules for subtyping are not generic.
The rules for ions are dependent on the particular discipline, and it seems
unrealistic to have (entirely) generic ones, because ions represent particular
calculus constructs.

This type system is, however, tailored toward message-passing process
calculi. Probably, a bigraphical type system for, e.g., Mobile Ambients will
look quite different, because there we wish to type controls in hierarchies
and not so much links.

This type system differs from traditional type systems, e.g., the i/o-type
system of π-calculus (see e.g. [SW01]) in the following respects: 1) We
type contexts, not terms, and therefore we have to account for (categorical)
composition. 2) Explicit substitution y/X is a syntactic term and hence
needs to be typed. This fundamental difference is important because it
pervades the properties of the type system in that subtyping of substitution
in a sense represents a substitution lemma. 3) The tensor product is more
fundamental than parallel product. 4) There is a distinction between local
and global names. An important insight is that a name x ∈ glob(dom(b)) and
another x ∈ glob(cod(b))) are really two different names if they are not linked
in b.

The type system enjoys two crucial properties; subject reduction and
type soundness. These results rest upon the Main Lemma establishing
that the bigraphical typing relation is closed under bigraph term equality,
which in turn requires Narrowing and Widening. The typing and subtyping
relations enjoy Inversion, i.e., can be read “bottom-up”, because they are
syntax-directed.

Lemma 10.10 (Narrowing). If ∆;Γ, x : T ; b and S ≤ T then ∆;Γ, x : S ; b.

Lemma 10.11 (Widening). If ∆, x : S;Γ ; b and S ≤ T then ∆, x : T;Γ ; b.

Widening is unusual (for process calculi) in that it is defined on contexts.
It is in a sense the dual lemma to Narrowing as it allows widening of inner
typings.

10.3. A bigraphical i/o-type system 191

The congruence relation= of the Main Lemma is the involved, axiomati-
sed bigraph equality on terms (see [DB06, Mil05a]).The Main Lemma states
that if two bigraph terms are equal then they can be typed in the same envi-
ronments so the type system is robust w.r.t. bigraph equality: term equality
on bigraphs coincides with graph isomorphism so this lemma allows us to
think of types on the underlying graphs. This lemma is (technically) crucial,
and it is unusual because it works for contexts (and not just terms).

Lemma 10.12 (Main Lemma). Suppose b0 = b1 for any bigraphs b0 and b1. Then
∆;Γ ; b0 if and only if ∆;Γ ; b1.

Corollary 10.13 of the Main Lemma tells us that the type system is robust
w.r.t. decomposition of the term as a graph, which is important for Subject
Reduction.

Corollary 10.13 (Decompositionality). If ∆;Γ ; b and b = b1 ◦ b0 then there
exists a typing Θ such that ∆;Θ ; b0 and Θ;Γ ; b1.

Before stating and proving a subject reduction theorem we consider
the grounded rules generated by the parametric rule of Definition 10.4,
because the type derivations of this rule’s redex and reactum are a key to
understanding the proof of the subject reduction theorem. The generated
ground rules are of form (r, r′):

(
(idX ⊗ R) ◦ d , (idX ⊗ R′) ◦ /(d)

)

def
=

(
(idX ⊗ (sendax | geta(y))) ◦ d , (idX ⊗ ((id1 | id1 % x/y) % a)) ◦ /(d)

)

def
=

(
(idX ⊗ ((join ⊗ id(ax)) ◦ (σ ◦ (sendax ⊗ (τ ◦ geta(y)))))) ◦ d ,

(idX ⊗ ((join ⊗ id(ax)) ◦ (((join ⊗ id(x)) ◦ (id1 ⊗ (x)/(y))) ⊗ (a)))) ◦ /(d)
)

where {a, x} ∩ X = ∅, τ = (a′)/(a), and σ = (a)/({a,a′}) ⊗ (x)/(x) w.l.o.g. We remark
that (x)/(y)

def
= (x)(x/y ⊗ id1) ◦ #y$. Subject Reduction (Theorem 10.14) is the

main theorem and guarantees that typings are preserved over reaction. The
core in the proof of the theorem is an analysis of redex and reactum as the
type derivations of the context, and in this case also the parameters, are
preserved by reaction. Hence, the theorem is really a property of reaction
rules. For a BRS with multiple (possibly overlapping) reaction rules one
would analyse the redex-reactum pair of each one and then simply combine
the results to obtain the theorem.

Theorem 10.14 (Subject Reduction). For process bigraphs b0 and b1, if Γ∅;∆ ; b0
and b0 ! b1 then Γ∅;∆ ; b1.

192 10. Type Systems for Bigraphs

Proof. The proof is by analysis of the derivation of b0 ! b1 by the sole reac-
tion rule. Because b0 ! b1, then by Definition 10.1 there exists an active
context D such that b0 = D ◦ r and b1 " D ◦ r′. Assume a derivation
of Γ∅;∆ ; b0, then also (∗) Γ∅;∆ ; D ◦ r by Lemma 10.12. By Inversion
we must have (among others) the following six subderivations from (∗):
(1′) Γ∅;Γ, y : S ; d, (3′) a : U ; a : oT, (3′′) x : U′ ; x : T, (4′) a : R ; a : iS,
(5′) U ≤ R, and (8′) Γ′, a : W, x : W′;∆ ; D. We also know that W ≤ U and
W′ ≤ U′. By (3′), (5′) and (4′) we conclude T ≤ S (cf. [SW01]). W′ ≤ U′, and
by (3′′) we have U′ ≤ T ≤ S, so W′ ≤ S.

Now, consider the derivation to be built. b1 " D◦r′ implies that b1 = D◦r′
abstractly. By Lemma 10.12 it suffices to derive Γ∅;∆ ; D ◦ r′. Reuse the
derivation of D. / = id2 so /(d) = d. This means that we can also reuse
(1′). We still need to justify a derivation of y : S; x : W′ ; (x)/(y). This merely
requires justification of W′ ≤ S because we may choose not to subtype in the
other substitutions. W′ ≤ S has already been established so we can build
the desired derivation of Γ∅;∆ ; D ◦ r′. !

We remark that the inner typings are preserved because the reaction
rule is linear, but that need not be the case in general, where the theorem
could instead relate the inner typings by something weaker than equality
(since sites, including local inner names, can be discarded or replicated and
renamed).

Type Soundness (Proposition 10.15) states that a process bigraph b well-
typed in Γ∅;Γ can only perform input or output actions for which Γ offers
the appropriate capabilities.

Proposition 10.15 (Type Soundness). Let !∗ be the reflexive, transitive closure
of !. Suppose that process bigraph b = %P&(X), Γ∅;Γ ; b, and b !∗ b′. Then, for
each non-idle a ∈ glob(cod(b′)) it holds that:

1. If Γ ; a : iS then a is either linked to the channel port of a get ion or linked
to the datum port of a send ion.

2. If Γ ; a : oT then a is linked to a send ion.

Proof (Sketch). The proof is by induction on the length of the reduction
b !∗ b′. Essentially, one follows the link map in the the proof. The inductive
case uses Subject Reduction. !

Type Soundness gives guarantees about outer names, but not closed
names because edges have no type. To achieve a stronger type soundness
property – such as “well-typed processes do not reduce to wrong” – one

10.3. A bigraphical i/o-type system 193

could introduce a tagged version of the BRS in which each name is per-
manently tagged with the intended i/o usage, like in [PS96] for π-calculus.
Or, we could follow [BS06] and type edges to possibly obtain a result of
intermediate strength.

Idle names are merely the residue of reaction in Bigraphs so adding
or removing them corresponds, in a precise way to be shown below, to
Weakening and Strengthening of a type system in π-calculus. Adding and
removing idle names actually changes the bigraph (a context) because the
codomain changes. These different bigraphs should however correspond
to the same source calculus term because they only differ up to names that
do not occur in the source term.

Lemma 10.16 (Weakening). If∆;Γ ; b and x$supp(Γ) then∆;Γ, x : T ; b⊗ (x).

Lemma 10.17 (Strengthening). If ∆;Γ, x : T ; b ⊗ (x) then ∆;Γ ; b.

Even though these two properties on the surface appear different from
those of π-calculi they really do correspond to the usual properties of typed
sfπ.

With these important properties in hand it is time to transfer them to the
i/o-typed source calculus sfπ. The standard way to map an untyped process
calculus into Bigraphs is to consider a trivial type system for the process
calculus with just a single type and map derivations of formΓ ; P : < (see e.g.
[SW01]) to the (untyped) bigraph %P&(X) exactly when fn(P) ⊆ X = supp(Γ).
The choice X = supp(Γ) coerces a connection between a process bigraph and
its (outer) typing. Names in supp(Γ) \ fn(P) become idle names in %P&(X) by
the translation, recalling that %0&(X) = (X). This is made precise by Lemma
10.18.

Lemma 10.18. Suppose b = %P&(X) and Γ∅;Γ ; b with fn(P) ⊆ X = supp(Γ).
Then %P&supp(Γ) ⊗ (x) = %P&(supp(Γ,x:T)) for any type T.

Using Lemma 10.18 we conclude: %P&(X) ⊗ (x) = %P&(supp(Γ)) ⊗ (x) =
%P&(supp(Γ,x:T)) for any type T. Then, by Lemma 10.12 we have that ∆;Γ, x :
T ; %P&(supp(Γ)) ⊗ (x) if and only if ∆;Γ, x : T ; %P&(supp(Γ,x:T)).

We can “read back” the typing rules over the term translation (to be
made precise shortly), and thus also the properties of the type system,
including Weakening and Strengthening by courtesy of Lemma 10.18. We
read back typing rules as follows: The rules for the inactive process and
input prefix are straightforward; restriction is type annotated in sfπ using
its premise; parallel composition is derived from tensor and composition;
the case for output prefix has the twist that in sfπ the typings used to type

194 10. Type Systems for Bigraphs

the two channels should be the same; and split the rule for names into a
rule for names and one for subsumption. Recall that typings in typed sfπ
are not strong. Hence, we recover exactly the fragment of the well-known
Pierce-Sangiorgi i/o-type system for the π-calculus [PS96, SW01] (see Table
A.1 of Appendix A.3). Proposition 10.19 precisely relates the bigraphical
type derivations with the ones for sfπ.

Proposition 10.19 (Transfer of Type Derivations). Γ ; P : < if and only if
Γ∅;Γ ; %P&(X) when fn(P) ⊆ X = supp(Γ).

Proof (Sketch). The proof is by structural induction on P using Lemmas 10.18
and 10.12. !

The proof is naturally by structural induction on P because we follow
the translation of terms when transferring type derivations. We remark
that to extend a BRS to accommodate a new source calculus operator one
encodes it, and for a new process construct (e.g. a prefix) one adds an ion
to the BRS, encodes the extended source calculus in the extended BRS, and
finally one gives a typing rule for this new ion. In conclusion: All of the
bigraphical properties are transferable.

10.4 Conclusion
We have demonstrated a novel and uniform approach for developing type
systems for (process) calculi, through Bigraphs. Type systems are defined
inductively over the structure of elementary bigraphs and their operators,
as opposed to using a sorting [BS06]. Thus, a computer may possibly
verify that a typed term is well-typed. Concretely, we have illustrated
the approach by developing a sound i/o-type system enjoying a general
form of Weakening and Strengthening for a bigraphical model of a core
π-calculus, and then we have transferred the type system and its properties
to the π-calculus. The development of the i/o-type system for Bigraphs
differs significantly from i/o-typed π-calculus: bigraphs are contexts with
richer structure than ordinary process calculus terms, which is reflected
in the axioms governing bigraphical term equality, leading to technical
intricacies in the Main Lemma used in Subject Reduction; Weakening and
Strengthening of typed π-calculi corresponds to adding and removing idle
names of bigraph terms, respectively.

We have tackled the case of i/o-types for the π-calculus because, being
non-trivial and well-studied, this type system seemed to be an ideal test for

10.4. Conclusion 195

our programme. In the future we would like to consider more sophistica-
ted type systems. Here, some of the potential advantages of bigraphs (in
particular, their modularity, the possibility of transferring the type results
to a family of concrete calculi, and the insights gained on the type systems
themselves) could be particularly valuable. A good example of this might be
type systems for deadlock-freedom and lock-freedom, such as Kobayashi
and co-workers’ [Kob06, Kob02]. These type systems yield fundamental
behavioural guarantees on processes such as absence of deadlock. Howe-
ver, one may argue that they are not fully understood yet, as a number of
variations have appeared, with different expressive power. Also, they seem
very sensitive to the grammar of the underlying process language, so trans-
ferring them to a different formalism may be troublesome. Formulating
these types at the more abstract level of Bigraphs could shed light into their
design and facilitate their application.

We would like also to: consider different process languages, for ins-
tance with primitives for distribution such as Mobile Ambients or Homer;
further investigate the relation between our work and sortings; generalise
our approach to capture several interesting type systems simultaneously;
to automatically derive an LTS for the BRS and then lift Subject Reduction
to that semantics (to help bridge prior efforts in Bigraphs concerning ex-
pressiveness and derivation of LTSs with our approach); and support tools
for type inference and type checking.

10.4.1 Additional future work
Moreover, one might: 1) consider i/o types for full(er) π-calculus, and 2)
identify “safe” conditions for adding ions and typing rules to the core BRS.

Ad. 1) Let us first consider π-calculus with summation and replication:
[Jen07] contains a bigraphical model of π-calculus with summation and re-
plicated reception. The bigraphical model of this calculus given in [Jen07]
requires A) outward binding, i.e., binders that have scope in sibling nodes
(instead of just in child nodes), B) structural congruence in the model is
different in that the inactive process is not neutral with respect to parallel
composition, and restriction can not be pushed past prefixes nor be elimina-
ted when applied to the inactive process, and C) restriction process bigraphs
are removed from the underlying category (because they are not used in
the encoding given in [Jen07]). It is thus not clear how to extend our frame-
work to encompass this calculus. No models of other operators nor π-like
calculi exist, as far as we know, and it is therefore unclear how to extend
our framework to encompass these operators (e.g. matching/mismatching)

196 10. Type Systems for Bigraphs

and calculi.
Encompassing asynchronous π-calculus is straightforward; just add an

atomic control representing the new prefix to the signature of ´Bbgsfπ, the
bigraphical typing rule would be the same, whereas the π-calculus typing
rule would just omit the premise Γ ; P : <.

Ad. 2) When adding a new operator to a source calculus one must also
supply the translation of it. As long as the already defined operators on
elementary bigraphs are enough to capture the semantics then the results
will continue to hold. However, when adding a process construct a new
ion and a new typing rule must be given, which may break some results.
It is not necessarily easier to check that a rule does not break results in the
bigraphical type system, but once done the typing rule can be guessed for
the encodable calculi and the results hold (provided that Proposition 10.19
can be shown in each case).

Acknowledgments

The first author wishes to thank Mikkel N. Bundgaard, Søren Debois and
Troels C. Damgaard for useful technical discussions. We thank the anony-
mous referees for suggestions on improving this paper’s presentation.

This work was funded in part by the Danish Research Agency (grants
no.: 2059-03-0031 and 274-06-0415) and the ITU (the LaCoMoCo/BPL and
CosmoBiz projects).

10.A Full proofs
This section contains the full proofs.

Lemma 10.20 (Narrowing). If ∆;Γ, x : T ; b and S ≤ T then ∆;Γ, x : S ; b.

Proof. The proof is by induction on the height of the derivation of ∆;Γ, x :
T ; b.

• The cases for 1, join, and /x are vacuously true.

• The cases for transpositions, identities, and concretions hold by In-
version and transitivity of the subtyping relation ≤.

• The case for substitutions: Assume a derivation of X : T′;Γ, x : T ; y/X
with premise Γ, x : T ; y : T′ by Inversion. Because typings are strong
we must have Γ =Γ ∅ and y = x. Thus, we have a derivation of
y : T ; y : T′. Clearly, T ≤ T′. By transitivity of subtyping and the

10.A. Full proofs 197

assumption S ≤ T we obtain S ≤ T′. Hence, by the the rule for names
(subsumption) we can derive y : S ; y : T′, which is required to derive
X : T′;Γ, x : S ; y/X.

• The case for abstraction follows immediately from Inversion and the
induction hypothesis.

• The case for output, sendaz: Either x = a or x = z but not both. Case
x = a: Assume a derivation of Γ∅; a : T,Γ ; sendaz with premises (1)
a : T ; a : oT′ and (2) Γ ; x : T′ by Inversion. From (1) we know that
T ≤ oT′. Then, the assumption S ≤ T and transitivity of subtyping
yield S ≤ oT′. Then, by subsumption we derive (1’) a : S ; a : oT′.
Using (1’) and (2) we derive Γ∅; a : S,Γ′ ; sendaz as required. The case
for x = z is analogous to the case where x = a.

• The case for input: The proof is analogous to the proof for output
where x = a.

• The case for tensor product: Assume a derivation of ∆0,∆1;Γ0,Γ1 ;
b0 ⊗ b1 with premises ∆0;Γ0 ; b0 and ∆1;Γ1 ; b1 by Inversion. Either
x ∈ supp(Γ0) or x ∈ supp(Γ1) but not both. In either case the deciderata
follows from the induction hypothesis on ∆i;Γi ; bi.

• The case for composition: Assume a derivation of Γ0;Γ1 ; b1 ◦ b0 with
premises (1) Γ0;∆ ; b0 and (2) ∆;Γ1 ; b1 by Inversion. We have that
x ∈ supp(Γ1) so the deciderata follows by induction hypothesis on (2).

!

Lemma 10.21 (Widening). If ∆, x : S;Γ ; b and S ≤ T then ∆, x : T;Γ ; b.

Proof. The proof is by induction on the height of the derivation of ∆, x :
S;Γ ; b.

• The cases for 1, join, and output hold vacuously.

• The cases for transpositions, identities, and concretions hold by tran-
sitivity of subtyping.

• The case for closure is by axiom.

• The case for substitutions: Assume a derivation of X : S;Γ ; y/X
with premise Γ ; y : S by Inversion. Clearly, Γ(y) ≤ S, and because
S ≤ T we obtain Γ(y) ≤ T by transitivity of subtyping, which derives

198 10. Type Systems for Bigraphs

X : T;Γ ; y/X by subsumption. Hence, we can derive X : T;Γ ; y/X as
required.

• The cases for abstraction, tensor, and composition are by Inversion
and then one application of the induction hypothesis.

• The case for input: Assume a derivation of y : S;Γ ; geta(y) with
premise Γ ; a : iS by Inversion. S ≤ T derives iS ≤ iT by covariance
of subtyping on input types. Clearly, Γ(a) ≤ iS, and because iS ≤ iT
we obtain Γ(a) ≤ iT by transitivity of subtyping. We can thus derive
Γ ; a : iT and then conclude y : T;Γ ; geta(y) as required.

!

Lemma 10.22 (Main Lemma). Suppose b0 = b1 for any bigraphs b0 and b1. Then
∆;Γ ; b0 if and only if ∆;Γ ; b1.

Proof. The proof is by induction on the height of the derivation of b0 = b1
and has a case for each axiom. The proof consists of 60 cases; there is one
case for each direction of each axiom, casing on whether the ion is send
or get, and checks for reflexivity, symmetry, transitivity, and congruence.
Inversion is used frequently in a straightforward manner so we omit explicit
mention of it. We proceed by case analysis.

• case A ◦ idI = A for A : I→ J.

“⇒”: Assume a derivation of ∆;Γ ; A◦ idI with premises (1) ∆;Θ ; idI
and (2) Θ;Γ ; A. From (1) we know that Θ ≤ ∆ so by Widening on (2)
we obtain ∆;Γ ; A as required.

“⇐”: Assume a derivation of (1) ∆;Γ ; A. Clearly, we may directly
derive (2) ∆;∆ ; idI by the rule for identities. Now we can build the
required derivation of ∆;Γ ; A ◦ idI by the rule for composition using
(2) and (1).

• case A = idJ ◦ A for A : I→ J.

“⇒”: Assume a derivation of (1) ∆;Γ ; A. Clearly, we may directly
derive (2) Γ;Γ ; idJ by the rule for identities. Now we can build the
required derivation of ∆;Γ ; idJ ◦A by the rule for composition using
(1) and (2).

“⇐”: Assume a derivation of ∆;Γ ; idJ ◦A with premises (1) ∆;Θ ; A
and (2) Θ;Γ ; idJ. From (2) we know that Γ ≤ Θ so by Narrowing on
(1) we obtain ∆;Γ ; A.

10.A. Full proofs 199

• case A ◦ (B ◦ C) = (A ◦ B) ◦ C.

“⇐⇒”: Clearly, because exactly the same subderivations are needed
in both derivations, and the disjoint union on typings is associative.

• case A ⊗ idε = A.

“⇒”: Reuse the subderivation Γ;∆ ; A.

“⇐”: Reuse the subderivation Γ;∆ ; A, and Γ∅;Γ∅ ; idε is by axiom.

• case A = idε ⊗ A.

Analogous to the previous case.

• case A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

Clearly, because exactly the same subderivations are needed in both
derivations, and the disjoint union on typings is associative.

• case idI ⊗ idJ = idI⊗J.

“⇒”: Assume a derivation of ∆0,∆1;Γ0,Γ1 ; idI ⊗ idJ with premises
(1)∆0;Γ0 ; idI and (2)∆1;Γ1 ; idJ, where supp(∆0) = supp(Γ0) = glob(I)
and Γ0 ≤ ∆0, and supp(∆1) = supp(Γ1) = glob(J) and Γ1 ≤ ∆1. We
need to establish (A) supp(∆0,∆1) = supp(Γ0,Γ1) = glob(I ⊗ J) and (B)
Γ0,Γ1 ≤ ∆0,∆1. We know that supp(∆0) = glob(I) and supp(∆1) =
glob(J) so we obtain that supp(∆0,∆1) = glob(I ⊗ J). Likewise for Γ0
and Γ1 w.r.t J so (A) is established. We know that Γk ≤ ∆k (for k = 0, 1)
so clearly Γ0,Γ1 ≤ ∆0,∆1, which establishes (B). We can now derive
∆0,∆1;Γ0,Γ1 ; idI⊗J as required.

“⇐”: Assume a derivation of ∆;Γ ; idI⊗J with premises (1) supp(∆) =
glob(I ⊗ J), (2) supp(Γ) = glob(I ⊗ J), and (3) Γ ≤ ∆ by Inversion.
Clearly, ∆ and Γ can be split into parts ∆0,∆1 and Γ0,Γ1 such that
supp(Θ0) = glob(I) and supp(Θ1) = glob(J) (for Θ ∈ {∆,Γ}). It is also
obvious that Γ0 ≤ ∆0 and Γ1 ≤ ∆1. Hence, we can derive ∆0;Γ0 ; idI
and ∆1;Γ1 ; idJ, and thus also ∆;Γ ; idI ⊗ idJ as required.

• case (A1 ⊗ B1) ◦ (A0 ◦ B0) = (A1 ◦ A0) ⊗ (B1 ◦ B0).

“⇐⇒”: Clearly, because exactly the same subderivations are needed
in both derivations, albeit slightly rearranged.

• case γI,ε = idI.

Recall that γI,ε
def
= γm,0,(#»X B,()) ⊗ idXF ⊗ id∅

def
= γm,0,(#»X B,()) ⊗ idXF for

I = 〈m, #»
XB, { #»XB} 7 XF〉w.l.o.g.

200 10. Type Systems for Bigraphs

“⇒”: Assume a derivation of ∆0,∆1;Γ0,Γ1 ; γm,0,(#»X B,()) ⊗ idXF with
premises ∆0;Γ0 ; γm,0,(#»X B,()) and ∆1;Γ1 ; idXF . From these premises
we clearly have supp(∆0,∆1) = supp(Γ0,Γ1) = { # »

XB}7XF = glob(I), and
also (Γ0,Γ1)(i) ≤ (∆0,∆1)(i) for any i ∈ glob(I). Thus, a derivation of
∆0,∆1;Γ0,Γ1 ; idI can be built.

“⇐”: Assume a derivation of Γ0;Γ1 ; idI with premises supp(Γ j) =
glob(I) (for j = 0, 1) and Γ1 ≤ Γ0. glob(I) = { # »

XB} 7 XF by assumption.
Clearly, Γ j can be split into typings Γ j for { #»XB} and Γ′j for XF. Therefore,
the rule for tensor can be used to build the required derivation of
Γ0,Γ′0;Γ1,Γ′1 ; γm,0,(#»X B,()) ⊗ idXF .

• γJ,I ◦ γI,J = idI⊗J.

Recall that γJ,I
def
= γn,m,(#»Z B,

#»X B) ⊗ idZF ⊗ idXF and γI,J
def
= γm,n,(#»X B,

#»Z B) ⊗
idXF ⊗ idZF for I = 〈m, #»

Xb, {
#»
XB}7XF〉 and J = 〈n, #»

Zb, {
#»
ZB}7 ZF〉w.l.o.g.

“⇒”: Clearly, γJ,I ◦ γI,J is typable in some Γ j (for j = 0, 1) assigning
types to exactly the names of I and J, disjointly, with Γ1 ≤ Γ0. Thus, a
derivation of Γ0;Γ1 ; idI⊗J can be built.

“⇐”: Reverse the argument.

• case γI,J ◦ (A ⊗ B) = (B ⊗ A) ◦ γH,J for A : H→ I, B : J→ K.

“⇒”: Assume a derivation of Γ0;Γ1 ; γI,J ◦ (A ⊗ B), where supp(Γ0) =
glob(H) 7 glob(J) and supp(Γ1) = glob(I) 7 glob(K). Exactly the same
subderivations are needed to build a derivation of (B⊗A)◦γH,J, albeit
slightly rearranged.

“⇐”: The argument is analogous.

• case γI⊗J,K = (γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K).

Essentially, this case holds because exactly the same names are typed
on both sides, albeit somewhat rearranged.

Recall that γI⊗J,K
def
= γ(I⊗J)B,KB ⊗ id(I⊗J)F ⊗ idKF , where the subscripts B

and F signify the set of bound/local names and the set of free names
of an interface, respectively.

For any interface I, let IF denote the free (i.e. glob(I) \ cell(I)) and IB the
bound (i.e. cell(I)) names.

“⇒”: Assume a derivation of Γ;Γ′ ; γ(I⊗J)B,KB ⊗ id(I⊗J)F ⊗ idKF with
subderivations (1) Γ1;Γ′1 ; γ(I⊗J)B,KB , (2) Γ2;Γ′2 ; id(I⊗J)B , and (3) Γ3;Γ′3 ;

10.A. Full proofs 201

idKF , where Γ =Γ 1,Γ2,Γ3 and Γ′ = Γ′1,Γ
′
2,Γ
′
3, supp(Γ1). Notice that

supp(Γ1) = (I ⊗ J)B 7 KB, supp(Γ2) = (I ⊗ J)F, and supp(Γ3) = KF.

Recall that γJ,K
def
= γJB,KB ⊗ idJF ⊗ idKF and γI,K

def
= γIB,KB ⊗ idIF ⊗ idKF .

We need to build a derivation of Γ;Γ′ ; (γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K). This
requires two subderivations: (A) Γ;Γ′′ ; idI ⊗ γJ,K and (B) Γ;Γ′′ ;
γI,K⊗ idJ. Both (A) and (B) require two subderivations. (A1) ΓI;Γ′′I ; idI
and (A2) ΓJ⊗K;Γ′′J⊗K ; γJ,K, where ΓI denotes Γ&glob(I) for any typing
Γ and interface I. The case for (B) is analogous. So, we must find
a suiting Γ′′. Pick Γ′′ = Γ′′I ,Γ

′′
J⊗K = ΓI,ΓJ⊗K =

(
(Γ1&IB),Γ2&IF

)
,
(
(Γ1&

(JB 7 JK)), (Γ2 & JF),Γ3
)
. All that remains is to check (i) Γ′′I ≤ ΓI and

supp(ΓI) = supp(Γ′′I) = glob(I), (ii) Γ′′J⊗K ≤ ΓJ⊗K and supp(ΓJ⊗K) =
supp(Γ′′J⊗K) = glob(J) 7 glob(K), and (iii) ΓI,ΓJ⊗K = Γ and Γ′′I ,Γ

′′
J⊗K = Γ

′′.
(i) follows from the fact that (Γ1&IB),Γ2&IF = ΓI = Γ′′I . (ii) follows from
the fact that (Γ1&(JB 7 KB)), (Γ2&JF),Γ3 = ΓJ⊗K = Γ′′J⊗K. (iii) follows from
our choice of Γ′′ = Γ.

“⇐”: Obviously, we can make the same appropriate splits of typings.

• case x/x = idx.

“⇒:” Assume a derivation of x : T;Γ ; x/x with premise (*) Γ ; x :
T. (*) implies (1) supp(Γ) = {x} and (2) Γ(x) ≤ T. Also, clearly (3)
supp(x : T) = {x}. Thus, we can from (1), (2), and (3) build the desired
derivation of x : T;Γ ; idx.

“⇐”: Assume a derivation of Γ0;Γ1 ; idx with premises supp(Γi) = {x}
(for i = 0, 1) and (*) Γ1(x) ≤ Γ0(x). (*) implies that Γ1 ; x : Γ0(x), which
allows us to conclude Γ0;Γ1 ; x/x as required.

• case /y ◦ y/x = /x.

“⇒”: Assume a derivation of x : L;Γ∅ ; /y ◦ y/x with premises x :
L; y : L′ ; y/x and y : L′;Γ∅ ; /y, for some link types L and L′ such that
L′ ≤ L. By axiom, x : L;Γ∅ ; /x.

“⇐”: Assume a derivation of x : L;Γ∅ ; /x. Build derivations of
x : L; y : L ; y/x and y : L;Γ∅ ; /y by axioms. From these two
subderivations we construct a derivation of x : L;Γ∅ ; /y ◦ y/x.

• case /y ◦ y = idε.

Recall that y is shorthand for y/∅.

202 10. Type Systems for Bigraphs

“⇒:” Assume a derivation of Γ∅;Γ∅ ; /y◦y with premises Γ∅; y : L ; y/∅
and y : L;Γ∅ ; /y. As required, Γ∅;Γ∅ ; idε is trivially derivable.

“⇐”: Assume a derivation of Γ∅;Γ∅ ; idε. To build a derivation of
Γ∅;Γ∅ ; /y ◦ y two subderivations are needed: Γ∅; y : L ; y/∅ and
y : L;Γ∅ ; /y, for some link type L. They are both trivially derivable.

• case z/(Y7{y}) ◦ (idY ⊗ y/X) = z/(Y7X).

“⇒”: Assume a derivation of Γ0,X : T;Γz ; z/(Y7{y}) ◦ (idY ⊗ y/X) with
three subderivations: (1) Γ0;Γ1 ; idY, (2) X : T;Γy ; y/X, and (3)
Γ1,Γy;Γz ; z/(Y7{y}), with the following premises: (1A) supp(Γ j) = Y (for
j = 0, 1), (1B) Γ1 ≤ Γ0, (2A) Γy ; y : T, and (3A) Γz ; z : (Γ1,Γy)(Y7 {y}).
We need to establish (*) Γz ; z : (Γ0,X : T)(Y 7 X) to derive the
required conclusion Γ0,X : T;Γz ; z/(Y7X). Establishing (*) is obviously
equivalent to showing (*1) Γz ; z : Γ0(Y) and (*2) Γz ; z : T, because
(X : T)(X) = T.

From (1A) we know that supp(Γ0) = Y so supp(Γ0,X : T) = Y7X. From
(3A) we have Γz ; z : Γ1(Y), in particular, so Γz(z) ≤ Γ1(Y) ≤ Γ0(Y),
by (1B). Thus, by transitivity of subtyping Γz(z) ≤ Γ0(Y) and we can
derive (*1) by subsumption.

For (*2) we must establish that Γz(z) ≤ T. From (3A) we know that
Γz ; z : Γy(y) so Γz(z) ≤ Γy(y). From (2A) we know that Γy(y) ≤ T.
Combining these two facts and transitivity of subtyping we obtain
Γz(z) ≤ T. Hence, we can derive (*2) by subsumption.

Finally, we derive the deciderata by (*1) and (*2) and the rule for subs-
titutions.

“⇐”: Assume a derivation of (Y 7 X) : T;Γ ; z/(Y7X) with premise (*)
Γ ; z : T. We need to show (Y 7 X) : T;Γ ; z/(Y7{y}) ◦ (idY ⊗ y/X). Thus,
to use the rule for composition we must establish two premises: (1)
(Y 7 X) : T;∆ ; idY ⊗ y/X and (2) ∆;Γ ; z/(Y7{y}), for some suitable ∆.
We pick ∆ = Y : T, y : T. Then, (2) is derivable if we can establish
Γ ; z : T, but this follows from (*). Hence, only (1) remains. We can
use the rule for tensor with premises (1A) Y : T; Y : T ; idY and (1B)
X : T; y : T ; y/X, because Y : T,X : T def

= (Y 7 X) : T. (1A) is trivial by
the rule for identities and (1B) trivial by the rule for substitutions.

• case join ◦ (1 ⊗ id1) = id1.

“⇐⇒”: Clearly, Γ∅;Γ∅ types both sides by axioms.

10.A. Full proofs 203

• case join ◦ (join ⊗ id1) = join ◦ (id1 ⊗ join).

“⇐⇒”: Clearly, Γ∅;Γ∅ types both sides by axioms.

• case join ◦ γ1,1,(
#»∅ , #»∅) = join.

“⇐⇒”: Clearly, Γ∅;Γ∅ types both sides by axioms.

• case (∅)P = P.

“⇒”: Assume a derivation of ∆;Γ ; (∅)P with premise ∆;Γ ; P. Reuse
the premise on the right-hand side.

“⇐”: Reuse the assumed derivation of ∆;Γ ; P as premise in the rule
for abstraction.

• case (Y)#Y$ = id(Y).

Recall that id(Y)
def
= (Y)/(Y)

def
= (Y)

(
((
⊗n

i=1
yi/yi) ⊗ id1) ◦ #Y$

)
for Y =

{y1, . . . , yn}.
“⇒”: Assume a derivation of Γ0;Γ1 ; (Y)#Y$ with premise (*) Γ0;Γ1 ;
#Y$. To build a derivation we essentially need two subderivations:
(1) Γ0;Γ1 ; #Y$ and (2) Γ1;Γ1 ;

⊗n
i=1

yi/yi, where (1) is simply by (*).
(2) follows from n subderivations of form Γ1&yi;Γ1&yi ; yi/yi (where
Γ1&yi restricts Γ1 to yi), because Γ1&yi ; y : (Γ1&yi)(yi) is by axiom and
reflexivity of subtyping.

“⇐”: Assume a derivation of Γ0;Γ1 ; id(Y) with premises (1) Γ0;Γ2 ;
#Y$ and (2) Γ1&yi ; yi : (Γ2&yi)(yi), for some Γ2 such that Γ0;Γ2 ; #Y$
and Γ2;Γ1 ;

⊗n
i=1

yi/yi. Then, (1) implies that Γ2 ≤ Γ0 and (2) implies
that Γ1 ≤ Γ2, so Γ1 ≤ Γ0 by transitivity of subtyping. Hence, we can
derive Γ0;Γ1 ; #Y$ and thus Γ0;Γ1 ; (Y)#Y$ as required.

• case (#X$Z ⊗ idY) ◦ (X)P = P for P : I→ 〈1,Z,Z 7 X 7 Y〉.
Recall that #X$Z def

= (Z)#Z 7 X$: 〈1,Z 7 X,Z 7 X〉 → 〈1,Z,Z 7 X〉.
“⇒”: Assume a derivation of ∆;Γ ; (((Z)#Z 7 X$) ⊗ idY) ◦ (X)P with
subderivations (1) ∆;Γ′ ; P, (2) Γ0;Γ1 ; #Z 7 X$, and (3) Γ2;Γ3 ; idY,
with Γ =Γ 1,Γ2 and Γ′ = Γ0,Γ2. (2) implies Γ1 ≤ Γ0 and (3) implies
Γ3 ≤ Γ2, so together they imply Γ =Γ 1,Γ3 ≤ Γ0,Γ2 = Γ′. We have
∆;Γ′ ; P from (1), and becauseΓ ≤ Γ′we obtain∆;Γ ; P by Narrowing.

“⇐”: Assume a derivation (*)∆;Γ ; P. We can easily build the desired
derivation of ∆;Γ ; (((Z)#Z 7 X$) ⊗ idY) ◦ (X)P as follows: We need
the same subderivations as were assumed in the previous case, but by

204 10. Type Systems for Bigraphs

picking Γ0 = Γ1 and Γ2 = Γ3 we clearly have subderivations (2) and (3)
from above by trivial uses of the rule for concretions and identities,
respectively. Thus, we can derive Γ;Γ ; (Z)#Z 7 X$ ⊗ idY. Finally, we
can reuse (*) and by the rule for composition we obtain the deciderata.

• case (((Y)P) ⊗ idX) ◦ G = ((Y)(P ⊗ idX)) ◦ G.

“⇐⇒”: Clearly, because the subderivations are the same on both sides
albeit slightly rearranged, and only the rules for abstraction, tensor
and composition are used to build the required derivations.

• case (X 7 Y)P = (X)((Y)P).

“⇐⇒”: Clearly, because the names are the same on both sides, and
the rule for abstraction merely propagates information.

• case (id1 ⊗ α) ◦ K #»y (
#»X) = Kα(#»y)(

#»X). Two cases: Either K is send or get.

– K #»y (
#»X) = sendaz. We have α def

= a′/a ⊗ z′/z for some names a′, z
where a′ $ {z′, z} and z′ $ {a′, a} because α is a renaming, i.e., a
bijective substitution. (a ! z by definition.)
“⇒”: Assume a derivation of Γ∅;Γ ; (id1 ⊗ α) ◦ sendaz with
subderivations (A) Γ∅;Θ ; sendaz and (B) Θ;Γ ; id1 ⊗ α with
supp(Θ) = {a, z} and supp(Γ) = {a′, z′}. (A) has premises (A1)
Θa ; a : oT and (A2) Θz ; z : T, where Θa denotes Θ&{a} and so
forth. (B) has premises (B1)Γa′ ; a′ : Θa(a) and (B2)Γz′ ; z′ : Θz(z).
Build the desired derivation of Γ∅;Γ ; senda′z′ with premises (i)
Γa′ ; a′ : oT and (ii) Γz′ ; z′ : T. (i) is justified as follows: By (B1),
Γa′(a′) ≤ Θa(a). So, by Narrowing on (A1) we obtain Γa′ ; a′ : oT,
bearing in mind that (*) x : S ; x : Ti f f y : S ; y : T. (ii) is justified
analogously.
“⇐”: Find Θ = Θa,Θz with Θa(a) = Γa′(a′) and Θz(z) = Γz′(z′),
yielding (B1) and (B2). Then, (A1) follows easily from (i) and (A2
from (ii), because of (*).

– K #»y (
#»X) = geta(z). We have α def

= ′a/a for some a′ ! z w.l.o.g.
“⇒”: Assume a derivation of z : S;Γ ; (id1 ⊗ a′/a) ◦ geta(z) with
premises (1) a : U ; a : iS and (2) Γ ; a′ : U, for some types S and
U. (2) implies that Γ(a′) ≤ U so we may apply Narrowing to (1)
and obtain Γ ; a′ : iS, because a : U ; a : iS iff a′ : U ; a′ : iS).
Then we can build a derivation of z : S;Γ ; geta′(z), as required.
“⇐”: Analogous to the “⇐” direction of the send case.

10.A. Full proofs 205

• case K #»y (
#»X) ◦ σloc = K #»y ((σloc)−1(

#»X)). Two cases. Either K is send or get.

– K #»y (
#»X) = sendax. This case holds both ways trivially because send

has no local names.

– K #»y (
#»X) = geta(z). We have σloc = (z)/(Z) for some name set Z. Recall

that (z)/(Z)
def
= (z)

(
(z/Z ⊗ id1) ◦ #Z$

)
.

“⇒:” Assume a derivation of Z : T;Γ ; geta(z)◦(z)
(
(z/Z⊗ id1)◦#Z$

)

with premises (1) S ≤ T and (2) Γ ; a : iS. Building a derivation
of Z : T;Γ ; geta(Z) requires Γ ; a : iT, which in turn requires (A)
Γ ; a : iS and (B) iS ≤ iT. (A) follows from (2) and (B) from (1) by
the subtyping rule of input types.
“⇐”: The same premises are needed.

• case b = b (reflexivity).

Show that ∆;Γ ; b if and only if ∆;Γ ; b, but this is immediate.

• case b = b′ =⇒ b′ = b (symmetry).

Read the statement as a rule: b = b′

b′ = b
.

Assume: b0 = b1. Show: ∆;Γ ; b0 if and only if ∆;Γ ; b1. We are
proceeding by induction on the derivation of b0 = b1 and the last rule
used was the rule for symmetry, so we must have had b1 = b0. Now,
by induction hypothesis on b1 = b0 we obtain ∆;Γ ; b1 if and only if
∆;Γ ; b0. Because “iff” is symmetric we have the desiderata.

• case b = b′& b′ = b′′ =⇒ b = b′′ (transitivity).

Read the statement as a rule: b = b′ b′ = b′′

b = b′′
.

Assume: b0 = b1. Show: ∆;Γ ; b0 if and only if∆;Γ ; b1. We have must
have had b0 = b2 and b2 = b1 for some b2. By induction hypothesis: (1)
∆;Γ ; b0 if and only if ∆;Γ ; b2, and (2) ∆;Γ ; b2 if and only if ∆;Γ ; b1.
Because “iff” is transitive we obtain ∆;Γ ; b0 if and only if ∆;Γ ; b1,
as required.

• case b = b′ =⇒ C ◦ b = C ◦ b′ (congruence).

Read the statement as a rule: b = b′

C ◦ b = C ◦ b′
.

206 10. Type Systems for Bigraphs

Assume: C◦b = C◦b′. Show: ∆;Γ ; C◦b if and only if∆;Γ ; C◦b′. We
must have had b = b′. By induction hypothesis on b = b′ we obtain
∆;Θ ; b if and only if Γ;Θ ; b′, for some Θ. Type derivations of C ◦ b
and C ◦ b′ must have ended with the composition rule. Thus, we just
need to argue that we have a derivation of Θ;Γ ; C if and only if
Θ;Γ ; C, but this is immediate (because “iff” is reflexive).

!

Corollary 10.23 (Decompositionality). If ∆;Γ ; b and b = b1 ◦ b0 then there
exists a typing Θ such that ∆;Θ ; b0 and Θ;Γ ; b1.

Proof. The Main Lemma yiels Γ;∆ ; b1 ◦b0. By Inversion there existsΘ such
that ∆;Γ ; b0 and Θ;Γ ; b1. !

Theorem 10.2 (Subject Reduction). For process bigraphs b0 and b1, if Γ∅;∆ ; b0
and b0 ! b1 then Γ∅;∆ ; b1.

Proof. The proof is by analysis of the derivation of b0 ! b1 by the sole reac-
tion rule. When reading this proof the reader is recommended to look at
the proof trees following the subsequent two paragraphs of the proof.

Because b0 ! b1, then by Definition 10.1 there exists an active context D
such that b0 = D ◦ r and b1 " D ◦ r′. Assume a derivation of Γ∅;∆ ; b0,
then also (∗) Γ∅;∆ ; D ◦ r by Lemma 10.12. By Inversion we must have
(among others) the following six subderivations from (∗): (1′) Γ∅;Γ, y : S ; d,
(3′) a : U ; a : oT, (3′′) x : U′ ; x : T, (4′) a : R ; a : iS, (5′) U ≤ R, and
(8′) Γ′, a : W, x : W′;∆ ; D. We also know that W ≤ U and W′ ≤ U′. By (3′),
(5′) and (4′) we conclude T ≤ S (cf. [SW01]). W′ ≤ U′, and by (3′′) we have
U′ ≤ T ≤ S, so W′ ≤ S.

Now, consider the derivation to be built. b1 " D◦r′ implies that b1 = D◦r′
abstractly. By Lemma 10.12 it suffices to derive Γ∅;∆ ; D ◦ r′. Reuse the
derivation of D. / = id2 so /(d) = d. This means that we can also reuse
(1′). We still need to justify a derivation of y : S; x : W′ ; (x)/(y). This merely
requires justification of W′ ≤ S because we may choose not to subtype in the
other substitutions. W′ ≤ S has already been established so we can build
the desired derivation of Γ∅;∆ ; D ◦ r′.

Let A ' B signify that A is defined as B.

Left-hand side : Recall that r = (idX ⊗ R) ◦ d. Define:

• r ' α ◦ d

10.A. Full proofs 207

• σ ' a/a,a′ ⊗ x/x

• τ ' a′/a

• α ' idX ⊗ ((join ⊗ id(ax)) ◦ (σ ◦ (sendax ⊗ (τ ◦ geta(y)))))

• β ' (join ⊗ id(ax)) ◦ (σ ◦ (sendax ⊗ (τ ◦ geta(y))))

• γ ' σ ◦ (sendax ⊗ (τ ◦ geta(y)))

• δ ' sendax ⊗ (τ ◦ geta(y))

• ε ' τ ◦ geta(y)

(1)

(2)

(3)

(4) (5)
y : S; a : U′ ; ε

y : S; a′ : U, a : U, x : U′ ; δ (6)

y : S; a : V, x : V′ ; γ (7)

y : S; a : W, x : W′ ; β
Γ, y : S;Γ′, a : W, x : W′ ; α
Γ∅;Γ′, a : W, x : W′ ; r

(8)

Γ∅;∆ ; D ◦ r

With the following subderivations (1)-(8).

(1) :
(1′)

Γ∅;Γ, y : S ; d
(2) :

(2′)
Γ′(X) ≤ Γ(X)
Γ;Γ′ ; idX

Remark: Γ′(X) ≤ Γ(X) holds whenever Γ′(xi) ≤ Γ(xi) for all xi ∈ X.

(3) :

(3′)
a : U ; a : oT

(3′′)
x : U′ ; x : T

Γ∅; a : U, x : U′ ; sendax
(4) :

(4′)
a : R ; a : iS

y : S; a : R ; geta(y)

(5) :

(5′)
U ≤ R

a : R; a′ : U ; τ

208 10. Type Systems for Bigraphs

(6) :

(6′)
V ≤ U

a : U, a′ : U; a : V ; a/a,a′

(6′′)
V′ ≤ U′

x : U′; x : V′ ; x/x

a′ : U, a : U, x : U′; a : V, x : V′ ; σ

(7) :
(7′)

a : V, x : V′; a : W, x : W′ ; join ⊗ id(ax)
(8) :

(8′)
Γ′, a : W, x : W′;∆ ; D

Remark: (7′) is a straightforward subderivation where subtyping of W ≤ V
and W′ ≤ V′ may occur.

Right-hand side : Recall that r′ = (idX ⊗ R′) ◦ d′, where d′ = /(d). Define:

φ ' join ⊗ id(ax) ψ ' join ⊗ id(x) Θ ' a : W, x : W′ .

Recall that R′ def
= φ ◦ ((ψ ◦ (id1 ⊗ (x)/(y))) ⊗ (a)).

(i)

(2)

(ii)

(iii)
y : S; x : W′ ; (x)/(y)

y : S; x : W′ ; id1 ⊗ (x)/(y)
(iv)

y : S; x : W′ ; ψ ◦ (id1 ⊗ (x)/(y))
(v)

y : S;Θ ; (ψ ◦ (id1 ⊗ (x)/(y))) ⊗ (a)
(vi)

y : S;Θ ; φ ◦ ((ψ ◦ (id1 ⊗ (x)/(y))) ⊗ (a))

Γ, y : S;Γ′, a : W, x : W′ ; idX ⊗ R′

Γ∅;Γ′, a : W, x : W′ ; r′
(8)

Γ∅;∆ ; D ◦ r′

With the following subderivations (i)-(vi).

(i) :
(1′)

Γ∅;Γ, y : S ; /(d)
(ii) :

Γ∅;Γ∅ ; id1

(iii) :
y : S; y : S ; #y$

(iii′)
W′ ≤ S

y : S; x : W′ ; x/y
Γ∅;Γ∅ ; id1

y : S; x : W′ ; x/y ⊗ id1

y : S; x : W′ ; (x/y ⊗ id1) ◦ #y$

10.A. Full proofs 209

Remark: In (iii), (x)/(y)
def
= (x)((x/y ⊗ id1) ◦ #y$).

(iv) :
(iv′)

x : W′; x : W′ ; ψ (v) :
Γ∅; a : W ; a/∅

Γ∅; a : W ; (a)(a/∅)

Remarks: In the subderivation (iv′) we choose not to subtype. In derivation
(v), (a) def

= (a)(a/∅), and any type may be chosen for a – pick W.

(vi) :
(vi′)

a : W, x : W′; a : W, x : W′ ; φ

Remark: In the subderivation (vi′) we choose not to subtype. !

Proposition 10.3 (Type Soundness). Suppose that process bigraph b = %P&(X),
Γ∅;Γ ; b, and b !∗ b′. Then, for each non-idle a ∈ glob(cod(b′)) it holds that:

1. If Γ ; a : iS then a is either linked to the channel port of a get ion or linked
to the datum port of a send ion.

2. If Γ ; a : oT then a is linked to a send ion.

Proof. The proof is by induction on the length n of the reduction b !∗ b′.
Notice that for process bigraphs non-idle outer names must have preimages
under the link map that are ports.

• n = 0. We have b = b′. Either Γ(a) = iS or Γ(a) = oT.

Assume Γ(a) = iS. Clearly, a can be linked to the channel port of
a get ion with type iS′ for S ≤ S′ (and thus iS ≤ iS′), because the
rule for typing substitutions y/X enforces Γ(y) = Γ(X). (Subtyping can
happen by identities, for instance.) Name a can not be linked to the
channel port of a get ion, because that would require a to have a type
of form oT (for some T) by the typing rule for send, which contradicts
the assumption. Nevetherless, a can be linked to the datum port
of a send control, say sendca, because links a of input type can be
communicated, as long as Γ ; c : oiS and Γ′ ; a : iS for some Γ, Γ′, S,
and T.

Assume Γ(a) = oT. Clearly a must be linked to a send ion because
the premise of the get rule requires a to have a type of form iS, which
contradicts the assumption. Name a can either be linked to a channel
port of send or the datum port if it is to be communicated.

210 10. Type Systems for Bigraphs

• n > 0. Assume the induction hypothesis for b !n bn and show it for
b !n+1 b′. Thus, bn exhibits the property. We show that bn+1 does too.
By Subject Reduction we know that Γ∅;Γ ; bn and taking another step
with !1 establishes Γ∅;Γ ; bn+1. The outer typing being preserved we
just need arguments as for n = 0 to establish the desiderata.

!

Lemma 10.4 (Weakening). If ∆;Γ ; b and x$supp(Γ) then ∆;Γ, x : T ; b ⊗ (x).

Proof. The proof is by induction on the height of the derivation of ∆;Γ ; b.
Recall that (x) def

= (x)(x/∅) and can thus be typed by using the rule for
abstraction and then the rule for substitutions.

All cases follow the same pattern, where the desired derivation is cons-
tructed as follows:

"by assumption"

∆;Γ ; b

Γ∅; x : T ; x/∅

Γ∅; x : T ; (x)

∆;Γ ; b ⊗ (x)

The case for closure /x holds by the insight that an outer name x is different
from an inner name x if they are not linked. !

Lemma 10.5 (Strengthening). If ∆;Γ, x : T ; b ⊗ (x) then ∆;Γ ; b.

Proof. The proof is by induction on the height of the derivation of ∆;Γ, x :
T ; b ⊗ (x). Recall that (x) def

= (x)(x/∅) and can thus be typed by using the
rule for abstraction and then the rule for substitutions.

All cases follow the same pattern, where the assumed derivation has
form:

(∗)
∆;Γ ; b

Γ∅; x : T ; (x)

∆;Γ, x : T ; b ⊗ (x)
The desired derivation is simply constructed by reusing (*). !

Lemma 10.6. Suppose b = %P&(X) and Γ∅;Γ ; b with fn(P) ⊆ X = supp(Γ). Then
%P&supp(Γ) ⊗ (x) = %P&(supp(Γ,x:T)) for any T.

Proof. The proof is by structural induction on P. Let LHS mean “left-hand
side” and RHS “right-hand side”. We sometimes write Xy for X 7 {y}, for
instance.

10.A. Full proofs 211

• case P = 0.

LHS: %0&supp(Γ) ⊗ (x) def
= (X) ⊗ (x) = (X 7 {x}). RHS: %0&supp(Γ,x:T) =

(X 7 {x}).
• case P = νz Q.

LHS: %νz Q&(X) ⊗ (x) def
= /(z) % idX ◦ %Q&(Xz) ⊗ (x).

RHS: %νz Q&(supp(Γ,x:T))
def
= /(z) % idXx ◦ %Q&(Xxz). We know that x is

idle in %Q& so we may further rewrite to /(z) % idX ◦ %Q&Xz ⊗ (x).

• case P = az.Q.

LHS: %az.Q&(X) ⊗ (x) def
= sendaz % idX ◦ %Q&(X) ⊗ (x).

RHS: %az.Q&(supp(Γ,x:T))
def
= sendaz % idXx ◦ %Q&(Xx) = sendaz % idXx ◦

%Q&(X) ⊗ (x) because x is idle in %Q&.

• case P = a(y).Q.

LHS: %a(y).Q&(X) ⊗ (x) def
= geta(y) % idX ◦ %Q&(X) ⊗ (x).

RHS: %a(y).Q&(supp(Γ,x:T))
def
= geta(y) % idXx ◦ %Q&(Xx) ⊗ (x) = geta(y) %

idX ◦ %Q&(X) ⊗ (x) because x idle in %Q&.

• case P = Q | Q′.
LHS: %Q | Q′&(X) ⊗ (x) def

= (%Q&(X) | %Q′&(X)) ⊗ (x).

RHS: %Q | Q′&(supp(Γ,x:T))
def
= %Q&(supp(Γ,x:T)) | %Q′&(supp(Γ,x:T))

def
=

%Q&(Xx) | %Q′&(Xx) = %Q&(X) | %Q′&(X) ⊗ (x) because x is idle in %Q&
and %Q′&.

!

Proposition 10.7 (Transfer of Type Derivations). Γ ; P : < if and only if
Γ∅;Γ ; %P&(X) when fn(P) ⊆ X = supp(Γ).

Proof. The proof is by struct. induction on P using Lemmas 10.18 and 10.12.

• case P = 0.

“⇒”: Assume Γ ; 0 : <. Recall: (X) def
= (X)(X/∅) def

= (X)(
⊗n

i=1 xi∅). So,
we need to establish Γ&xi ; xi/∅ (for i = 1..n), but they are all trivial by
the rule for substitution, and then use the rule for abstraction to build
Γ∅;Γ ; (X), as required.
“⇐”: Assume Γ∅;Γ ; (X). Build Γ ; 0 : < by axiom.

212 10. Type Systems for Bigraphs

• case P = (νx : L) Q.

“⇒”: Assume Γ ; (νx : L) Q : < with premise (*) Γ, x : L ; Q. Observe
that %(νx : L) Q&(X)

def
= /(x) % idX ◦ %Q&(Xx) = (X)

(
(/x ⊗ idX) ◦ #Xx$ ◦

%Q&(Xx)
)
. By the Main Lemma it is enough to show a derivation for this

last term. We need to establish four premises: (1) Γ∅;Γ, x : L ; %Q&(Xx),
(2) Γ, x : L;Γ, x : L ; #Xx$, (3) x : L;Γ∅ ; /x, and (4) Γ;Γ ; idX. (1)
follows by induction hypothesis on (*) and (2)-(4) from axioms.

“⇐”: Simply by induction hypothesis.

• case P = ax.Q.

“⇒”: Assume Γ ; ax.Q : < with premises (1) Γ ; a : oT, (2) Γ ; x : T,
and (3) Γ ; Q : <. Observe that %ax.Q&(X)

def
= sendax % idX ◦ %Q&(X) =

(X)(sendax ⊗ idX ⊗ id1) ◦ %Q&(X) = (X)(sendax ⊗ idX ⊗ id1 ◦ #X$ ◦ %Q&(X)).
By the Main Lemma it is enough to show a derivation for this last
term. We need to establish three premises: (i) Γ∅;Γ ; %Q&(X), (ii)
Γ&{a} ; a : oT, and (iii) Γ&{x} ; x : T. (i) is by induction hypothesis on
(3), (ii) is follows from (1), and (iii) follows from (2).

“⇐”: Reverse the argument on premises.

• case P = a(y).Q.

“⇒”: Assume Γ ; a(y).Q : < with premises (1) Γ ; a : iS and (2)
Γ, y : S ; Q : <. We have %a(y).Q&(X)

def
= geta(y) % idX ◦ %Q&(Xy).

We need to establish (i) and (ii) Γ∅;Γ, y : S ; %Q&(Xy) to build Γ∅;Γ ;
geta(y) % idX◦%Q&(Xy). (i) follows from (1) and (ii) follows by induction
hypothesis on (2).

“⇐”: By induction hypothesis and the fact that (1) follows from (i).

• case P = Q | Q′.
“⇒”: Assume Γ ; Q | Q′ : < with premises (1) Γ ; Q : < and (2)
Γ ; Q′ : <. We have %Q | Q′&(X)

def
= σ ◦ (%Q&(X) ⊗ τ ◦ %Q′&(X)), for

suitable substitutions σ and τ.

Now, let W = fn(Q) ∩ fn(Q′). Then, if Z = fn(Q) \W then τ = Z/Z ⊗ F/W
and Y = Z7F. To buildΓ∅;Γ ; σ◦(%Q&(X)⊗τ◦%Q′&(X)) we must establish
three premises: (i) Γ∅;Γ&Q ; %Q&(fn(Q)), (ii) Γ∅;Γ&Q′ ; %Q′&(fn(Q′)), (iii)
Γ&Q′;Γ&Y ; τ, and (iv) (Γ&Q), (Γ&Y);Γ ; σ. By induction hypothesis
on (1) and (2) we obtain Γ∅;Γ ; %Q&(X) and Γ∅;Γ ; %Q′&(X). Then, by
Lemma 10.18 and Strengthening we obtain Γ∅;Γ&fn(Q) ; %Q&(X) and

10.A. Full proofs 213

Γ∅;Γ&fn(Q′) ; %Q′&(X), because X \ fn(Q) is idle in %Q& and likewise for
Q′. (iii) and (iv) follow trivially from the rule for substitutions, where
we choose not to subtype.

“⇐”: Assume Γ∅;Γ ; σ ◦ (%Q&(X) ⊗ τ ◦ %Q′&(X)) with the following
four premises (i) Γ∅;Γ&fn(Q) ; %Q&(fn(Q)), (ii) Γ∅;Γ&fn(Q′) ; %Q′&(fn(Q′)),
(iii) Γ& fn(Q′);Γ&Y ; τ, and (iv) (Γ& fn(Q)), (Γ&Y);Γ ; σ. (i) and (ii)
imply (1) and (2), respectively, by the induction hypothesis, Lemma
10.18, and Weakening. τ and σ are immaterial because when using
Weakening we pick the “right” types. Thus, we have established
Γ ; Q : < and Γ ; Q′ : < so by the rule for parallel composition we
obtain Γ ; Q | Q′ : <, as required.

!

214 10. Type Systems for Bigraphs

11
On Type Systems and Sortings for Bigraphs

In this chapter we study the relationship between sortings and inductive
type systems for process calculi at the meta-level of Bigraphs. We work
toward a notion that we call inductive sortings. It is work in progress, jointly
with Mikkel Bundgaard, Søren Debois, and Thomas Hildebrandt.

In Chapter 10 we saw how one can define type systems for Bigraphs
inductively on the structure of the elementary bigraphs. The approach is to
define them in the classical way as known from type systems for λ-calculus
and for process calculi, for instance. One advantage of this approach is
that well-known type systems can be recovered and new ones discovered
in the classical format. In our work on inductive type systems for Bigraphs
we barely consider LTSs and bisimulation congruences. In fact, because
the inductive type systems are defined on a BRSs without altering the
underlying category the categorical machinery of Bigraphs remains intact.

Nevertheless, there exists another theory of types or sorts for bigraphs.
Namely that of sortings (or sorting functors) by Debois and co-workers
[BDH08, Deb08], which takes further the work on place and link sortings
by Milner, Leifer, and Høgh Jensen [LM06, Jen07, JM04]. It is the work on
sorting functors (a semantic approach), which we aim to bridge with our
work on inductive type systems (a syntactic approach).

11.1 Introduction to sortings
Recall that BRSs are built on top of s-categories (see Appendix A.1). Often,
we may have a category C with RPOs, but when a BRS is constructed on
top of it we obtain a behavioural equivalence (on bigraphs) that is awry be-
cause the automatically derived labels do not correspond to the observable
behaviour we wish to model. To solve this we may derive a new categoryS,
which resembles C, by enriching the objects and then omitting morphisms

215

216 11. On Type Systems and Sortings for Bigraphs

that do not satisfy a certain (structural) condition of our choosing. This
procedure is known as “constructing a sorting”. Then, we build a BRS on
S, which by construction will have the desired behavioural equivalence. S
is a “sorting” of C.

11.1.1 Sortings as functors
Milner, Leifer, and Høgh Jensen realised that stipulating a condition or
predicate on morphisms to weed out unwanted ones, gives rise to a forgetful
functor F from a sorted category S into the original category C. Debois,
Birkedal, and Hildebrandt suggested instead to take the functor F as the
definition of a sorting, because this allowed them to use standard category
theory in developing sorting as a mathematical tool.

Definition 11.1 (Sorting, [Deb08]). A sorting of a category C is a functor
F : S→C that is faithful and surjective on objects.

We are not merely interested in the category underlying a BRS, but
in the BRS and its equivalences as such. So, how does such a sorting
help us refine the category underlying the BRS? Essentially, a sorting enri-
ches the interfaces (objects) to obtain finer control of bigraph (morphism)
composition. The interfaces are enriched by adding another component,
namely a sort. So, for a bigraph F(f) : 〈n, loc,X〉 → 〈m, loc′,Y〉 in C we have
f : 〈n, loc,X, sort〉 → 〈m, loc′,Y, sort′〉 in the sorted category S. The same
object can be enriched in many different ways corresponding to giving a
term different types. We can refine a homset in C into several homsets in
S; if C has a homset C(a, b), S will have a homset C(a′, b′) for every pair of
enrichments a′ of a and b′ of b. The homset is split up between the refined
objects in such a way that each such homset inSwill contain a subset of the
morphisms of the original homset in C. Theorem 3.45 of [Deb08] provides
sufficient conditions for a sorting approximating a predicate P to admit the
same BRSs as C did up to P, in a sense preserving reaction and transition
semantics. We will not go into that here, but to mention that P has to be
decomposable, i.e., P(f ◦!) implies P(f) and P(!). In other words, whenever
the predicate holds for a morphism, it also holds for the constituents of any
(vertical) decomposition of that morphism.

11.1.2 Predicate sortings
From [Deb08] we know how to construct a sorting F : S →C for a given
decomposable predicate P, which 1) transfers RPOs from C to S so that

11.1. Introduction to sortings 217

bisimilarity will be a congruence, and 2) preserves semantics of the BRS to
the extent allowed by P. It is noted in [Deb08] that for free structures, impo-
sing a decomposable predicate corresponds to ruling out terms containing
particular sub-terms. Such predicates are usually given in plain English,
albeit informally translatable to first-order logic formulae. The theory of
sortings is parametrised on the language used for defining the predicates.
More importantly, these predicates are often non-inductive. An example
of a predicate is that “no nodes with control A may be nested immedia-
tely inside nodes with control B.” Predicates are often structural in this
way, see the survey in Chapter 6 of [Deb08]. Traditionally, predicates state
something about the structure of morphisms (bigraphs) rather than their
behaviour.

11.1.3 Closure sortings
We will briefly provide the reader with the most basic intuitions about
closure sortings, a particular bread of predicate sortings. Closure sortings
are the most advanced and useful generic sortings. Our errand is not
to recapitulate the theory in detail. For that see [Deb08]. Closure sortings
transfer RPOs and have semantic correspondence. (See [Deb08] for a formal
definition of “have semantic correspondence”.) These are the key properties
required of a sorting to be useful with respect to BRSs and the above-
mentioned problem with labels. The following two paragraphs recapitulate
some essential intuitions of [Deb08].

In the sorted category S, the objects become more complicated than in
the original category C. According to [Deb08], given morphisms f : a → b
and ! : b→ c in C, when constructing a sorting, “we must decide, for every
pre-image b′ of b, which of f and ! should have a pre-image with codomain
b′ respectively domain b′. Obviously, it cannot be both.” The closure sorting
expresses this choice in each object of C.

The objects ofS are on form (U,V)b, where b ∈ Ob(C), U is a set of morp-
hisms with codomain b, and V is a set of morphisms with domain b. The
sorting requires that composition of any morphism in U with a morphism
in V must yield a morphism satisfying predicate P, written U⊥V1. We say
that F is prefix-closed if f ◦ ! ∈ F implies ! ∈ F, and that F is suffix-closed if
f ◦ ! ∈ F implies f ∈ F.

Roughly, there is f : (U,V)b → (W,T)c ∈Mo(S) when

• f : b→ c ∈Mo(C),
1Not to be confused with the notation of Chapter 3.

218 11. On Type Systems and Sortings for Bigraphs

• f satisfies P,

• both f ∈ V and f ∈W,

• every object (F,G)c has F suffix-closed and G prefix-closed,

• and every object is maximal in the sense that it is impossible to add
more morphisms to either F or G without violating the condition G⊥F.

Thus, a closure sorting records in each object a of S which morphisms of C
are admitted at a.

11.2 Inductive sortings
In this section we will discuss how an inductive type system on a BRS can
be seen as a decomposable predicate on morphisms. This is a first step
in bridging the work of Chapter 10 with the work on sorting functors. To
bridge the two branches of research we explore to which extent decompo-
sable predicates can be given inductively, and more importantly, to which
extent they can capture traditional type systems for process calculi. Usua-
lly, a traditional type system will enjoy a type soundness theorem stating
that well-typed terms behave well, in some precise sense. In Chapter 10,
type soundness stated that public names are used in accordance with the i/o
typing discipline. Sortings generated from decomposable predicates aim to
remove unwanted behaviour of the BRS by removing some contexts, thus
trimming the set of labels in the derived LTS. On the other hand, in Chap-
ter 10 we used a bigraphical inductive type system to outlaw ill-behaved
bigraphs.

11.2.1 Type systems as predicates
An inductive type system T over a BRS can be seen as a predicate P on
bigraph terms as follows. If we can show a result like the Main Lemma of
Chapter 10, i.e., if ∆;Γ ; b and b = b′, then ∆;Γ ; b′, we will have typing on
the graphs underlying the term representation (because the term language
is sound and complete). Hence, the bigraphs for which P holds are the
well-typed ones. Notice that we have not introduced any enrichment of
objects or refinement of homsets, yet. Since T is inductively defined, P will
necessarily become decomposable, at least if the typing rule for categorical
composition is as the natural one of Chapter 10: if ∆;Θ ; b and Θ;Γ ; b′,
then ∆;Γ ; b′ ◦ b. Whence, we can construct a closure sorting SP : S → C

11.2. Inductive sortings 219

over P, from a sorted category S into the original category C. We do so by
stipulating, for f ∈Mo(S), that

P(f) iff there exist ∆ and Γ such that ∆;Γ ; frep ,

where frep is a term representation (up to α-equivalence on binders) of f ;
frep is a representative from the equivalence class of terms that correspond
to f . We know that the homsets of C are split up in S, but the morphisms
in the homsets remain unchanged. The objects of S, however, will be quite
different and most likely larger in number.

It is an open question how the objects in S will look, for instance in
the case of the i/o type system. Objects in S have an extra component, the
sort, in comparison with objects in C. Furthermore, what we are really
interested in, is to know how the typings on morphisms in C relate to
objects in S. We want to know this because the typings can be read and
understood easily, and we would rather not lose that property when we
move to sortings and consider the objects inS. Sortings are faithful functors
so they relate homsets. Recall that given a derivation ∆;Γ ; b, we have
supp(∆) = glob(dom(b)) and supp(Γ) = glob(cod(b)). So, the question is:
Given a derivation ∆;Γ ; b, how does ∆ relate to the domain of each f ′ in
the pre-image (a set of morphisms) of f ? (And likewise for the codomain
of f ′ and Γ.) We leave that to future work.

Armed with the insight above, and despite the current uncertainty about
the relation between sorted objects and typings, we proceed to discuss how
we may generate an LTS over typed terms from an untyped calculus.

11.2.2 Generating LTSs over typed terms
Our idea is as follows. Given an untyped calculus K of inductively defined
terms equipped with a reaction semantics, and a semantically correspon-
ding BRS ´BC on category C, we

1. define a (sound) inductive type system TC on ´BC,

2. consider TC as a decomposable predicate PTC ,

3. construct a closure sorting from PTC ,

4. erect a new BRS ´BS, which has semantic correspondence with ´BC,
on the sorted category S,

5. derive an LTS LS with congruential bisimulation on ´BS, and

220 11. On Type Systems and Sortings for Bigraphs

6. transfer LS to K.

So, what do we achieve? Given 1) a calculus K, 2) a bigraphical model BC
for it, and 3) a structural and dynamic correspondence between K and ´BC,
we can A) define an inductive type TC system on ´BC and then obtain an
LTS LS with congruential bisimulation on well-typed (well-sorted) terms of
´BC (namely the morphisms of S), and thus also on well-typed terms of K
by the correspondences.

Step 1 requires a little bit of work, but if we can progress further with
a generic type system for message-passing and other process calculi, then
this task will diminish in size.

Steps 2 through 5 are automatic, and the machinery for steps 3 through 5
was developed in [Deb08]. Step 6 is semi-automatic because the transfer of a
bigraphical inductive type system may require some work if the operators of
K have complicated images in BC, as discussed in Chapter 10. Unfortunately,
we can only obtain transfer of LS to K if the following statement holds:

P ∼K Q iff %P& ∼BC %Q& ,

where P,Q are K-processes and ∼K the derived a behavioural equivalence.
Often, this does not hold precisely, but is close to, cf. [Jen07, Deb08]. The
behavioural equivalence(s) may be almost the one(s) we intended. An
example is Høgh Jensen’s model of the full π-calculus [Jen07]. Even in the
cases where we can not directly transfer the LTS, we may gain insights by
considering the (almost intended) LTS on the bigraphical model.

11.2.3 Type soundness as a predicate
One can even imagine defining type soundness of the inductive bigraphical
type system as a decomposable predicate, e.g., when the inductive type
system is not known or difficult to obtain or define. This would increase
the value of the derived LTS, because then the bigraphs would satisfy a
behavioural property instead of a structural one. Unfortunately, it seems
difficult to capture type soundness of a non-trivial inductive type system as
a decidable decomposable predicate. Nevertheless, it may prove feasible and
useful to define approximations to type soundness, i.e., a weaker property,
as a decidable decomposable predicate. An example could be to define type
soundness of polyadic π-calculus, where we are interested in catching arity
mismatches in communication. We could try to capture that property with
the following predicate on morphisms f of a bigraphical model of polyadic
π-calculus:

P(f) iff Q!∗Q′ ,

11.3. Summary 221

where!∗ is the reflexive and transitive closure of!, and

Q′ def
= (νz1, . . . , zk)(Q2 | a〈x1, . . . , xn〉.Q3 | a(y1, . . . , ym).Q4) ,

for m ! n and processes Q2,Q3,Q4. Alas, P is very intentional and clearly
undecidable. More work is needed to clarify the potential of this line of
research. Perhaps we may find useful insights about static analysis for
π-calculi, such as in [BDNN98].

11.3 Summary
We have sketched how a bigraphical inductive type system can be seen as
a decomposable predicate. From such a predicate we construct a closure
sorting. This closure sorting yields a sorted category. On the sorted category
we erect a BRS, which has semantic correspondence with the BRS on the
unsorted category – we have merely safely thrown away bigraphs that
ruined our labels. Then, we automatically derive an LTS on the sorted
BRS. Assuming a bigraphical model of an untyped calculus K, terms given
inductively, with a reduction relation, we can, in some cases, transfer the
bigraphical type system (and its properties) along with the LTS to a now
typed version of K. In the cases where direct transfer is not possible, we
may still obtain a better understanding of K by considering its bigraphical
model, because it is more abstract.

Future work should make more formal these ideas and apply the ap-
proach to a case study, e.g., the i/o typing for π-calculus.

222 11. On Type Systems and Sortings for Bigraphs

Part IV

Conclusion

223

12
Summary

And so, we arrive at the conclusion. We have challenged Bigraphs as a
theory for ubiquitous computing through experimentation with modelling
and simulation of location models of varying complexity. Moreover, we
have considered the transition from location-aware to context-aware sys-
tems. On top of this we have explored the novel direction of Bigraphs as a
meta-model for inductive type systems for process calculi.

Let us summarise our developments:

• We have surveyed the research literature on location models. We have
been able to identify symbolic location models as an appropriate case
study and synthesise the terminology to distill a representative model
for our modelling efforts. (Chapter 2.)

• Realising that direct modelling of a whole location system in Bigraphs
causes problems, because we lack control structures when program-
ming directly with bigraphical reaction rules – for instance recursive
tree traversals – we have developed Plato-graphical models. These
models are useful for modelling and are also interesting from a theo-
retical point of view, because they show how we may combine several
BRSs into one. The modelling effort is acceptable. Nevertheless, some
new theoretical challenges arise, an important one being the missing
notion of bisimilarity between BRSs. (Chapter 3.)

• The Plato-graphical setup allows us to program or express some parts
of our modelled systems in different languages, i.e., a more suitable
domain-specific language with more control structures such as Mi-
niML. We exploit this to encode two parts of the location-aware sys-
tems in MiniML; the location model and the location-aware applica-
tion. We have developed the translation from MiniML into Bigraphs,

225

226 12. Summary

one of the most interesting technical aspects being the representation
of references, which is analysed in detail technically. The translation
has also been implemented as an SML match compiler along with
some auxiliary programs. (Chapter 4.)

• With the tools of Plato-graphical models and the MiniML encoding we
are able to model a realistic location system in Bigraphs. The sentient
building case study has helped us gain a better general understanding
of which requirements context-aware (location-aware) programming
puts on the theory used for the modelling. Furthermore, we have
implemented the model in the syntax of the BPL tool. (Chapter 5 and
Appendix A.2.)

• To complete the program we have performed simulations of an abs-
tract version of the location system with the BPL tool. The simulations
reveal important design decisions and illustrate how intricate it can be
to cover all possibilities when working with concurrency and mobility.
(Chapter 6.)

• Part II is completed with an extensive survey of related work on formal
models for context-awareness. (Chapter 7.)

• The main contribution of Part III is our development of inductive type
systems for Bigraphs. The challenge of designing type systems and
proving properties about them has been pushed on to the meta-model
of Bigraphs. As proof of concept we have presented a bigraphical
model of a π-calculus, developed an i/o-type system with subtyping
on this model, proved crucial properties (including subject reduction)
for this type system, and transferred these properties to the (typed)
π-calculus. (Chapter 10.)

• The work on inductive sortings is very preliminary. We sketch how
a bigraphical inductive type system can be seen as a decomposable
predicate, yielding a closure sorting. The sorted category underlies
a sorted BRS for which we automatically derive an LTS. Assuming a
bigraphical model of an untyped calculus K we can, under certain cir-
cumstances, transfer the bigraphical type system (and its properties)
along with the LTS to a now typed version of K. (Chapter 11.)

Summarising, we conclude that Bigraphs is still in play as a theory for
modelling and simulating ubiquitous systems. We have taken a step in
bringing together the research on location models with the formal theory of

227

Bigraphs. It is clear that if theoreticians are to truly influence the way that
systems are built, then we must try to work with the systems and problems
that designers face. Moreover, significant efforts in theory pertaining to
Bigraphs (sortings, type systems, Directed Bigraphs, Stochastic Bigraphs
and so forth) indicate that Bigraphs is a maturing theory.

228 12. Summary

13
Future work

We have argued that the techniques used in our work can also encompass
context-aware computing. Nevertheless, Bigraphs needs to encompass time
and continuous space to become a theory for global ubiquitous computing.

To realise the full potential of Bigraphs more experimentation is needed.
We need to further develop the BPL tool to handle models of a larger
magnitude. As well, we need to perform more elaborate simulations, and
perhaps to enhance the user interface to provide a useful tool for engineers
and system designers. (There is a web interface.) The key to success with
simulation — in the sense of the discovery of unforeseen system behaviour
— is to write elaborate tactics that semi-automatically rewrite the system
according to heuristics (or other guide lines). We may even go to model
checking, where interfacing with well developed existing tool seems like
the way to go. Both simulation and model checking are important utilities if
we are to rigorously reason about systems large than toy examples. Another
strand of work that is worth attention is the inclusion of sorting or typing
into the BPL tool. We agree with Debois [Deb08], who refers to Milner
and Leifer, that sorting (or typing) is likely to be needed in any significant
application. For a much more detailed account of future work within
modelling and simulation, see Chapter 8.)

As mentioned in the future work section of Chapter 10, there is also
plenty of interesting work to be done within inductive type systems for
process calculi using Bigraphs as a meta-model. Going to more advan-
ced type systems such as deadlock-freedom seems like the most promising
direction. Furthermore, the relationship with sortings merits further inves-
tigations, but we are quite excited about the prospects.

And so concludes my dissertation.

229

230 13. Future work

Appendix

A.1 Background Bigraph definitions
This appendix contains the relevant definitions of [JM04, Mil06a, Jen07].

Definition A.1 (pure signature). A (pure) signatureK is a set whose
elements are called controls. For each control K it provides a finite ordinal ar(K),
an arity; it also determines which controls are atomic, and which of the
non-atomic controls are active. Controls which are not active (including the
atomic controls) are called passive.

Presuppose a countably infinite set χ of global names.

Definition A.2 (concrete pure bigraph). A (concrete) pure bigraph over the
signatureK takes the form G = (V,E, ctrl,GP,GL) : I→ J where I = 〈m,X〉 and
J = 〈n,Y〉 are its inner and outer faces, each combining a width (a finite
ordinal) with a finite set of global names drawn from χ. Its first two components
V and E are finite sets of nodes and edges respectively. The third component
ctrl : V → K , a control map, assigns a control to each node. The remaining two
are: GP = (V, ctrl, prnt) : m→ n, GL = (V,E, ctrl, link) : X→ Y.

Definition A.3 (prime interface). An interface I = 〈m,X〉 consists of a finite
ordinal m called a width, a finite set X called a name set. An interface is prime
if it has width 1.

Definition A.4 (prime bigraph). A prime bigraph P : m→ 〈X〉 has no inner
names and a prime outer face.

Definition A.5 (place graph). A place graph A = (V, ctrl, prnt) : m→ n has
an inner width m and an outer width n, both finite ordinals; a finite set V of
nodes with a control map ctrl : V → K ; and a parent map
prnt : m 7 V → V 7 n. The parent map is acyclic, i.e. prntk(v) ! v for all k > 0

231

232 Appendix

and v ∈ V. An atomic node – i.e. one whose control is atomic – may not be a
parent. We write w >A w′, or just w > w′, to mean w = prntk(w′) for some k > 0.
The widths m and n index the sites and roots of A respectively. The sites and
nodes – i.e. the domain of prnt – are called places.

Definition A.6 (precategory of place graphs). The precategory of place graphs
´Plg has finite ordinals as objects and place graphs as arrows. The composition
A1 ◦ A0 : m0 → m2 of two place graphs
Ai = (Vi, ctrli, prnti) : mi → mi+1 (i = 0, 1) is defined when the two node sets are
disjoint; then A1 ◦ A0

def
= (V, ctrl, prnt) where V = V0 7 V1, ctrl = ctrl0 7 ctrl1,

and prnt = (IdV0 7 prnt1) ◦ (prnt0 7 IdV1). The identity place graph at m is
idm

def
= (∅, ∅K , Idm) : m→ m.

Definition A.7 (barren,sibling,active,passive). A node or root is barren it is
has no children. Two places are siblings if they have the same parent. A site s of A
is active if ctrl(v) is active whenever v > s; otherwise s is passive. If s is active
(resp. passive) in A, we also say that A is active (resp. passive) at s.

Definition A.8 (tensor product, ´Plg). The tensor product ⊗ in ´Plg is
defined as follows: On objects, we take m ⊗ n = m + n. For two place graphs
Ai : mi → ni (i = 0, 1) we take A0 ⊗ A1 : m0 +m1 → n0 + n1 to be defined when
A0 and A1 have disjoint node sets; for the parent map, we first adjust the sites and
roots of A1 by adding them to m0 and n0 respectively, then take the union of the
two parent maps.

Definition A.9 (hard place graphs). A hard place graph is one in which no
root or non-atomic node is barren. They form a sub-precategory denoted by ´Plgh.

Definition A.10 (link graph). A link graph A = (V,E, ctrl, link) : X→ Y has
finite sets X of inner names, Y of (outer) names, V of nodes and E of edges.
It also has a function ctrl : V → K called the control map, and a function
link : X 7 P→ E7Y called the link map, where P def

=
∑

v∈V ar(ctrl(v)) is the set
of ports of A.
We shall call the inner names X and ports P the points of A, and the edges E and
outer names Y its links.

Definition A.11 (idle,open,closed,peer,lean). A link is idle if it has no
preimage under the link map. An (outer) name is an open link, an edge is a
closed link. A point (i.e. an inner name or port) is open if its link is open,
otherwise closed. Two distinct points are peers if they are in the same link. A
link graph is lean if it has no idle edges.

A.1. Background Bigraph definitions 233

Definition A.12 (precategory of link graphs). The precategory ´Lig has name
sets as objects and link graphs as arrows. The composition A1 ◦ A0 : X0 → X2 of
two link graphs Ai = (Vi,Ei, ctrli, linki) : Xi → Xi+1 (i = 0, 1) is defined when
their node sets and edge sets are disjoint; then A1 ◦ A0

def
= (V,E, ctrl, link) where

V = V0 7 V1, ctrl = ctrl0 7 ctrl1,E = E0 7 E1 and
link = (IdE0 7 link1) ◦ (link0 7 IdP1). The identity link graph at X is
idX = (∅, ∅, ∅K , IdX) : X→ X.

Definition A.13 (tensor product, ´Lig). The tensor product ⊗ in ´Lig is
defined as follows: On objects, X ⊗ Y is simply the union of sets required to be
disjoint. For two link graphs Ai : Xi → Yi (i = 0, 1) we take
A0 ⊗ A1 : X0 ⊗ X1 → Y0 ⊗ Y1 to be defined when the interface products are
defined and when A0 and A1 have disjoint node sets and edge sets; then we take
the union of their link maps.

Definition A.14 (parallel product). The parallel product ‖ in ´Lig is defined
as follows: On objects, X ‖ Y def

= X ∪ Y. On link graphs Ai : Xi → Yi (i = 0, 1)
we define A0 ‖ A1 : X0 ⊗ X1 → Y0 ‖ Y1 whenever X0 and X1 are disjoint, by
taking the union of link maps.

A place graph can be combined with a link graph iff they have the same
node set and control map.

Definition A.15 (precategory of pure concrete bigraphs). The precategory
´Big(K) of pure concrete bigraphs over a signatureK has pairs I = 〈m,X〉 as
objects (interfaces) and bigraphs G = (V,E, ctrlG,GP,GL) : I→ J as arrows
(contexts). We call I the inner face of G, and I the outer face. If H : J→ K is
another bigraph with node set disjoint from V, then their composition is defined
directly in terms of the compositions of the constituents as follows:

H ◦ G def
= 〈HP ◦ GP,HL ◦ GL〉 : I→ K.

The identities are 〈idm, idX〉 : I→ I, where I = 〈m,X〉.
The subprecategory ´Bigh consists of hard bigraphs, those with place graphs in
´Plgh.

Definition A.16 (tensor product, ´Big). The tensor product of two bigraph
interfaces is defined by 〈m,X〉 ⊗ 〈n,Y〉 def

= 〈m + n,X ∪ Y〉 when X and Y are
disjoint. The tensor product of two bigraphs Gi : Ii → Ji (i = 0, 1) is defined by

G0 ⊗ G1
def
= 〈GP

0 ⊗ GP
1 ,G

L
0 ⊗ GL

1〉 : I0 ⊗ I1 → J0 | J1

234 Appendix

when the interfaces exist and the node sets are disjoint. This combination is
well-formed, since its constituents share the same node set.

Definition A.17 (parallel product, ´Big). The parallel product of two
bigraphs is defined on interfaces by 〈m,X〉 |〈 n,Y〉 def

= 〈m + n,X ∪ Y〉, and on
bigraphs by

G0 | G1
def
= 〈GP

0 ⊗ GP
1 ,G

L
0 ‖ GL

1〉 : Io ⊗ I1 → J0 | J1

when the interfaces exist and the node sets are disjoint.

It is easy to verify that ‖ is associative, with unit ε.

Proposition A.18 (alternative parallel product, ´Big). Let G0 ‖ G1 be defined.
Then

G0 ‖ G1 = σ(G0 ⊗ τG1) ,

where the substitutions σ and τ are defined as follows: If zi(i ∈ n) are the names
shared between G0 and G1, and wi are fresh names in bijection with the zi, then
τ(zi) = wi and σ(wi) = σ(zi) = zi(i ∈ n).

Definition A.19 (prime product, ´Big). The prime product of two interfaces
is given by

〈m,X〉 |〈 n,Y〉 def
= 〈1,X ∪ Y〉.

For two prime bigraphs
#»
P :

#»
I → #»

J , if I0 ⊗ I1 defined and n is the sum of the
widths of J0 and J1, we define their prime product by

P0 | P1
def
= mer!en ◦ (P0 ‖ P1) : I0 ⊗ I1 → J0 | J1 .

Again | is associative, with unit 1 when applied to primes.

Definition A.20 (s-category). An s-category C is a strict symmetric monoidal
precategory which has:
– for each arrow f , a finite set | f | called its support, such that |idI| = ∅. For
f : I→ J and ! : J→ K the composition ! f : I→ K is defined iff |!| ∩| f | = ∅ and
dom(!) = cod(f); then |! f | = |!| 7| f |. Similarly, for f : H→ I and ! : J→ K
with H ⊗ J and I ⊗ K defined, the tensor product f ⊗ ! : H ⊗ J→ I ⊗ K is defined
iff | f | ∩| !| = ∅; then | f ⊗ !| = | f | 7| !|.
– for any arrow f : I→ J and any injective map ρ whose domain includes | f |, an
arrow f : I→ J called a support translation of f such that

1. ρ (idI = idI

A.1. Background Bigraph definitions 235

2. ρ ((! f) = (ρ (!)(ρ (f)

3. ρ ((f ⊗ !) = ρ (f ⊗ ρ (!

4. Id| f | (f = f

5. (ρ1 ◦ ρ0) (f = ρ1 ((ρ0 (f)

6. ρ (f = (ρ&| f |) (f

7. |ρ (f | = ρ(| f |) .

Each equation is required to hold only when both sides are defined.

Definition A.21 (support equivalence,supported functor). Let ´A be a
supported precategory. Two arrows f , ! : I→ J in ´A are support-equivalent,
written f " !, if ρ (f = ! for some support translation ρ. By Definition A.20(6)
and (7)this is an equivalence relation. If ´B is another supported precategory, then
a functor F : ´A → ´B is called supported if it preserves support equivalence,
i.e. f " ! =⇒ F (f) " F (!).

Definition A.22 (instantiation). An instantiation / from (width) m to (width)
n, which we write / :: m→ n, is determined by function / : n→ m. For any X
this function defines the map

/ : Gr〈m,X〉 → Gr〈n,X〉

as follows. Decompose ! : 〈m,X〉 into ! = w(d0 ⊗ · · · ⊗ dm−1), with w : Y→ X
and each di prime and discrete. Then define

/(!) def
= w(e0 ‖ · · · ‖ en−1),

where ej " d/(j) for j ∈ n. This map is well-defined (up to support translation), by
Propositions 9.16 and 9.17.

Note that the names of e0 ‖ · · · ‖ en−1 may be fewer than Y, because /may
not be surjective. But by our convention the outer names of /(!) are
determined by the outer names of w, i.e. X.

Definition A.23 (binding signature). A binding signatureK is like a pure
signature, except that the arity of a control K : h→ k now consists of a pair of
finite ordinals: the binding arity h and the free arity k, determining the number
of binding and non-binding ports of any K-node. If K is atomic then h = 0.

236 Appendix

Definition A.24 (binding interface). A binding interface I = 〈m, loc,X〉,
where the width m is as before, X is a finite set of names, and loc : X→ m7 {⊥} is
a locality map associating some of the names X with a site in m. If loc(x) = s ∈ m
then x is located at s, or local (to s); If loc(x) = ⊥ then x is global.
We call IU = 〈m,X〉 the pure interface underlying I.

Definition A.25 (binding bigraphs). A (concrete) binding bigraph G : I→ J
consists of an underlying pure bigraph Gu : Iu → Ju with extra structure as
follows. Declare its binders to be the binding ports of its nodes together with the
local names of its outer face J. Then G must satisfy the following:

Scope rule: If p is a binder located at a node or root w, then every peer p′ of
p must be located at a place w′ (a site or node) such that w′ <Gu w.

In the precategory ´Bbg(K) of (concrete) binding bigraphs overK , composition
and identities are defined as for the underlying pure bigraphs; they are easily
found to respect the scope rule. The forgetful functor

U : ´Bbg(K)→ ´Big(K)

sends each I to Iu and each G to Gu. The analogous definition holds also for hard
binding bigraphs ´Bbgh(K).

Definition A.26 (tensor product, ´Bbg). The tensor product of interfaces
I = 〈m, #»

X,X〉 and J = 〈n, #»
Y ,Y〉, where X and Y are disjoint, is

I ⊗ J = 〈m + n,
#»
X

#»
Y ,X 7 Y〉.

The tensor product G : I→ J of two binding Gi : Ii → Ji(i = 0, 1) with disjoint
supports is defined when I = I0 ⊗ I1 and J = J0 ⊗ J1 are defined, and then
Gu = Gu

0 ⊗ Gu
1 . ThusU preserves tensor product.

Definition A.27 (parallel product, ´Bbg). Extending the previous definition,
the parallel product of two interfaces Ji = 〈ni,

#»
Xi,Yi〉(i = 0, 1) keeps their local

names disjoint but may share their global names:

J0 ‖ J1
def
= 〈n0 + n1,

#»
X0

#»
X1,Y0 ∪ Y1〉 .

We define a parallel product on binding bigraphs by the equation
G0 ‖ G1 = σ(G0 ⊗ τG1).

A.1. Background Bigraph definitions 237

Definition A.28 (prime product, ´Bbg). Extending the previous definition, the
prime product of two prime interfaces is

〈(X′),X〉 |〈 (Y′),Y〉 def
= 〈(X′ 7 Y′),X ∪ Y〉 .

The expression of the prime product of two prime binding bigraphs in terms of
their parallel product is just as before.

Definition A.29 (instantiation, ´Bbg). We replace instantiations / :: m→ n for
pure bigraphs by instantiations / :: I→ J for binding bigraphs, where I = 〈m, #»

X〉
and J = 〈n, #»

Y〉 are local. The instantiation consists again of an underlying
function / : n→ m, and also provides bijective local substitutions
/ j : (X/(j))→ (Yj) for all j ∈ n. These ensure disjoint local names for each copy of
a parameter factor. For any Z, this allows the map

/ : Gr(I ⊗ Z)→ Gr(J ⊗ Z)

to be defined as follows (in terms of DNF as before): Decompose ! : I ⊗ Z into
! = w(d0 ⊗ · · · ⊗ dm1) with w : W → Z and each di prime and discrete. Then let
ej " / j ◦ d/(j) for each j ∈ n, and define

/(!) def
= w(e0 ‖ · · · ‖ en−1) .

Definition A.30 (bigraphical reactive system). A bigraphical reactive
system (BRS) over signatureK consists of ´Bbg(K) equipped with a set ´Reacts
of reaction rules closed under support equivalence ("). We denote it by
´Bbg(K , ´Reacts).

Definition A.31 (Insertion, [Jen07]). Given a wiring ω : X→ Y and a local
prime A : X′ → Y′ the insertion of ω into A is defined iff X and X′ are disjoint.
The result, written A % ω : XX′ → Y ∪ Y′, has the nodes and parent map of A
and its link map is the union of those of A and ω. Insertion binds tighter than
prime product and composition.

We continue on the next page with the axioms for Binding Bigraphs.

238 Appendix

The axioms for binding bigraphs in Def. A.32 are from [DB06], but with
explicit composition. A,B,C,G range over bigraphs, H, I, J,K range over
interfaces, ε is the empty interface 〈0, (), ∅〉, x, y range over names, X,Y,Z
range over name sets,
#X$Z def

= (Z)#Z 7 X$: 〈1, (Z 7 X),Z 7 X〉 → 〈1, (Z),Z 7 X〉, P ranges over
primes, K #»

(y)(
#»X) over ions, α ranges over renamings (multiple bijective

substitutions), σ ranges over substitutions, and σloc ranges over local
substitutions.

Definition A.32 (Axioms for binding bigraphs).

Categorical axioms
(C1) A ◦ idI = A = idJ ◦ A (A : I→ J)
(C2) A ◦ (B ◦ C) = (A ◦ B) ◦ C
(C3) A ⊗ idε = A = idε ⊗ A
(C4) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C
(C5) idI ⊗ idJ = idI⊗J
(C6) (A1 ⊗ B1) ◦ (A0 ⊗ B0) = (A1 ◦ A0) ⊗ (B1 ◦ B0)
(C7) γI,ε = idI
(C8) γJ,I ◦ γI,J = idI⊗J
(C9) γI,K ◦ (A ⊗ B) = (B ⊗ A) ◦ γH,J (A : H→ I,B : J→ K)
(C10) γI⊗J,K ◦ (A ⊗ B) = (γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K)
Link axioms
(L1) x/x = idx
(L2) /y ◦ y/x = /x
(L3) /y ◦ y = idε
(L4) (z/(Y7y)) ◦ (idY ⊗ y/X) = z/(Y7X)

Place axioms
(P1) join ◦ (1 ⊗ id1) = id1
(P2) join ◦ (join ⊗ id1) = join ◦ (id1 ⊗ join)
(P3) join ◦ γ1,1,(∅,∅) = join
Binding axioms
(B1) (∅)P = P
(B2) (Y)#Y$ = id(Y)
(B3) (#X$Z ⊗ idY)(X)P = P (P : I→ 〈1, (Z),Z 7 X 7 Y〉)
(B4) (((Y)P) ⊗ idX)G = (Y)(P ⊗ idX)G
(B5) (X 7 Y)P = (X)((Y)P)
Ion axioms
(N1) (id1 ⊗ α) ◦ K #»y (

#»X) = Kα(#»y)(
#»X)

(N2) K #»y (
#»X) ◦ σloc = K #»y ((σloc)−1(

#»X))

A.2. Code 239

A.2 Code

A.2.1 Simulation of an abstract location model

(***
Ebbe Elsborg

An abstract Plato-graphical location model.
Simulation of a simple predefined scenario.

C: Real world

signature world =
sig %
loc : passive (0)
dev : passive (0)
id : passive (0)
i0,i1,... : atomic

end

using world

rule moveup = (* sort: C *)
loc(id([0]) | [1] | loc(id([2]) | [3] | dev([4])))
->

loc(id([0]) | [1] | loc(id([2]) | [3]) | dev([4]))

rule movedown = (* sort: C *)
loc(id([0]) | [1] | loc(id([2]) | [3]) | dev([4]))
->

loc(id([0]) | [1] | loc(id([2]) | [3] | dev([4])))

state = loc(id(n) | loc(...) | dev(id(m)) | ...)

S: Sensor system

240 Appendix

signature sensor =
sig end

(* rule schema, one for each n in i0,01,i2... *)
rule observe_update = (* sort: C,L *)
loc(id([0]) | [1] | dev(n)) ||
devs(location(l([2]) | d(n)) | [3])
->

loc(id([0]) | [1] | dev(n)) ||
devs(location(l([0]) | d(n)) | [3])

(* need a NAC to ensure that
the iN node in [2] is not in [3] *)

rule observe_new = (* sort: C,L *)
loc(id([0]) | [1] | dev([2])) ||
devs([3])
->

loc(id([0]) | [1] | dev([2])) ||
devs([3] | location(l([0]) | d([2])))

(* need a NAC to ensure that
the iN node in [3] is not in [0] *)

rule lose = (* sort: C,L *)
loc([0]) || devs([1] | location(l([2]) | d([3])))
->

loc([0]) || devs([1])

L: Location model

signature repr =
sig
devs : passive (0)
location : passive (0)
l: passive (0)
d: passive(0)

end

state = devs(location(l(n),d(m)) | ...)

A.2. Code 241

A: Location-aware application

signature agent =
sig
findall : atomic
whereis : passive (0)
i0,i1,i2... : atomic
id : passive (0)
location : passive (0)
l: passive(0)
d: passive(0)

end

using agent

rule findall = (* sort: L,A *)
devs([0]) || findall
->

devs([0]) || [0]

rule whereis = (* sort: L,A *)
devs(location(l([0]) | d(id([1])) | [2])) || whereis([1])
->

devs(location(l([0]) | d(id([1])) | [2]))
|| location(l([0]) | d(id([1])))

rule genFindall = (* sort: A *)
[0] -> [0] | findall

(* rule schema, a rule for each n in i0,01,i2... *)
rule genWhereis = (* sort: A *)
[0] -> [0] | whereis(n)

INITIAL STATE OF THE SYSTEM:
C: loc(id(i1) | loc(id(i2) | dev(i3) | dev(i4))) ||

242 Appendix

L: devs(location(l(i2) | d(i3))) ||
A: 1

SCENARIO:
1. A ‘‘whereis’’ query for device i3 is issued.
2. A move of device i3 occurs in C.
3. An answer to the query appears in A.
4. Another ‘‘whereis’’ query is issued, now for device i4.
5. S discovers that dev. i4 is in C but not in L and reacts.
6. An answer to this query appears in A.

EXTENDED:
7. A ‘‘findall’’ query is issued.
8. An answer to this query appears in A.

***)

structure BG = BG (structure ErrorHandler = PrintErrorHandler)
structure B = BG.BgVal
structure S = BG.Sugar
structure P = BG.Permutation
structure R = BG.Rule
structure Bdnf = BG.BgBDNF
structure M = BG.Match
structure C = BG.Control
structure Name = BG.Name
structure NameSet = BG.NameSet
structure Ion = BG.Ion
structure Wiring = BG.Wiring
structure Link = BG.Link
structure Inst = BG.Instantiation
structure Iface = BG.Interface
structure Re = Reaction
(structure RuleNameMap = Util.StringMap
structure Info = BG.Info
structure Interface = BG.Interface
structure Wiring = BG.Wiring
structure BgVal = BG.BgVal

A.2. Code 243

structure BgBDNF = BG.BgBDNF
structure Match = BG.Match
structure Instantiation = BG.Instantiation
structure Rule = BG.Rule
structure Origin = Origin
structure ErrorHandler = PrintErrorHandler)

(* make look nicer *)
val _ = Flags.setBoolFlag "/kernel/ast/bgterm/ppids" false
val _ = Flags.setBoolFlag "/kernel/ast/bgterm/ppabs" false
val _ = Flags.setBoolFlag "/kernel/ast/bgterm/pp0abs" false
val _ = Flags.setBoolFlag "/kernel/ast/bgterm/pptenaspar" true
val _ = Flags.setBoolFlag "/kernel/ast/bgterm/ppmeraspri" true
val _ = Flags.setBoolFlag "/kernel/ast/bgval/pp-simplify" true

(* useful constants *)
val info = BG.Info.noinfo
val barren = S.<->
val id_1 = B.Per info (P.id_n 1)
val site = id_1 (*‘[]‘*)

(* exception handler *)
fun handler exn =
(print (BaseErrorHandler.explain’ exn) ; print "\n")

(* shorthand functions *)
fun s2n s = Name.make s
fun n2s n = Name.unmk n
fun v2n x = Name.make (String.toString x)
fun ion2bg ion = B.Ion info ion

(* interface functions *)
fun getInner b = let val (b,inn,out) = B.unmk b in inn end
fun getOuter b = let val (b,inn,out) = B.unmk b in out end
fun isGround b = let val (bgterm,inner,outer) = B.unmk b
in Iface.eq (inner, Iface.zero) end

(* LazyList functions*)
fun lzLength l =
Int.toString(List.length(LazyList.lztolist l))

244 Appendix

(* take apart a match; context and parameter *)
fun parts agent matches =

let val agent’ = M.unmk (LazyList.lzhd matches)
val agent’_ctx = #context(agent’)
val agent’_par = #parameter(agent’)
fun peel x = (B.toString o B.simplify o Bdnf.unmk) x

in ["agent_ctx= " ^ (peel agent’_ctx) ^ "\n",
"agent_par= " ^ (peel agent’_par) ^ "\n"] end

(* printing *)
fun printWidth w = print(Int.toString w)
fun printName n = print(", " ^ (n2s n))
fun printNameset set =

let fun loop set strAcc flag =
if NameSet.size set = 0 then strAcc
else let val member = NameSet.someElement set
val set’ = NameSet.remove member set

in if flag (* at first member *)
then

loop set’ (strAcc ^ (n2s member)) false
else

loop set’
(strAcc ^ "," ^ (n2s member))
false

end
in print ("{" ^ (loop set "" true) ^ "}") end

fun printLoc l =
let fun loop list flag =
case list
of [] => print ""
| (x::xs) =>

if flag
then (printNameset x ; loop xs false)

else (print ","
; printNameset x
; loop xs false)

in (print "(" ; loop l true ; print ")") end

A.2. Code 245

fun printGlob s = printNameset s

fun printIface i =
let val i_parts = Iface.unmk i

val w = #width(i_parts)
val l = #loc(i_parts)
val g = #glob(i_parts)

in (print "<"
; printWidth w
; print ", "
; printLoc l
; print ", "
; printGlob g
; print ">") end

fun printIfaces t i j =
(print(t ^ " : ")
; printIface i
; print " -> "
; printIface j
; print "\n")

fun prtSimp name bgval =
print(name ^ "= " ^ B.toString(B.simplify bgval) ^ "\n")

fun printMts m =
(print "Matches:\n"
; LazyList.lzprint M.toString m
; print "\n")

fun printRes tname agents =
(print("\nAgent(s) resulting from reaction(s) on "
^ tname ^ ":\n")

; LazyList.lzprint (B.toString o B.simplify) agents
; print "\n")

fun printRes’ tname rname agent =
(print("Agent resulting from reaction with "
^ rname ^ " on " ^ tname ^ ":\n")
; print((B.toString o B.simplify) agent)

246 Appendix

; print "\n")

(* SIGNATURE *)

(* C *)
fun i n = S.atomic0 ("i" ^ n)
val id = S.passive0 "id"
val loc = S.active0 "loc"
val dev = S.passive0 "dev"

(* S has the empty signature *)

(* L *)
val l = S.passive0 "l"
val d = S.passive0 "d"
val devs = S.passive0 "devs"
val location = S.passive0 "location"

(* A *)
val findall = S.atomic0 "findall"
val whereis = S.passive0 "whereis"

(* A shares ’fun i’ and ’val id’ with C. *)
(* A shares ’val l’, ’val d’, and ’val location’ with L. *)

(* Plato-graphical systems *)
fun make_plato (c,p,a) = S.|| (c, S.|| (p, a))

(* auxiliary definitions *)
val loc’ = S.o (loc, S.‘|‘ (id, site))
fun loc’’ n = S.o (loc, S.‘|‘ (S.o (id, i(n)), site))
fun dev’ n = S.o (dev, i(n))
fun devs’ h = S.o (S.passive0 "devs", h)
val locdev = S.o (loc, S.‘|‘ (id, S.‘|‘ (site, dev)))
fun locdev’ n = S.o (loc, S.‘|‘ (id, S.‘|‘ (site, dev’ n)))
val location’ = S.o (location, S.‘|‘ (l, d))
fun location’’ lid did =

S.o (location, S.‘|‘ (S.o (l, i(lid)), S.o (d, i(did))))
fun location’’’ did =

A.2. Code 247

S.o (location, S.‘|‘ (l, S.o (d, i(did))))
fun whereis’ c = S.o (S.passive0 "whereis", c)

(* initial state of the system *)
val loc1 = loc’’ "1"
val loc2 = loc’’ "2"
val dev3 = dev’ "3"
val dev4 = dev’ "4"
val C = S.o (loc1, S.o (loc2, S.‘|‘ (dev3, dev4)))
val location_l2d3 = location’’ "2" "3"
val L = S.o (devs, location_l2d3)
val A = barren
val system0 = make_plato(C,L,A)

val _ = prtSimp "\nsystem0\n" system0
val _ = printIfaces

"system0" (getInner system0) (getOuter system0)

(* aux. function *)
fun makeBR bgval = Bdnf.regularize (Bdnf.make bgval)

(* RULES *)

(* C *)

val aux1 =
S.o (loc, S.‘|‘(id, S.‘|‘(site,
S.o (loc, S.‘|‘(id, S.‘|‘(site, S.‘|‘(dev, dev)))))))

val aux2 =
S.o (loc, S.‘|‘(id, S.‘|‘(site,
S.‘|‘(S.o (loc, S.‘|‘(id, S.‘|‘ (site, dev))), dev))))

val redex_innerface_move = Iface.m 6
val react_innerface_move = Iface.m 6
val instMove = Inst.make { I = redex_innerface_move,
J = react_innerface_move,
maps = [((0,[]), (0,[])),
((1,[]), (1,[])),
((2,[]), (2,[])),
((3,[]), (3,[])),

248 Appendix

((4,[]), (5,[])),
((5,[]), (4,[]))] }

val redexUp = aux1
val reactUp = aux2
val Cmoveup = R.make { name = "Cmoveup",

redex = makeBR redexUp,
react = reactUp,
inst = instMove,
info = info }

val redexDown = aux2
val reactDown = aux1
val Cmovedown = R.make { name = "Cmovedown",
redex = makeBR redexDown,
react = reactDown,
inst = instMove,
info = info }

(* S *)
(* rule schema, one for each n in N *)
val devs_dn = S.o (devs, S.‘|‘ (location’’’ "n", site))
val redexObsUpd = S.|| (locdev’ "n", devs_dn)
val reactObsUpd = redexObsUpd
val redex_innerface_upd = Iface.m 4
val react_innerface_upd = Iface.m 4
val instUpd = Inst.make { I = redex_innerface_upd,
J = react_innerface_upd,
maps = [((0,[]), (0,[])),
((1,[]), (1,[])),
((2,[]), (0,[])),
((3,[]), (3,[]))] }

val Sobsupd = R.make { name = "Sobsupd",
redex = makeBR redexObsUpd,
react = reactObsUpd,
inst = instUpd,
info = info }

(* need a NAC to ensure that iN of dev is not in devs *)
val redexObsNew = S.|| (locdev, devs)

A.2. Code 249

val reactObsNew =
S.||(locdev, devs’ (S.‘|‘(site, location’)))

val redex_innerface_new = Iface.m 4
val react_innerface_new = Iface.m 6
val instNew = Inst.make { I = redex_innerface_new,
J = react_innerface_new,
maps = [((0,[]), (0,[])),
((1,[]), (1,[])),
((2,[]), (2,[])),
((3,[]), (3,[])),
((4,[]), (0,[])),
((5,[]), (2,[]))] }

val Sobsnew = R.make { name = "Sobsnew",
redex = makeBR redexObsNew,
react = reactObsNew,
inst = instNew,
info = info }

(* need a NAC to ensure that
site in dev is not in site of loc *)

val redexLose = S.|| (loc, devs’ (S.‘|‘ (site, location’)))
val reactLose = S.|| (loc, devs)
val Slose = R.make’ { name = "Slose",

redex = makeBR redexLose,
react = reactLose,
info = info }

(* L has no rules *)

(* A *)
val redex_innerface_findall = Iface.m 1
val react_innerface_findall = Iface.m 2
val instFindall = Inst.make { I = redex_innerface_findall,

J = react_innerface_findall,
maps = [((0,[]), (0,[])),
((1,[]), (0,[]))] }

val redexFindall = S.|| (devs, findall)
val reactFindall = S.|| (devs, site)
val Afindall = R.make { name = "Afindall",
redex = makeBR redexFindall,

250 Appendix

react = reactFindall,
inst = instFindall,
info = info }
(* handle e => (handler e ;
R.make’ { name = "dummy",
redex = makeBR barren,
react = barren,
info = info })*)

(* rule schema, a rule for each n in N,
we need two concrete now *)

val redexWhereis3 =
S.|| (devs’ (S.‘|‘ (location’’’ "3", site)),

whereis’(i("3")))
val reactWhereis3 =
S.|| (devs’ (S.‘|‘ (location’’’ "3", site)),

location’’’ "3")
val redexWhereis4 =
S.|| (devs’ (S.‘|‘ (location’’’ "4", site)),

whereis’(i("4")))
val reactWhereis4 =
S.|| (devs’ (S.‘|‘ (location’’’ "4", site)),

location’’’ "4")
val redex_innerface_whereis = Iface.m 2
val react_innerface_whereis = Iface.m 3
val instWhereis = Inst.make { I = redex_innerface_whereis,

J = react_innerface_whereis,
maps = [((0,[]), (0,[])),
((1,[]), (1,[])),
((2,[]), (0,[]))] }

val Awhereis3 = R.make { name = "Awhereis3",
redex = makeBR redexWhereis3,
react = reactWhereis3,
inst = instWhereis,
info = info }
val Awhereis4 = R.make { name = "Awhereis4",
redex = makeBR redexWhereis4,
react = reactWhereis4,
inst = instWhereis,
info = info }

A.2. Code 251

val redexGenFindall = site
val reactGenFindall = S.‘|‘ (site, findall)
val AgenFindall = R.make’ { name = "AgenFindall",

redex = makeBR redexGenFindall,
react = reactGenFindall,
info = info }

(* rule schema, a rule for each n in N,
we need two concrete now *)

val redexGenWhereis3 = site
val reactGenWhereis3 = S.‘|‘ (site, whereis’(i("3")))
val AgenWhereis3 = R.make’ { name = "AgenWhereis3",

redex = makeBR redexGenWhereis3,
react = reactGenWhereis3,
info = info }

val redexGenWhereis4 = site
val reactGenWhereis4 = S.‘|‘ (site, whereis’(i("4")))
val AgenWhereis4 = R.make’ { name = "AgenWhereis4",

redex = makeBR redexGenWhereis4,
react = reactGenWhereis4,
info = info }

(* REACTIONS *)

(* Scenario:
loc(id(i1) | loc(id(i2) | dev(i3) | dev(i4))) ||
devs(location(l(i2) | d(i3))) ||
1
--1:Agenwhereis3->

loc(id(i1) | loc(id(i2) | dev(i3) | dev(i4))) ||
devs(location(l(i2) | d(i3))) ||
whereis(i3)
--2:Cmoveup->

loc(id(i1) | dev(i3) | loc(id(i2) | dev(i4))) ||
devs(location(l(i2) | d(i3))) ||
whereis(i3)
--3:Awhereis3->

loc(id(i1) | dev(i3) | loc(id(i2) | dev(i4))) ||
devs(location(l(i2) | d(i3))) ||

252 Appendix

location(l(i2) | d(i3))
--4:AgenWhereis4->

loc(id(i1) | dev(i3) | loc(id(i2) | dev(i4))) ||
devs(location(l(i2) | d(i3))) ||
(location(l(i2) | d(i3)) | whereis(i4))
--5:Sobsnew->

loc(id(i1) | dev(i3) | loc(id(i2) | dev(i4))) ||
devs(location(l(i2) | d(i3)) | location(l(i1) | d(i4))) ||
(location(l(i2) | d(i3)) | whereis(i4))
--6:Awhereis4->

loc(id(i1) | dev(i3) | loc(id(i2) | dev(i4))) ||
devs(location(l(i2) | d(i3)) | location(l(i1) | d(i4))) ||
(location(l(i2) | d(i3)) | location(l(i1) | d(i4)))
--7:AgenFindall->

loc(id(i1) | dev(i3) | loc(id(i2) | dev(i4))) ||
devs(location(l(i2) | d(i3)) | location(l(i1) | d(i4))) ||
(location(l(i2) | d(i3)) | location(l(i1) | d(i4)) | findall)
--8:Afindall->

loc(id(i1) | dev(i3) | loc(id(i2) | dev(i4))) ||
devs(location(l(i2) | d(i3)) | location(l(i1) | d(i4))) ||
(location(l(i2) | d(i3)) | location(l(i1) | d(i4)) |
location(l(i2) | d(i4)) | location(l(i2) | d(i3)))

*)

(* 1: --AgenWhereis-> *)
val BRsystem0 = makeBR system0
val mts0 = M.matches {agent = BRsystem0, rule = AgenWhereis3}
val match0 = LazyList.lznth mts0 16 (* zero-indexed *)
val system1 = Re.react match0 (* return agent *)
val _ = print "\n"
val _ = printRes’ "system0" "AgenWhereis" system1

(* 2: --Cmoveup-> *)
val BRsystem1 = makeBR system1
val mts1 = M.matches { agent = BRsystem1 , rule = Cmoveup }
val match1 = LazyList.lznth mts1 0
val system2 = Re.react match1
val _ = print "\n"
val _ = printRes’ "system1" "Cmoveup" system2

A.2. Code 253

(* 3: --Awhereis-> *)
val BRsystem2 = makeBR system2
val mts2 = M.matches { agent = BRsystem2 , rule = Awhereis3 }
val match2 = LazyList.lznth mts2 0
val system3 = Re.react match2
val _ = print "\n"
val _ = printRes’ "system2" "Awhereis" system3

(* 4: --AgenWhereis-> *)
val BRsystem3 = makeBR system3
val mts3 = M.matches { agent = BRsystem3 ,

rule = AgenWhereis4 }
val match3 = LazyList.lznth mts3 17
val system4 = Re.react match3
val _ = print "\n"
val _ = printRes’ "system3" "AgenWhereis" system4

(* 5: --Sobsnew-> *)
val BRsystem4 = makeBR system4
val mts4 = M.matches { agent = BRsystem4 , rule = Sobsnew }
val match4 = LazyList.lznth mts4 1
val system5 = Re.react match4
val _ = print "\n"
val _ = printRes’ "system4" "Sobsnew" system5

(* 6: --Awhereis-> *)
val BRsystem5 = makeBR system5
val mts5 = M.matches { agent = BRsystem5 , rule = Awhereis4 }
val match5 = LazyList.lznth mts5 0
val system6 = Re.react match5
val _ = print "\n"
val _ = printRes’ "system5" "Awhereis" system6

(* 7: --AgenFindall-> *)
val BRsystem6 = makeBR system6
val mts6 = M.matches { agent = BRsystem6 ,

rule = AgenFindall }
val match6 = LazyList.lznth mts6 19
val system7 = Re.react match6
val _ = print "\n"

254 Appendix

val _ = printRes’ "system6" "AgenFindall" system7

(* 8: --AFindall-> *)
val BRsystem7 = makeBR system7
val mts7 = M.matches { agent = BRsystem7 , rule = Afindall }
val match7 = LazyList.lznth mts7 0
val system8 = Re.react match7
val _ = print "\n"
val _ = printRes’ "system7" "Afindall" system8
val _ = print "\n"

(* output in the graphical SVG format *)
(* bgval2svg
val _ = outputsvgdoc "system1.svg" system1
val _ = outputsvgdoc_v
*)
(* bgbdnf2svg
val _ = outputsvgdoc_b
*)

(* print to file
open TextIO;

val os = openOut("matches.out")

fun printmatches ms =
if LazyList.lznull(ms) then "Done\n"
else (output(os, (M.toString (LazyList.lzhd ms)) ^ "\n")

; printmatches (LazyList.lztl ms))

val out_a = printmatches mts0

val _ = flushOut(os)
val _ = closeOut(os)
*)

A.2. Code 255

A.2.2 Tour guide

(*
Implementation of an approximation of the context-aware
tourist guide GUIDE; see the MobiCom 2000 paper "Experiences
of Developing and Deploying a Context-Aware Tourist Guide:
The GUIDE Project" by K. Cheverst, N. Davies, K. Mitchell,
and A. Friday.

Limitation: No messaging.

Attractions are from the virtual tour at
http://www.lancasterukonline.net/visitors/v-tour/index.htm.

A demo of the "real" application can be found at
http://www.guide.lancs.ac.uk/whatisguide.html.

Ebbe Elsborg, December 2006
*)

(* use "l.sml"; *)
open TextIO;
open List;

(* Basic entities *)
datatype attraction =
Att of string (* name *)

* string (* info *)
* string (* more info *)

val voidLoc = "voidLoc"
val voidAtt = Att("voidAtt","","")
fun deattract (Att tup) = tup

type link = string
type device = link
type location = link
type display = string
type btnid = string
type btnval = string

256 Appendix

type message = string
type tourflag = bool
type path = (location * attraction) list
type group = device list
type connector = bool

type state = display * location * attraction list
* message list * (btnid * btnval) list * tourflag
* path * location * attraction * connector

datatype event =
DeviceObserved of device * location

| DeviceLost of device
| ButtonClicked of btnid

type Queue = event list
type Stack = state list

(* Attractions *)
val castle = Att("Lancaster Castle","info","more-info")
val williamson = Att("Williamson Park and the Ashton

Memorial",
"info","more-info")

val queenvic = Att("Queen Victoria monument","info",
"more-info")

val seagull = Att("Saltayre Seagull Colony","info",
"more-info")

val halfmoon = Att("Half Moon Bay","info","more-info")
val market = Att("Farmers Street Market","info","more-info")
val canal = Att("Lancaster Canal","info","more-info")
val nightingale = Att("Lancashire Witches","info",

"more-info")
val spooky = Att("Spooky Paths","info","more-info")
val ruxton = Att("Dr. Buck Ruxton’s House","info",

"more-info")
val priory = Att("Lancaster Priory","info","more-info")
val merchants = Att("J Atkinson & Co, Tea & Coffee Merchants",

"info","more-info")
val humbug = Att("Humbugs Sweetshop","info","more-info")
val cemetery = Att("Lancaster Cemetery","info","more-info")

A.2. Code 257

val museum = Att("City Museum and The King’s Own Museum",
"info","more-info")

val cottage = Att("Cottage Museum + Roman Bath-House","info",
"more-info")

val meetinghouse = Att("Friends Meeting House","info",
"more-info")

val theatre = Att("The Grand Theatre","info","more-info")
val judges = Att("Judges Lodgings + Doll Museum","info",

"more-info")
val maritime = Att("Maritime Museum","info","more-info")
val leisure = Att("Lancaster Leisure Park","info",

"more-info")
val millenium = Att("Lancaster Millenium Bridge and

River Lune Millennium Park","info",
"more-info")

val music = Att("The Music Room","info","more-info")
val stpeters = Att("St Peters RC Cathedral","info",

"more-info")
val townhall = Att("Lancaster Town Hall","info","more-info")

(* Popular attractions and location-attraction
relationship *)

val popular : attraction list =
[castle,williamson,queenvic,seagull,halfmoon,market,canal,
nightingale,spooky,ruxton,priory]

val locAtts : (location * attraction list) list =
[("TIC", []),
("l1", [castle,Att("’dummy’","info","moreinfo")]),
("l2", [williamson]),
("l3", [queenvic]),
("l4", [seagull]),
("l5", [halfmoon]),
("l6", [market]),
("l7", [canal]),
("l8", [nightingale]),
("l9", [spooky]),
("l10", [ruxton]),
("l11", [priory])]

258 Appendix

(* Constants *)
val our_id : device ref = ref "ab:cd:ef:gh:ij:kl"
val our_grp : group ref = ref ["d1","d2","d3"]

(* Auxiliary functions *)
fun app f [] = ()
| app f (x::xs) = (f x ; app f xs)

fun exists p [] = false
| exists p (x::xs) = p x orelse exists p xs

fun filter p [] = []
| filter p (x::xs) = if p x then x :: filter p xs

else filter p xs

fun last x = (hd o rev) x

fun lookup1 map x =
let fun loop [] = NONE

| loop ((l,a)::m) = if l = x then SOME l else loop m
in loop map end

fun lookup2 map x =
let fun loop [] = NONE

| loop ((l,a)::m) = if l = x then SOME a else loop m
in loop map end

fun findLoc map a =
let fun loop [] = NONE

| loop ((l,a’)::m) =
if exists (fn x => a = x) a’
then SOME l
else loop m

in loop map end

fun getAtts l = case lookup2 locAtts l
of NONE => []
| SOME x => x

A.2. Code 259

fun first [] = []
| first ((l,a)::m) = l :: first m

fun second [] = []
| second ((l,a)::m) = a @ second m

fun remElm e [] = []
| remElm e (x::xs) = if e = x then xs else x :: remElm e xs

fun remDubs [] = []
| remDubs (x::xs) =
if exists (fn y => y = x) xs then remDubs xs
else x :: remDubs xs

fun remBtn b [] = []
| remBtn b ((i,n)::m) = if b = i then m

else (i,n) :: remBtn b m

fun remBtns x [] = []
| remBtns [] x = x
| remBtns (b::bs) x = remBtn b x @ remBtns bs x

(*
fun addBtn b l = if exists (fn x => x = b) l

then l else l @ [b]
*)

fun findNextElm [] x = NONE
| findNextElm [e] x = SOME e
| findNextElm (e::e’::m) x =
if x = e then SOME e’ else findNextElm (e’::m) x

fun findPrevElm [] x = NONE
| findPrevElm (e::es) x = findNextElm (rev (e::es)) x

val locs = first locAtts
val atts = second locAtts

val std_btns = [("locator","Locator"),
("tour","Tour"),

260 Appendix

("message","Message"),
("quit","Quit")]

val tour_btns = [("message","Message"),
("back","Back"),
("quit","Quit")]

fun whichLocBtns hl =
case locs
of [] => []
| (l::ls) =>
if ls = [] then [("select-loc","Select")]
else

if hl = l
then [("select-loc","Select"),

("next-loc","Next"),
("back","Back"),
("quit","Quit")]

else
if hl = last ls
then [("select-loc","Select"),

("previous-loc","Previous"),
("back","Back"),
("quit","Quit")]

else [("select-loc","Select"),
("previous-loc","Previous"),
("next-loc","Next"),
("back","Back"),
("quit","Quit")]

fun whichSelBtns [] ha = []
| whichSelBtns [x] ha = [("select-att","Select")]
| whichSelBtns (x::xs) ha =
if ha = x then [("select-att","Select"),

("next-tour","Next")]
else

if ha = last xs
then [("select-att","Select"),

("previous-tour","Previous")]
else [("select-att","Select"),

A.2. Code 261

("previous-tour","Previous"),
("next-tour","Next")]

fun whichInfoBtns [] ha = []
| whichInfoBtns [x] ha = [("info","Info")]
| whichInfoBtns (x::xs) ha =
if ha = x then [("info","Info"),

("next-att","Next")]
else

if ha = last xs
then [("info","Info"),

("previous-att","Previous")]
else [("info","Info"),

("previous-att","Previous"),
("next-att","Next")]

fun whichTourBtns [] = []
| whichTourBtns [b] = [("end","End")]
| whichTourBtns (b::bs) = [("cont","Continue")]

(* State stack with operations *)
val stack : Stack ref = ref []

fun stackSize s =
case s of [] => 0

| (x::xs) => 1 + stackSize xs

fun push s = stack := s::(!stack)

fun pop () =
case (!stack)
of [] => NONE
| (e::es) => let val _ = stack := es in SOME(e) end

(* Event queue with operations, ’enq’ is visible from L *)
val queue : Queue ref = ref []

fun enq e = queue := (!queue)@[e]

fun deq () =

262 Appendix

case (!queue)
of [] => NONE
| (e::es) => let val _ = queue := es in SOME(e) end

(* gui *)
fun printDisp d = print("GUIDE: " ^ d ^ "\n")

fun printLocs (locs,hl) =
let fun printLocList [] x = print "\n"

| printLocList (l::ls) x =
if x=l then (print("*" ^ l ^ " ")

; printLocList ls x)
else (print(l ^ " ") ; printLocList ls x)

in (print "Locations: " ; printLocList locs hl) end

fun printAtts (alist,ha) =
let fun printAttList [] att = print "\n"

| printAttList (Att(n,i,m)::t)
(att as Att(x,i’,m’)) =

if x=n then (print("*" ^ n ^ " ")
; printAttList t att)

else (print(n ^ " ") ; printAttList t att)
in (print "Attractions: " ; printAttList alist ha) end

fun printCurLoc l =
print("Location: Device " ^ !our_id ^

" is in " ^ l ^ ".\n")

fun printBtns b =
(print "Buttons: ";
app (print o (fn s => s ^ " ") o #2) b;
print "\n")

fun printMsgs m =
(print "Messages: ";
if m = [] then print "No messages."
else app (print o (fn s => s ^ " ")) m;
print "\n")

fun printPath p =

A.2. Code 263

let (*fun printAttList [] = ()
| printAttList (Att(n,i,m)::t) =
(print(" " ^ n) ; printAttList t)*)

fun printPathList [] flag = print "\n"
| printPathList ((l,Att(n,i,m))::t) flag =
if flag
then (print("#" ^ "(" ^ l ^ ",");

print(" " ^ n); (*printAttList a;*)
print ")";
printPathList t false)

else (print(" -> " ^ "(" ^ l ^ ",");
print(" " ^ n); (*printAttList a;*)
print ")";
printPathList t false)

in (print "Path: " ; printPathList p true) end

fun printCon c = if c then print "Connector: Connected.\n"
else print "Connector: Not connected.\n"

(* temp code begin *)
fun printStackSize s =

print("stacksize: " ^ Int.toString(stackSize s) ^ "\n")

fun printStack s =
let fun printTour flag = if flag then print "t: true\n"

else print "t: false\n"
fun printElm (d,l,a,m,b,t,p,hl,ha,c) =

(printDisp(d);
printCurLoc(l);
printAtts(a,ha);
printMsgs(m);
printCon(c);
printBtns(b);
printTour(t);
printPath(p);
print("hl: " ^ hl ^ "\n");
print("ha: " ^ #1(deattract(ha)) ^ "\n\n"))

fun pip s = case s
of [] => print "\n"
| (e::es) => (printElm e ; pip es)

264 Appendix

in (print "#####\n"; pip s ; print "#####\n") end
(* temp code end *)

(* maybe do something intelligent later, e.g. find
all-pairs shortest path, but this requires a parent map to
be retrieved from the location model *)

fun calcPath path = path

fun locShow () =
(print "\n------------------------------

----------------------------\n";
case pop()
of NONE => print "locShow(): empty stack\n"
| SOME(d,l,a,m,b,t,p,hl,ha,c) =>
(printDisp(d);
printLocs(locs,hl);
printCurLoc(l);
printCon(c);
printBtns(b);
push(d,l,a,m,b,t,p,hl,ha,c));

print "\nPlease press a button.\n";
print "------------------------------

----------------------------\n")

fun tourShow () =
(print "\n------------------------------

----------------------------\n";
case pop()
of NONE => print "tourShow(): empty stack\n"
| SOME(d,l,a,m,b,t,p,hl,ha,c) =>
(printDisp(d);
printCurLoc(l);
printAtts(a,ha);
printPath(p);
printMsgs(m);
printCon(c);
printBtns(b);
push(d,l,a,m,b,t,p,hl,ha,c));
print "\nPlease press a button.\n";
print "------------------------------

A.2. Code 265

----------------------------\n")

fun guiShow () =
(print "\n------------------------------

----------------------------\n";
case pop()
of NONE => print "guiShow(): empty stack\n"
| SOME(d,l,a,m,b,t,p,hl,ha,c) =>
(printDisp(d);
printCurLoc(l);
printAtts(a,ha);
if t then printPath(p) else ();
printMsgs(m);
printCon(c);
printBtns(b);
push(d,l,a,m,b,t,p,hl,ha,c));

print "\nPlease press a button.\n";
print "-----------------------------

-----------------------------\n")

(* Location events *)
fun deviceObserved loc (d,l,a,m,b,t,p,hl,ha,c) =
(print("deviceObserved(" ^ loc ^ ")\n");

(if loc = l then push(d,l,a,m,b,t,p,hl,ha,c)
else let val new_atts = getAtts loc

val (a’,ha’) = if new_atts = []
then ([],voidAtt)
else (new_atts,hd new_atts)

val tmp_b = remBtn "back"
([("locator","Locator")]
@ tour_btns)

val tmp_info = (whichInfoBtns a’ ha’)
val pred = fn (x,y) => not(x = loc)
val p’ = if t

then (calcPath o filter) pred p
else p

val b’ = if t then
if length p = 1 then

tmp_b @ tmp_info
@ [("end","End")]

266 Appendix

else tmp_b @ tmp_info
@ [("cont","Continue")]

else std_btns @ tmp_info
in push(d,loc,a’,m,b’,t,p’,hl,ha’,c) end);

guiShow() ; true
)

fun deviceLost (d,l,a,m,b,t,p,hl,ha,c) =
(print "deviceLost()\n";
deviceObserved "an unknown location"

(d,l,a,m,b,t,p,hl,ha,c)
)

(* Button events *)
fun quitClicked (d,l,a,m,b,t,p,hl,ha,c) = false

fun backClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "backClicked()\n";

(guiShow() ; true)
)

fun infoClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "infoClicked()\n";

let val d’ = (#1(deattract ha)) ^ "\n"
^ (#2(deattract ha))

val b’ = std_btns @ [("more-info","More info"),
("back","Back")]

in (push(d,l,a,m,b,t,p,hl,ha,c);
push(d’,l,a,m,b’,t,p,hl,ha,c);
guiShow();
true)

end
)

fun moreInfoClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "moreInfoClicked()\n";

let val d’ = (#1(deattract ha)) ^ "\n"
^ (#3(deattract ha))

val b’ = std_btns @ [("back","Back")]
in (push(d,l,a,m,b,t,p,hl,ha,c);

A.2. Code 267

push(d’,l,a,m,b’,t,p,hl,ha,c);
guiShow();
true)

end
)

fun locatorClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "locatorClicked()\n";

let val d’ = "Please select one of the following
locations:\n"

val b’ = whichLocBtns hl
in (push(d,l,a,m,b,t,p,hl,ha,c);

push(d’,l,a,m,b’,t,p,hl,ha,c);
locShow();
true)

end
)

fun messageClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "Messaging is not implemented.\n";
push(d,l,a,m,b,t,p,hl,ha,c);
guiShow();
true)

fun selectLocClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "selectLocClicked()\n";
case pop()
of NONE => (print "empty stack\n" ; false)
| SOME(d’,l’,a’,m’,b’,t’,p’,hl’,ha’,c’) =>
let val new_atts = getAtts hl

val (a’’,ha’’) = if new_atts = [] then ([],voidAtt)
else (new_atts,hd new_atts)

val tmp_b = remBtn "back"
([("locator","Locator")]
@ tour_btns)

val tmp_info = (whichInfoBtns a’’ ha’’)
val pred = fn (x,y) => not(x = hl)
val p’’ = if t’ then (calcPath o filter) pred p’

else p’
val b’’ = if t’ then

268 Appendix

if length p’’ = 1
then tmp_b @ tmp_info

@ [("end","End")]
else tmp_b @ tmp_info

@ [("cont","Continue")]
else std_btns @ tmp_info

in (push(d’,hl,a’’,m’,b’’,t’,p’’,hl,ha’’,c);
guiShow();
true)

end
)

fun previousLocClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "previousLocClicked()\n";

let val hl’ = case findPrevElm locs hl
of NONE => voidLoc | SOME loc => loc

val b’ = whichLocBtns hl’
in (push(d,l,a,m,b’,t,p,hl’,ha,c) ; locShow() ; true)
end

)

fun nextLocClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "nextLocClicked()\n";

let val hl’ = case findNextElm locs hl
of NONE => voidLoc | SOME loc => loc

val b’ = whichLocBtns hl’
in (push(d,l,a,m,b’,t,p,hl’,ha,c) ; locShow() ; true)
end

)

fun previousTourAttClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "previousTourAttClicked()\n";

let val ha’ = case findPrevElm a ha
of NONE => voidAtt | SOME att => att

val b’ = remDubs (tour_btns @ [("pop","Popular")]
@ (whichSelBtns a ha’)
@ [("done","Done")])

in (push(d,l,a,m,b’,t,p,hl,ha’,c) ; tourShow() ; true)
end

)

A.2. Code 269

fun previousAttClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "previousAttClicked()\n";

let val ha’ = case findPrevElm a ha
of NONE => voidAtt | SOME att => att

val tmp_b = std_btns @ (whichInfoBtns a ha’)
val b’ = if t

then tmp_b @ (whichTourBtns p)
else tmp_b

in (push(d,l,a,m,b’,t,p,hl,ha’,c) ; guiShow() ; true)
end

)

fun nextTourAttClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "nextTourAttClicked()\n";

let val ha’ = case findNextElm a ha
of NONE => voidAtt | SOME att => att

val b’ = remDubs (tour_btns @ [("pop","Popular")]
@ (whichSelBtns a ha’)
@ [("done","Done")])

in (push(d,l,a,m,b’,t,p,hl,ha’,c) ; tourShow() ; true)
end

)

fun nextAttClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "nextAttClicked()\n";

let val ha’ = case findNextElm a ha
of NONE => voidAtt | SOME att => att

val tmp_b = std_btns @ (whichInfoBtns a ha’)
val b’ = if t

then tmp_b @ (whichTourBtns p)
else tmp_b

in (push(d,l,a,m,b’,t,p,hl,ha’,c) ; guiShow() ; true)
end

)

fun tourClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "tourClicked()\n";

let val d’ = "Please select a subset of the following
attractions, one at a time.\n"

270 Appendix

val a’ = atts
val t’ = true
val p’ = []
val ha’ = case a’ of [] => voidAtt | (x::xs) => x
val b’ = tour_btns @ [("pop","Popular")]

@ (whichSelBtns a’ ha’)
in (push(d,l,a,m,b,t,p,hl,ha,c);

push(d’,l,a’,m,b’,t’,p’,hl,ha’,c);
tourShow();
true)

end
)

fun popularClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "popularClicked()\n";

let val d’ = "You chose the popular tour. Please proceed
to the tour location marked with ’#’.\n"

val new_atts = getAtts l
val (a’,ha’) = if new_atts = [] then ([],voidAtt)

else (new_atts,hd new_atts)
val b’ = std_btns @ (whichInfoBtns a’ ha’)

@ [("cont","Continue")]
val getLocs =

fn att => case findLoc locAtts att
of NONE => (voidLoc,att)
| SOME loc => (loc,att)

val locatts = map getLocs popular
val pred = fn (x,y) => not(x = voidLoc)
val p’ = (calcPath o filter) pred locatts

in (push(d’,l,a’,m,b’,t,p’,hl,ha’,c);
tourShow();
true)

end
)

fun selectAttClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "selectAttClicked()\n";

let val a’ = filter (fn x => not(x = ha)) a
val p’ = case findLoc locAtts ha

of NONE => []

A.2. Code 271

| SOME loc => calcPath (p @ [(loc,ha)])
val ha’ = case findPrevElm a’ ha

of NONE => voidAtt | SOME att => att
val tmp_b = tour_btns @ [("pop","Popular")]

@ (whichSelBtns a’ ha’)
@ [("done","Done")]

val b’ = remDubs tmp_b
in (push(d,l,a’,m,b’,t,p’,hl,ha’,c);

tourShow();
true)

end
)

fun doneClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "doneClicked()\n";
case pop()
of NONE => (print "empty stack\n" ; false)
| SOME(d’,l’,a’,m’,b’,t’,p’,hl’,ha’,c’) =>
let val d’’ = "You have confirmed your tour.

Please proceed to the tour location
marked with ’#’.\n"

val b’’ = if length p = 1 then b’ @ [("end","End")]
else b’ @ [("cont","Continue")] (* p>1 *)

in (push(d’,l’,a’,m’,b’,t’,p’,hl’,ha’,c’);
push(d’’,l,a’,m,b’’,t,p,hl,ha’,c);
tourShow();
true)

end
)

fun continueClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "continueClicked()\n";
let val d’ = "Please proceed to the next tour location,

marked with ’#’.\n"
val b’ = if length p = 2

then (remBtn "cont" b) @ [("end","End")]
else b (* p>2 *)

val p’ = tl p (* non-empty by invariant *)
in (push(d’,l,a,m,b’,t,p’,hl,ha,c);

tourShow();

272 Appendix

true)
end

)

fun endClicked (d,l,a,m,b,t,p,hl,ha,c) =
(print "endClicked()\n";
case pop()
of NONE => (print "empty stack\n" ; false)
| SOME(d’,l’,a’,m’,b’,t’,p’,hl’,ha’,c’) =>
let val (a’’,ha’’) =

case getAtts l
of [] => ([],voidAtt)
| (x::xs) => (x::xs,x)

val b’’ = std_btns @ (whichInfoBtns a ha)
val t’’ = false

in (push(d’,l,a’’,m’,b’’,t’’,p’,hl’,ha’’,c’);
guiShow();
true)

end
)

val button_clicks =
[("quit", quitClicked),
("back", backClicked),
("info", infoClicked),
("more-info", moreInfoClicked),
("locator", locatorClicked),
("message", messageClicked),
("tour", tourClicked),
("select-loc", selectLocClicked),
("previous-loc", previousLocClicked),
("next-loc", nextLocClicked),
("previous-att", previousAttClicked),
("next-att", nextAttClicked),
("previous-tour", previousTourAttClicked),
("next-tour", nextTourAttClicked),
("select-att", selectAttClicked),
("done", doneClicked),
("pop", popularClicked),
("cont", continueClicked),

A.2. Code 273

("end", endClicked)]

fun handleEvent event s =
case event of

DeviceObserved(dev,loc) =>
if dev = !our_id then deviceObserved loc s
else (push s ; true) (* not about us, ignore *)

| DeviceLost(dev) =>
if dev = !our_id then deviceLost s
else (push s ; true) (* not about us, ignore *)

| ButtonClicked(bid) =>
(case lookup2 button_clicks bid
of NONE => (push s ; true) (* unknown button,

ignore *)
| SOME f => f s)

(* delete this?
| ShortestPath(from,to,path) =>

if from = !current_location then displayPath path
else (* perhaps do something intelligent when we

are on the path, for now just ignore *)
true *)

(* I/O *)
fun errmsg () =

(output(stdOut, "Unavailable button.
Please try again.\n");

flushOut stdOut)

fun peel s =
if String.size s <= 0 then ""
else String.substring(s, 0, (String.size s)-1)

fun read () =
(*(printStackSize(!stack); printStack(!stack);*)

case pop()
of NONE => print "read(): empty stack\n"
| SOME(s) =>
(let val (d,l,a,m,b,t,p,hl,ha,c) = s
in case lookup1 b (peel (inputLine stdIn)) of

NONE => (errmsg() ; push(s) ; read())

274 Appendix

| SOME(btn) =>
(enq(ButtonClicked btn);
if not (btn = "quit") andalso
handleEvent(ButtonClicked btn) s

then read()
else ())

end)
(*)*)

(* Event loop *)
fun eventLoop () =

case deq()
of NONE => eventLoop()
| SOME e => case pop()

of NONE =>
print "eventLoop(): empty stack\n"

| SOME s =>
if handleEvent e s
then
let val _ = inputLine stdIn
in eventLoop() end

else () (* halt *)

(* this function must be supplied by L *)
fun whereIs d = "dummy_location"

val init_events = [ButtonClicked("tour"),
ButtonClicked("select-att"),
ButtonClicked("next-tour"),
ButtonClicked("locator"),
ButtonClicked("next-loc"),
ButtonClicked("previous-loc"),
ButtonClicked("back"),
ButtonClicked("next-tour"),
ButtonClicked("select-att"),
ButtonClicked("next-tour"),
ButtonClicked("select-att"),
ButtonClicked("done"),
DeviceObserved("ab:cd:ef:gh:ij:kl","l1"),
ButtonClicked("info"),

A.2. Code 275

ButtonClicked("more-info"),
ButtonClicked("back"),
ButtonClicked("back"),
DeviceObserved("ab:cd:ef:gh:ij:kl","l8"),
ButtonClicked("locator"),
ButtonClicked("next-loc"),
ButtonClicked("next-loc"),
ButtonClicked("select-loc"),
ButtonClicked("tour"),
ButtonClicked("pop"),
DeviceLost("ab:cd:ef:gh:ij:kl"),
ButtonClicked("quit")]

(* test button events or location events *)
val BTN_TEST = false

fun main () =
(let val disp = "Welcome to Lancaster\n"

val loc = case first locAtts
of [] => ""
| (l::ls) => l

val atts = getAtts loc
val msgs = []
val btns = std_btns
val on_tour = false
val tour_path = []
val hilite_loc = loc
val hilite_att = case atts

of [] => voidAtt
| (x::xs) => x

val con = true
in (push(disp,loc,atts,msgs,btns,on_tour,

tour_path,hilite_loc,hilite_att,con);
queue := init_events;
guiShow();
if BTN_TEST then read() else eventLoop()

)
end)

276 Appendix

A.3 π-calculus

This appendix contains standard π-calculus definitions and an i/o-type
system, for easy reference.

Definition A.33 (Binding). In each of a(x).P and νx P, the displayed occurrence
of x is binding with scope P. An occurrence of a name in a process is bound it it
is, or it lies within the scope of, a binding occurrence of the name. An occurrence
of a name in a process is free it it is not bound.

Definition A.34 (Substitution). A substitution is a function on names that is
the identity except on a finite set.

Notation A.35 (Substitution on names). Use σ to range over substitutions,
and write σx for σ applied to x. The support of σ, supp(σ), is {x | σx ! x}, and
the co-support of σ, cosupp(σ), is {σx | x ∈ supp(σ)}. Write n(σ) for the set of
names of σ, which is supp(σ) ∪ cosupp(σ). Write {y1,...,yn/x1,...,xn} for the
substitution σ such that σxi = yi for each i ∈ {1, . . . ,n} and σx = x for
x $ {x1, . . . , xn}. If X is a set of names, write σX for {σx | x ∈ X}.

Definition A.36 (α-convertibility).

1. If the name x does not occur in the process P, then {x/y}P is the process
obtained by replacing each free occurrence of y in P by x.

2. A change of bound names in a process P is the replacement of a subterm
a(x).Q of P by a(y).{y/x}Q, or the replacement of a subterm νx Q of P by
νy {y/x}Q, where in each case y does not occur in Q.

3. Processes P and Q are α-convertible, P =α Q, if Q can be obtained from P
by a finite number of changes of bound names.

Convention A.37. When considering a collection of processes and substitutions,
it is assumed that the bound names of the processes are chosen to be different from
their free names and from the names of the substitutions.

Definition A.38 (Substitution on prefixes). The effect of applying a
substitution σ to a prefix π is to replace each occurrence of each name x in π by σx.

Definition A.39 (Substitution on processes). The process σP, obtained by

A.3. π-calculus 277

applying σ to P is defined as follows, avoiding capture of names by binders:

σ(π.P) def
= σπ.σP

σ(P | Q) def
= σP | σQ

σ(νx P) def
= νx (σP)

σ0 def
= 0 .

Notation A.40 (Operator precedence). When writing processes as linear
expressions parentheses are used to resolve ambiguity, and observe the
conventions that prefixing and restriction bind more tightly than parallel
composition. Further, substitutions bind more tightly than process operators.
Sometimes parentheses are inserted merely to aid reading.

Definition A.41 (Process context). A process context is a process term in
which exactly one process subterm has been left out leaving a “hole” represented
with notation [·]. For a context C write C[P] for the process resulting from
“plugging” the process P into the hole of C, where the hole in C must occur in a
position such that C[P] is well-formed for an arbitrary process term P.

Definition A.42 (Process congruence). An equivalence relation R on processes
is a process congruence if (P,Q) ∈ R implies (C[P],C[Q]) ∈ R for every process
context C.

278 Appendix

Processes :
Γ ; 0 : <

Γ, x : L ; P : <
Γ ; (νx : L) P : <

Γ ; P : < Γ ; Q : <
Γ ; P | Q : <

Γ ; a : iS Γ, y : S ; P : <
Γ ; a(y).P : <

Γ ; a : oT Γ ; x : T Γ ; P : <
Γ ; ax.P : <

Subtypin! :
T ≤ T

S ≤ S′ S′ ≤ T
S ≤ T #T ≤ iT #T ≤ oT

S ≤ T
iS ≤ iT

T ≤ S
oS ≤ oT

T ≤ S S ≤ T
#S ≤ #T

Names :
Γ, x : T ; x : T

Γ ; x : S S ≤ T
Γ ; x : T

Table A.1: i/o-type rules for sfπ.

Bibliography

[ACH+01] Mike Addlesee, Rupert W. Curwen, Steve Hodges, Joe
Newman, Pete Steggles, Andy Ward, and Andy Hopper.
Implementing a Sentient Computing System. IEEE Computer,
34(8):50–56, August 2001.

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and
Pei-Hsin Ho. Hybrid Automata: An algorithmic approach to
the specification and verification of hybrid systems. Hybrid
Systems, 736:209–229, 1993. LNCS.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[AEH+04] Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue
Simonsen, and Christian Stefansen. Compositional
Specification of Commercial Contracts. In Preliminary
Proceedings of the 1st International Symposium on Leveraging
Applications of Formal Methods (ISoLA’04), pages 103–110.
University of Cyprus Report TR-2004-6, 2004.

[AEH+06] Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue
Simonsen, and Christian Stefansen. Compositional
Specification of Commercial Contracts. International Journal on
Software Tools for Technology Transfer (STTT), 8(6):485–516,
November 2006. Special Section on Leveraging Applications
of Formal Methods.

[BBD+06] Mikkel Bundgaard, Lars Birkedal, Søren Debois, Ebbe
Elsborg, Arne J. Glenstrup, Thomas Hildebrandt, Troels C.
Damgaard, Robin Milner, and Henning Niss. Bigraphical

279

280 Bibliography

Programming Languages for Pervasive Computing. In
Thomas Strang, Vinny Cahill, and Aaron Quigley, editors,
Pervasive 2006 Workshop Proceedings – The 1st International
Workshop on Combining Theory and Systems Building in Pervasive
Computing (CTSB’06), pages 653–658, 2006. Position paper.

[BBR02] Martin Bauer, Christian Becker, and Kurt Rothermel.
Location Models from the Perspective of Context-Aware
Applications and Mobile Ad Hoc Networks. Personal and
Ubiquitous Computing, 6(5-6):322–328, December 2002.

[BCC01] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Boxed
ambients. In Proceedings of TACS’01, volume 2215 of LNCS,
pages 38–63. Springer-Verlag, 2001.

[BD05] Christian Becker and Frank Dürr. On location models for
ubiquitous computing. Personal and Ubiquitous Computing,
9:20–31, January 2005. Springer-Verlag.

[BDE+05] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas
Hildebrandt, and Henning Niss. Bigraphical Models of
Context-aware Systems. Technical Report 74, The IT
University of Copenhagen, November 2005.

[BDE+06] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas
Hildebrandt, and Henning Niss. Bigraphical Models of
Context-aware Systems. In Luca Aceto and Anna
Ingólfsdóttir, editors, Proceedings of FoSSaCS’06, volume 3921
of LNCS, pages 187–201. Springer-Verlag, 2006.

[BDGM06] Lars Birkedal, Troels C. Damgaard, Arne J. Glenstrup, and
Robin Milner. Matching of bigraphs. Technical Report
ITU-TR-2006-88, The IT University of Copenhagen, June 2006.

[BDH06] Lars Birkedal, Søren Debois, and Thomas Hildebrandt.
Sortings for Reactive Systems. In Christel Baier and Holger
Hermanns, editors, Proceedings of CONCUR’06, volume 4137
of LNCS, pages 248–262. Springer-Verlag, 2006.

[BDH08] Lars Birkedal, Søren Debois, and Thomas Hildebrandt. On
the Construction of Sorted Reactive Systems. In Proceedings of
CONCUR’08, LNCS, pages 218–232. Springer-Verlag, 2008.

281

[BDNN98] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and
Hanne Riis Nielson. Control flow analysis for the π-calculus.
In Davide Sangiorgi and Robert De Simone, editors,
Proceedings of CONCUR’98, volume 1466 of LNCS, pages
84–98. Springer-Verlag, 1998.

[Ber03] Martin Berger. An interview with Robin Milner. http:
//www.dcs.qmul.ac.uk/~martinb/interviews/milner/,
September 2003. Cambridge.

[BH06] Mikkel Bundgaard and Thomas Hildebrandt. Bigraphical
Semantics of Higher-Order Mobile Embedded Resources with
Local Names. In Arend Rensink, Reiko Heckel, and Barbara
König, editors, Proceedings of GT-VC’05, volume 154 of
ENTCS, pages 7–29. Elsevier, 2006.

[BP04] Pietro Braione and Gian Pietro Picco. On Calculi for
Context-Aware Coordination. In Proceedings of
COORDINATION’04, volume 2949 of LNCS, pages 38–54.
Springer-Verlag, 2004.

[Bra03] Pietro Braione. On Calculi for Context-Aware Systems. PhD
thesis, Politecnico di Milano, Dipartimento di Electronica e
Informazione, 2003.

[BS01] Barry Brumitt and Steven Shafer. Topological World
Modeling Using Semantic Spaces. In UbiComp 2001: Workshop
on Location Modeling for Ubiquitous Computing, 2001.

[BS06] Mikkel Bundgaard and Vladimiro Sassone. Typed polyadic
pi-calculus in bigraphs. In Proceedings of PPDP’06, pages 1–12.
ACM Press, 2006.

[Bun07] Mikkel Bundgaard. Semantics of Higher-Order Mobile Embedded
Resources and Local Names. PhD thesis, The IT University of
Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen
S, August 2007.

[BZD02] Michael Beigl, Tobias Zimmer, and Christian Decker. A
location model for communicating and processing of context.
Personal and Ubiquitous Computing, 6(5-6):341–357, December
2002.

282 Bibliography

[CCK+05] Dan Chalmers, Jon Crowcroft, Marta Kwiatkowska, Robin
Milner, Vladimiro Sassone, and Morris Sloman. Global
Ubiquitous Computing: Design and Science. Final draft, a
newer version of the document can be found at
http://www-dse.doc.ic.ac.uk/Projects/UbiNet/GC/
Manifesto/manifesto.pdf, June 2005.

[CDMF00] Keith Cheverst, Nigel Davies, Keith Mitchell, and Adrian
Friday. Experiences of developing and deploying a
context-aware tourist guide: the GUIDE project. In
Proceedings of MobiCom’00, pages 20–31, 2000.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile Ambients.
Theoretical Computer Science, 240(1):177–213, June 2000.

[Cha88] K. Mani Chandy. Parallel Program Design: A Foundation.
Addison-Wesley, 1988. ISBN: 0-201-05866-9.

[CK00] Guanling Chen and David Kotz. A Survey of Context-Aware
Mobile Computing Research. Technical Report TR2000-381,
Department of Computer Science, Dartmouth College, 2000.

[CMS05] Giovanni Conforti, Damiano Macedonio, and Vladimiro
Sassone. Spatial Logics for Bigraphs. In Proceedings of
ICALP’05, volume 3580 of LNCS, pages 766–778.
Springer-Verlag, 2005.

[D’A99] Pedro R. D’Argenio. Algebras and Automata for Timed and
Stochastic Systems. PhD thesis, Department of Computer
Science, University of Twente, November 1999.

[DA00] Anind K. Dey and Gregory D. Abowd. Towards a better
understanding of context and context-awareness. In Human
Factors in Computing Systems (CHI’00): Workshop on The What,
Who, Where, When, and How of Context-Awareness, 2000.

[Dam08] Troels C. Damgaard. Developing Bigraphical Languages. PhD
thesis, The IT University of Copenhagen, Rued Langgaards
Vej 7, DK-2300 Copenhagen S, December 2008. Preprint.

[DB96] Pedro R. D’Argenio and Ed Brinksma. A calculus for Timed
Automata. In Proceedings of the 4th International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems,
volume 1135 of LNCS, pages 110–129. Springer-Verlag, 1996.

283

[DB05] Troels C. Damgaard and Lars Birkedal. Axiomatizing Binding
Bigraphs (revised). Technical Report TR-2005-71, The IT
University of Copenhagen, October 2005.

[DB06] Troels C. Damgaard and Lars Birkedal. Axiomatizing Binding
Bigraphs. Nordic Journal of Computing, 13(1-2):58–77, June
2006.

[DD05] Søren Debois and Troels C. Damgaard. Bigraphs by example.
Technical Report TR-2005-61, The IT University of
Copenhagen, March 2005.

[Deb08] Søren Debois. Sortings and Bigraphs. PhD thesis, The IT
University of Copenhagen, Rued Langgaards Vej 7, DK-2300
Copenhagen S, April 2008.

[Dom01] Svetlana Domnitcheva. Location modeling: State of the Art
and Challenges. In Michael Beigl, Phil Gray, and Daniel
Salber, editors, UbiComp’01: Proceedings of the Workshop on
Location Modeling for Ubiquitous Computing, pages 13–19, 2001.

[DR03] Frank Dürr and Kurt Rothermel. On a Location Model for
Fine-Grained Geocast. In Anind K. Dey, Albrecht Schmidt,
and Joseph F. McCarthy, editors, Proceedings of UbiComp’03,
LNCS, pages 18–35. Springer-Verlag, 2003.

[DRD+00] Alan Dix, Tom Rodden, Nigel Davies, Jonathan Trevor,
Adrian Friday, and Kevin Palfreyman. Exploiting Space and
Location as a Design Framework for Interactive Mobile
Systems. ACM Transactions on Computer-Human Interaction
(TOCHI), 7(3):285–321, September 2000.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele
Taentzer. Fundamentals of Algebraic Graph Transformation.
Monographs in Theoretical Computer Science (EATCS Series).
Springer-Verlag, first edition, 2006. ISBN: 978-3-540-31187-4.

[EHS08] Ebbe Elsborg, Thomas Hildebrandt, and Davide Sangiorgi.
Type Systems for Bigraphs. Technical Report 110, The IT
University of Copenhagen, Rued Langgaards Vej 7, DK-2300
Copenhagen S, Denmark, October 2008.

284 Bibliography

[EHS09] Ebbe Elsborg, Thomas Hildebrandt, and Davide Sangiorgi.
Type Systems for Bigraphs. In Christos Kaklamanis and
Flemming Nielson, editors, Proceedings of TGC’08, LNCS.
Springer-Verlag, 2009. To appear.

[Els06] Ebbe Elsborg. Bigraphical Location Models. Technical
Report 94, The IT University of Copenhagen, Rued
Langgaards Vej 7, DK-2300 Copenhagen S, September 2006.

[FcRH04] Chen-Liang Fok, Gruia catalin Roman, and Gregory
Hackmann. A Lightweight Coordination Middleware for
Mobile Computing. In Rocco De Nicola, Gian Luigi Ferrari,
and Greg Meredith, editors, Proceedings of
COORDINATION’04, volume 2949 of LNCS, pages 135–151.
Springer-Verlag, 2004.

[FF97] Matthias Felleisen and Daniel P. Friedman. The Little MLer.
The MIT Press, December 1997.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc
Maranget, and Didier Rémy. A Calculus of Mobile Agents. In
Proceedings of CONCUR’96, volume 1119 of LNCS, pages
406–421. Springer-Verlag, 1996.

[GG06] Jens Chr. Godskesen and Olena Gryn. Modelling and
verification of security protocols for ad hoc networks using
uppaal. In Proceedings of the 18th Nordic Workshop on
Programming Theory (NWPT’06), 2006.

[GHK08] Jens Chr. Godskesen, Hans Hüttel, and Morten Kühnrich.
Verification of correspondence assertions in a calculus for
mobile ad hoc networks. In Proceedings of FOCLASA’08, 2008.

[GM07a] Davide Grohmann and Marino Miculan. Directed Bigraphs.
In Proceedings of MFPS XXIII, volume 173 of ENTCS, pages
121–137. Elsevier, 2007.

[GM07b] Davide Grohmann and Marino Miculan. Reactive Systems
over Directed Bigraphs. In Luís Caires and Vasco T.
Vasconcelos, editors, Proceedings of CONCUR’07, volume 4703
of LNCS, pages 380–394, 2007.

285

[GM08a] Davide Grohmann and Marino Miculan. An Algebra for
Directed Bigraphs. In Ian Mackie and Detlef Plump, editors,
Proceedings of TERMGRAPH’07, volume 203 of ENTCS, pages
49–63. Elsevier, 2008.

[GM08b] Davide Grohmann and Marino Miculan. Controlling resource
access in Directed Bigraphs. In Juan de Lara Claudia Ermel
and Reiko Heckel, editors, Proceedings of GT-VMT’08,
volume 10 of Electronic Communications of the EASST.
European Association of Software Science and Technology,
2008.

[God06] Jens Chr. Godskesen. Formal verification of the ARAN
protocol using the applied Pi-calculus. In Proceedings of Sixth
International IFIP WG 1.7 Workshop on Issuses in the Theory of
Security, (WITS), pages 99–113, 2006.

[God07] Jens Chr. Godskesen. A calculus for mobile ad hoc networks.
In Amy L. Murphy and Jan Vitek, editors, Proceedings of
COORDINATION’07, volume 4467 of LNCS, pages 132–150.
Springer-Verlag, 2007.

[God08] Jens Chr. Godskesen. A calculus for mobile ad-hoc networks
with static location binding. In Proceedings of EXPRESS’08,
2008.

[Gor08] Daniele Gorla. Towards a Unified Approach to Encodability
and Separation Results for Process Calculi. In Franck van
Breugel and Marsha Chechik, editors, Proceedings of
CONCUR’08, number 5201 in LNCS, pages 492–507.
Springer-Verlag, 2008.

[GV08] Orna Grumberg and Helmut Veith, editors. 25 Years of Model
Checking, volume 5000 of LNCS. Springer-Verlag, 2008. ISBN:
978-3-540-69849-4.

[Har00] Robert Harper. Type Systems for Programming Languages
(DRAFT). Notes, Spring 2000.
http://www.cs.cmu.edu/~rwh/misc/tspl.pdf.

[HB01] Jeffrey Hightower and Gaetano Borriello. A Survey and
Taxonomy of Location Systems for Ubiquitous Computing.

286 Bibliography

Technical Report UW-CSE 01-08-03, University of
Washington, August 2001.

[HBB02] Jeffrey Hightower, Barry Brumitt, and Gaetano Borriello. The
location stack: a layered model for location in ubiquitous
computing. In Proceedings of the 4th IEEE workshop on mobile
computing systems and applications (WMCSA’02), pages 22–28,
June 2002.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In
Proceedings of LICS’96, pages 278–292. IEEE Computer Society
Press, 1996.

[Hen04] Matthew Hennessy. Context-awareness: Models and
Analysis. Talk at 2nd UK-UbiNet Workshop, slides at
www.cogs.susx.ac.uk/users/matthewh/talks.html, May
2004.

[Hen05] Matthew Hennessy. Towards a calculus for nominal mobile
agents. Talk at TGC’05, slides at http://www.cogs.susx.ac.
uk/users/matthewh/talks/tgc05.pdf, April 2005.

[Hen08] Matthew Hennessy. Distributed Pi-Calculus. Cambridge
University Press, 2008. ISBN-13: 9780521873307.

[HHS+02] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and
Paul Webster. The Anatomy of a Context-Aware Application.
Wireless Networks, 8:187–197, February 2002.

[HIR02] Karen Henricksen, Jadwiga Indulska, and Andry
Rakotonirainy. Modeling Context Information in Pervasive
Computing Systems. In Proceedings of PERVASIVE’02, volume
2414 of LNCS, pages 167–180. Springer-Verlag, 2002.

[HNO06] Thomas Hildebrandt, Henning Niss, and Martin Olsen.
Formalising Business Process Execution with Bigraphs and
Reactive XML. In Paolo Ciancarini and Herbert Wiklicky,
editors, Proceedings COORDINATION’06, volume 4038 of
LNCS, pages 113–129. Springer-Verlag, 2006.

[HNOW05] Thomas Hildebrandt, Henning Niss, Martin Olsen, and Jacob
Winther. Distributed Reactive XML. In Proceedings of the 1st
International Workshop on Methods and Tools for Coordinating
Concurrent, Distributed and Mobile Systems (MTCoord’05), 2005.

287

[Hop00] Andy Hopper. Sentient Computing? Phil. Trans. R. Soc. Lond.,
A, 358:2349–2358, August 2000. An abridged and updated
version of the Royal Society Clifford Paterson Lecture 1999.

[IK04] Atsushi Igarashi and Naoki Kobayashi. A generic type
system for the Pi-calculus. Theoretical Computer Science,
311(1-3):121–163, January 2004.

[Jen07] Ole Høgh Jensen. Mobile Processes in Bigraphs (Draft). PhD
thesis, University of Cambridge, 2007. Submitted.

[JM03] Ole Høgh Jensen and Robin Milner. Bigraphs and Transitions.
In Proceedings of POPL’03, pages 38–49. ACM Press, 2003.

[JM04] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile
processes (revised). Technical Report UCAM-CL-TR-580,
University of Cambridge – Computer Laboratory, February
2004.

[JPR04] Christine Julien, Jamie Payton, and Gruia-Catalin Roman.
Reasoning About Context-Awareness in the Presence of
Mobility. In Antonio Brogi, Jean-Marie Jacquet, and Ernesto
Pimentel, editors, Proceedings of FOCLASA’04, volume 97 of
ENTCS, pages 259–276, 2004.

[JR02] Christine Julien and Gruia-Catalin Roman. Egocentric
context-aware programming in ad hoc mobile environments.
In Proceedings of the 10th International Symposium in the
Foundations of Software Engineering, pages 21–30, 2002.

[JR06] Christine Julien and Gruia-Catalin Roman. Egospaces:
Facilitating Rapid Development of Context-Aware Mobile
Applications. IEEE Transactions on Software Engineering,
32(5):281–298, May 2006.

[JS02] Changhao Jiang and Peter Steenkiste. A Hybrid Location
Model with a Computable Location Identifier for Ubiquitous
Computing. In Proceedings of UbiComp’02, pages 246–263.
Springer-Verlag, 2002.

[K0̈5] Barbara König. A General Framework for Types in Graph
Rewriting. Acta Informatica, 42(4):349–388, December 2005.
Special issue: Types in concurrency, Part II.

288 Bibliography

[KBP06a] Mikkel Baun Kjærgaard and Jonathan Bunde-Pedersen. A
Formal Model for Context-Awareness. Technical Report
RS-06-2, BRICS, February 2006.

[KBP06b] Mikkel Baun Kjærgaard and Jonathan Bunde-Pedersen.
Towards a Formal Model of Context-Awareness. In Thomas
Strang, Vinny Cahill, and Aaron Quigley, editors, Proceedings
of CTSB’06, 2006. Position paper.

[KMS04] Marta Kwiatkowska, Robin Milner, and Vladimiro Sassone.
Science for global ubiquitous computing. Bulletin of the
EATCS, 2004. Pages 325-333, volume 82.

[KMT08] Jean Krivine, Robin Milner, and Angelo Troina. Stochastic
Bigraphs. In Proceedings of 24th Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXIV), volume
218 of ENTCS, pages 73–96. Elsevier, 2008.

[Kob02] Naoki Kobayashi. A type system for lock-free processes.
Information and Computation, 177:122–159, September 2002.
Issue 2.

[Kob06] Naoki Kobayashi. A new type system for deadlock-free
processes. In Proceedings of CONCUR’06, volume 4137 of
LNCS, pages 233–247. Springer-Verlag, 2006.

[Lei01] James Judi Leifer. Operational Congruences for Reactive Systems.
PhD thesis, University of Cambridge Computer Laboratory
and Trinity College, September 2001. Technical Report 521.

[Leo98] Ulf Leonhardt. Supporting Location-Awareness in Open
Distributed Systems. PhD thesis, Department of Computing,
University of London, May 1998.

[LM00a] James J. Leifer and Robin Milner. Deriving Bisimulation
Congruences for Reactive Systems. In Catuscia Palamidessi,
editor, Proceedings of CONCUR’00, LNCS, pages 243–258.
Springer-Verlag, 2000.

[LM00b] James Judi Leifer and Robin Milner. Deriving bisimulation
congruences for reactive systems. In Proceedings of
CONCUR’00, volume 1877 of LNCS, pages 243–258.
Springer-Verlag, 2000.

289

[LM06] James J. Leifer and Robin Milner. Transition systems, link
graphs, and Petri nets. Mathematical Structures in Computer
Science, 16(6):989–1047, December 2006.

[LS05] Stephen Lack and Paweł Sobociński. Adhesive and
quasiadhesive categories. Theoretical Informatics and
Applications, 39(2):522–546, 2005.

[MB97] John McCarthy and Saša Buvač. Formalizing Context. In
Atocha Aliseda, Rob van Glabbeek, and Dag Westerståhl,
editors, Computing Natural Language: Working papers of the
AAAI Fall Symposium on Context in Knowledge Representation
and Natural Language, pages 99–135. Stanford University, 1997.

[Mil91] Robin Milner. The Polyadic π-Calculus: a Tutorial. Technical
Report ECS-LFCS-91-180, Computer Science Department,
University of Edinburgh, October 1991. Published in F. L.
Hamer, W. Brauer and H. Schwichtenberg, editors, Logic and
Algebra of Specification. Springer-Verlag, 1993.

[Mil96] Robin Milner. Calculi for interaction. Acta Informatica,
33(8):707–737, 1996.

[Mil99] Robin Milner. Communicating and Mobile Systems: the
π-Calculus. Cambridge University Press, 1999. ISBN:
0-521-65869.

[Mil02] Robin Milner. Computing in Space, 1 May 2002. A lecture by
Robin Milner, for the opening of the Computer Laboratory’s
William Gates Building at the University of Cambridge.

[Mil04a] Robin Milner. Axioms for bigraphical structure. Technical
Report UCAM-CL-TR-581, University of Cambridge –
Computer Laboratory, February 2004.

[Mil04b] Robin Milner. Bigraphs for Petri Nets. In Lectures on
Concurrency and Petri Nets: Advances in Petri Nets, volume
3098 of LNCS, pages 686–701. Springer-Verlag, July 2004.

[Mil04c] Robin Milner. Bigraphs whose names have multiple locality.
Technical Report UCAM-CL-TR-603, University of
Cambridge – Computer Laboratory, September 2004.

290 Bibliography

[Mil05a] Robin Milner. Axioms for bigraphical structure. Mathematical
Structures in Computer Science, 15(6):1005–1032, December
2005.

[Mil05b] Robin Milner. Bigraphs: A Tutorial. Slides, April 2005.
http://www.cl.cam.ac.uk/users/rm135/
bigraphs-tutorial.pdf.

[Mil06a] Robin Milner. Pure bigraphs: Structure and dynamics.
Information and Computation, 204(1):60–122, January 2006.

[Mil06b] Robin Milner. Ubiquitous computing: Shall we understand
it? The Computer, pages 383–389, July 2006. Issue 4.

[Mil07] Robin Milner. Local Bigraphs and Confluence: Two
Conjectures. ENTCS, 175(3), June 2007.

[Mil09] Robin Milner. From semantics to Computer Science; Essays in
Memory of Gilles Kahn, chapter The tower of informatic
models. Cambridge University Press, 2009. To appear.

[MP04] Amy L. Murphy and Gian Pietro Picco. Using Coordination
Middleware for Location-Aware Computing: A Lime Case
Study. In Rocco De Nicola, Gian Luigi Ferrari, and Greg
Meredith, editors, Proceedings of COORDINATION’04, volume
2949 of LNCS, pages 263–278. Springer-Verlag, 2004.

[MPR06] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin
Roman. LIME: A Coordination Model and Middleware
Supporting Mobility of Hosts and Agents. ACM Transactions
on Software Engineering (TOSEM), pages 1–48, 2006.

[MS97] Irwin Meisels and Mark Saaltink. The Z/EVES reference
manual (for version 1.5). Technical Report TR-97-5493-03d,
ORA Canada, September 1997. http://www.ift.ulaval.ca/
~jodesharnais/glo21941/ZEves/ZEvesRefMan.pdf.

[NGP05] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic
Observables for a Calculus for Global Computing. In
Proceedings of ICALP’05, volume 3580 of LNCS, pages
1226–1238. Springer-Verlag, 2005.

291

[NH04] Sebastian Nanz and Chris Hankin. Static analysis of routing
protocols for ad-hoc networks. In Proceedings of the 2004 ACM
SIGPLAN and IFIP WG 1.7 Workshop on Issues in the Theory of
Security (WITS’04), pages 141–152, 2004.

[NH06] Sebastian Nanz and Chris Hankin. Formal security analysis
for ad-hoc networks. In Proceedings of the 2004 Workshop on
Views on Designing Complex Architectures (VODCA’04), volume
142 of ENTCS, pages 195–213, 2006.

[OJDA01] Thomas O’Connell, Peter Jensen, Anind K. Dey, and
Gregory D. Abowd. Location in the aware home. In Michael
Beigl, Phil Gray, and Daniel Salber, editors, UbiComp’01:
Location Modeling for Ubiquitous Computing, 2001.

[PlaBC] Plato. The republic, book vii, 360 B.C. Translation by
Benjamin Jowett.

[Pra00] Salil Pradhan. Semantic Location. Personal and Ubiquitous
Computing, 4(4):213–216, 2000.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and
Subtyping for Mobile processes. Mathematical Structures in
Computer Science, 6(5):409–453, 1996.

[PT00] Benjamin C. Pierce and David N. Turner. Pict: A
Programming Language Based on the Pi-Calculus. In Proof,
Language and Interaction: Essays in Honour of Robin Milner,
pages 455–494. MIT Press, 2000.

[RCS06] Vinny Reynolds, Vinny Cahill, and Aline Senart.
Requirements for an ubiquitous computing simulation and
emulation environment. In Proceedings of InterSense’06,
volume 138 of ACM International Conference Proceeding Series,
page Article No. 1. ACM Press, 2006.

[Rep99] John H. Reppy. Concurrent Programming in ML. Cambridge
University Press, 1999. ISBN: 0-521-48089-2.

[RJP04] Gruia-Catalin Roman, Christine Julien, and Jamie Payton. A
Formal Treatment of Context-Awareness. In Proceedings of
FASE’04, volume 2984 of LNCS, pages 12–36, 2004.

292 Bibliography

[RLU94] Mike Rizzo, Peter F. Linington, and Ian Utting. Integration of
location services in the open distributed office. Technical
Report 14-94*, University of Kent, Computing Laboratory,
University of Kent, August 1994.

[RM02] Gruia-Catalin Roman and Peter J. McCann. A Notation and
Logic for Mobile Computing. Formal Methods in System
Design, 20(1):47–68, January 2002.

[RMP97] Gruia-Catalin Roman, Peter J. McCann, and Jerome Y. Plun.
Mobile UNITY: Reasoning and Specification in Mobile
Computing. ACM Transactions on Software Engineering
Methodology, 6(3):250–282, July 1997.

[Rot03] Jörg Roth. Flexible positioning for location-based services.
IADIS International Journal on WWW/Internet, 1(2):18–32, 2003.

[SAW94] Bill Schilit, Norman Adams, and Roy Want. Context-Aware
Computing Applications. In Proceedings of IEEE Workshop on
Mobile Computing Systems and Applications, pages 85–90, 1994.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen.
There is more to Context than Location. Computers & Graphics
Journal, 23(6):893–902, December 1999.

[SC02] Kumaresan Sanmugalingam and George Coulouris. A
Generic Location Event Simulator. In Gaetano Borriello and
Lars Erik Holmquist, editors, Proceedings of UbiComp’02,
volume 2498 of LNCS, pages 308–315. Springer-Verlag, 2002.

[Sch95] Bill N. Schilit. A Context-Aware System Architecture for Mobile
Distributed Computing. PhD thesis, Columbia University, May
1995.

[SLP04] Thomas Strang and Claudia Linnhoff-Popien. A context
modelling survey. In UbiComp’04: First International Workshop
on Advanced Context Modelling, Reasoning And Management,
2004.

[SS03] Vladimiro Sassone and Paweł Sobociński. Deriving
bisimulation congruences: 2-categories vs. precategories. In
Proceedings of FOSSACS’03, volume 2620 of LNCS, pages
409–424, 2003.

293

[SS05a] Vladimiro Sassone and Paweł Sobociński. Locating reaction
with 2-categories. Theoretical Computer Science,
333(1-2):297–327, March 2005.

[SS05b] Vladimiro Sassone and Paweł Sobociński. Reactive systems
over cospans. In Proceedings of LICS’05, pages 311–320. IEEE
Computer Society Press, 2005.

[ST94] Bill Schilit and Marvin Theimer. Disseminating Active Map
Information to Mobile Hosts. IEEE Network, 8(5):22–32,
September/October 1994.

[SW01] Davide Sangiorgi and David Walker. The Pi-calculus: a Theory
of Mobile Processes. Cambridge University Press, 2001. ISBN:
0-521-78177-9.

[Ter06] Sotirios Terzis. Combining Theory and Systems Building –
Experiences and Challenges. In Thomas Strang, Vinny Cahill,
and Aaron Quigley, editors, Proceedings of CTSB’06, 2006.
Position paper.

[WBB06] Torben Weis, Christian Becker, and Alexander Brändle.
Towards a programming paradigm for pervasive applications
based on the ambient calculus. In Proceedings of CTSB’06, May
2006. Position paper.

[Wei91] Mark Weiser. The Computer for the 21st Century. In Scientific
American Ubicomp Paper after Scientific American edititing,
volume 265, pages 94–104. Scientific American, September
1991. Issue 3.

[Wei93] Mark Weiser. Hot Topics – Ubiquitous Computing. IEEE
Computer, 26(10):71–72, October 1993.

[WHFG92] Roy Want, Andy Hopper, Veronica Falcao, and Jon Gibbons.
The active badge location system. ACM Transactions on
Information Systems, 10(1):91–102, January 1992.

[WJH97] Andy Ward, Alan Jones, and Andy Hopper. A new location
technique for the active office. IEEE Personal Communications,
4(5):42–47, 1997.

[Zim05] Pascal Zimmer. A Calculus for Context-Awareness. Technical
Report RS-05-27, BRICS, August 2005.

