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1. Introduction

Over the last decade, a theory of bigraphical reactive systems has been developed (JM04, Mil09, Mil05, Mil06). Bi-
graphical reactive systems (BRSs) provide a graphical model of computation in which both locality and connectivity
are prominent. In essence, a bigraph consists of a place graph; a forest, whose nodes represent a variety of computa-
tional objects, and a link graph, which is a hyper graph connecting ports of the nodes. Bigraphs can be reconfigured
by means of reaction rules. Loosely speaking, a bigraphical reactive system consists of a set of bigraphs and a set
of reaction rules, which can be used to reconfigure the set of bigraphs. BRSs have been developed with principally
two aims in mind: (1) to be able to model directly important aspects of ubiquitous systems by focusing on mobile
connectivity and mobile locality, and (2) to provide a unification of existing theories by developing a general theory,
in which many existing calculi for concurrency and mobility may be represented, with a uniform behavioural theory.
The latter is achieved by representing the dynamics of bigraphs by an abstract definition of reaction rules from which
a labelled transition system may be derived in such a way that an associated bisimulation relation is a congruence
relation. (Recall that the notion of bisimulation is important since it expresses when two bigraphs are to be considered
equal and that a relation is a congruence if it is closed under all bigraph contexts.) The unification has recovered exist-
ing behavioural theories for the π-calculus (JM04), the ambient calculus (Jen06), and has contributed to that for Petri
nets (LM04). Thus the evaluation of the second aim has so far been encouraging. Birkedal et al. has begun to adress
the first aim, in particular, to show how to give bigraphical models of context-aware systems (BDE+06).

As suggested and argued in (JM04, Mil09, BDE+06, BBD+06) it would be very useful to have an implementation
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Figure 1. A bigraph a =C ◦ (R⊗ idz)◦d modeling data location and folder connectivity.

of the dynamics of bigraphical reactive systems to allow experimentation and simulation. In the Bigraphical Program-
ming Languages research project at the IT University, we have been working towards such an implementation. The
core problem of implementing the dynamics of bigraphical reactive systems is the matching problem, that is, to de-
termine for a given bigraph and reaction rule whether and how the reaction rule can be applied to rewrite the bigraph.
The topic of the present paper is to analyze the matching problem. We report on an implementation based on the work
presented here elsewhere (GDHB10).

In Figure 1 we show several bigraphs. Consider the bigraph named a. It is intended to model two buildings, one
belonging to a corporation and one belonging to a consultancy group. Inside the buildings are laptops with data nested
inside folders. The nesting structure depicts the place graph. Links are used to name the buildings and, moreover,
to model the association of folders to network channels. The laptop shown in the middle is intended to belong to a
consultant working for the corporation—the consultant has a folder, containing some data, which is directly connected
to a laptop in the consultancy (the link shown to the left) and a folder with a connection over the corporate backbone to
another laptop in the corporation (the link shown to the right). There are two kinds of network channels in this example;
those local to a building (i.e., over a building backbone) and global channels (presumably across the internet). The fact
that folders are connected over the corporation backbone is expressed by linking those folders to a so-called binding

This work was funded in part by the Danish Research Agency (grant no.: 2059-03-0031) and the IT University of Copenhagen (the LaCoMoCo
project).
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port on the corporation building, indicated by the circle. A binding port of a node imposes a scoping discipline to
ensure that links connected to the port will be constrained to connections within the node.

Bigraphs can be rewritten by applying reaction rules—a reaction rule is a tuple R
ρ−→R′ specifying that the occur-

rence of a redex R can be replaced by a reactum R′. Bigraphs R and R′ may contain holes, and ρ specifies how to fill
each hole in R′ with a copy of the contents of a hole in R. The abstract semantic definition of matching, as defined
in the theory of bigraphs (Mil09), is roughly as follows (omitting many details): Given a reaction rule R

ρ−→R′ and
a bigraph a, R occurs in a if we can find C,d,Z so that a = C ◦ (R⊗ idZ) ◦ d; in which case it can be rewritten into
a′ = C ◦ (R′⊗ idZ) ◦ d′, where d′ is copied from d as specified by ρ . We call a the agent, C the context and d the
parameter—they are all bigraphs. The operator ◦ is vertical composition of bigraphs, while ⊗ juxtaposes bigraphs
horizontally. Z is a set of names exported by d. In short, we say that if the reaction rule matches the agent a, in the
sense that a can be decomposed into a context C, redex R and a parameter d, then a can be rewritten into a′.

Consider the reaction rule R
ρ−→R′ with R from Figure 1, R′ from Figure 2 and ρ = {0 7→ 0,1 7→ 1,2 7→ 2,3 7→

3,4 7→ 1}. The intention of the reaction rule is to allow copying of data only between folders on two different but co-
located laptops; we require also that the folders be connected over a network connection (note the link in R between
the two folders), allowing that link to be possibly connected to a building backbone (expressed by linking the link
to the so-called local name y). The agent a can be written as a composition of C, R and d—formally, a = C ◦ (R⊗
idz) ◦ d. Composition works by (1) plugging the roots (the dashed rectangles) of R and d into the holes (aka sites)
of C respectively R; (2) fusing together the connections between folder and z (in d) and z and folder (in C), removing
the name z in the process; and (3) fusing together the connection between the local name y and the two folders in R
and the name y and the bound port in C, removing the name y in the process. Note the use of idz, a single link, in
the composition a = C ◦ (R⊗ idz) ◦ d; it allows a name z from the parameter d to be passed around the redex and be
attached to something in the context C. The reactum R′ contains a copy (as specified by ρ) of the site numbered 1 in
R, expressing that data is copied between the shared folders. The sites numbered 0 and 2 in R allow the reaction rule
to apply also when the laptops contain other folders than the two that are connected. Thus a can be rewritten using the
reaction rule to another agent a′, shown in Figure 2, like a but with two data items in the rightmost laptop.

In the present paper we provide an inductive characterization of when there exists C, Z and d such that a =
C ◦ (R⊗ idZ)◦d holds, by induction on the structure of a, R, C and d. It is a precise characterization in the sense that
it is both sound and complete with respect to the abstract definition. This provides a detailed analysis of the matching
problem, and give a specification for developing and proving correct an actual matching algorithm (which, given a
and R, must find C, d, and Z such that a = C ◦ (R⊗ idZ) ◦ d holds). We further include a discussion of how one may
derive matching algorithms directly from our inductive characterization.

Our inductive characterization is based on normal form theorems for binding bigraphs (DB06), which express
how general bigraphs may be decomposed into a composition of simpler graphs. The normal form theorems and also
the inductive characterization we present here is based on discrete decompositions of bigraphs, as specified by the
grammar in Figure 4. This decomposition factors out global internal linking (like between the consultancy folder
and corporation folder in Figure 1) in the ω of the G production, so that every point within the remaining discrete
bigraph—the D production—is linked to exactly one global outer name, unless it is linked to a binding port. To a large
extent, this simple linking allows us to analyze matching of a general bigraph by considering its link graph and place
graph separately.

Importantly, by providing an abstract characterization founded in well-established theory for bigraphs, we expect
to be able to combine or adapt more easily our approach to theory and techniques being developed for bigraphs; for
instance, sortings (simple type disciplines) on bigraphs could be a source of early search elimination (BDH06).

The remainder of this paper is organized as follows: In Section 2 we give an informal description of binding
bigraphs. The main contributions of this paper are in Section 3, where we present our inductive characterization of
matching, and in the Appendix, where we give the proof of completeness of the characterization. To illustrate how
the matching rules work together, in Section 4, we provide an inference tree for inferring the match in the example in
Figure 1. Section 5 discusses how the inductive characterization yields a specification for a provably correct algorithm
for matching. In the final sections we discuss related and future work, and conclude.

An extended abstract of this paper was presented at the GT-VC 2006 workshop (BDGM06). This extended and
revised version fixes a few errors in the earlier presentations, provides more explanations and examples, and notably
includes extensive details for the proof of completeness of the characterization and supporting lemmas, including a
self-contained section on the algebraic properties of wirings and parallel product.
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Figure 2. Applying reaction rule R
ρ−→R′ to bigraph a in Figure 1 copies data between connected folders, resulting in a′ =C ◦ (R′⊗ idz)◦d′.

2. Binding Bigraphs

In the following section, we present binding bigraphs fairly thoroughly, but we leave out formal details inessential for
the present paper; for a more complete presentation, see (JM04, Mil09) or (DB06).

2.1. Concrete Bigraphs

A concrete binding bigraph G consists of a place graph GP and a link graph GL. The place graph is an ordered list
of trees indicating location, with roots r0, . . . ,rn, nodes v0, . . . ,vk (some of which can be leaves), and a number of
special leaves s0, . . . ,sm called sites, while the link graph is a general graph over the node set v0, . . . ,vk extended with
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Bigraph G : 〈3, [{},{},{x0,x2}],X〉 → 〈2, [{y0},{}],Y 〉
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Figure 3. Example bigraph illustrated by nesting and as place and link graph.

inner names x0, . . . ,xl , and equipped with hyperedges (i.e., edges that connect 0, 1, or more endpoints), indicating
connectivity.

We usually illustrate the place graph by nesting nodes, as shown in the upper part of Figure 3 (ignore for now
the interfaces denoted by “ : · → ·”). A link is a hyper edge of the link graph, either an internal edge e0 or a name y.
Those that are names are called open, internal edges are called closed links. Names and inner names can be global or
local, the latter being located at a specific root or site, respectively. In Figure 3, y0 is located at r0, indicated by a small
ring, and x0 and x2 are located at s2, indicated by writing them within the site. Global names like y1 and y2 are drawn
anywhere at the top, while global inner names like x1 are drawn anywhere at the bottom. A link, including internal
edges like e1 in the figure, can be located with one binder (the ring), in which case it is a bound link, otherwise it is
free. However, a bound link must satisfy the scope rule, a simple structural requirement that all points (see below) of
the link lie within its location (in the place graph), except for the binder itself. This prevents y2 and e0 in the example
from being bound.

2.2. Controls

Every node v has a control K indicated by v : K, which determines a binding and free arity K : b→ f . In the example of
Figure 3, we could have vi : Ki, i = 0,1,2,3, where K0 : 0→ 1, K1 : 0→ 2, K2 : 0→ 3, K3 : 1→ 2. The arities determine
the number of bound and free ports of the node, to which bound and free links, respectively, are connected. Ports and
inner names are collectively referred to as points.

2.3. Abstract Bigraphs

While concrete bigraphs with named nodes and internal edges are the basis of bigraph theory (Mil09), our prime
interest is in abstract bigraphs, equivalence classes of concrete bigraphs that differ only in the names of nodes and
internal edges1. Abstract bigraphs are illustrated with their node controls, as shown in Figure 1 with Building, Laptop,
etc. In what follows, “bigraph” will thus mean “abstract bigraph.”

2.4. Interfaces

Every bigraph G has two interfaces I and J, written G : I → J, where I is the inner face and J the outer face. An
interface is a triple 〈m,~X ,X〉, where m is the width (the number of sites or roots), X the entire set of local and global

1 Formally, we also disregard idle edges: edges not connected to anything.
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names, and ~X are disjoint subsets of X indicating the locations of each local name, cf. Figure 3. We let ε = 〈0, [ ],{}〉;
when m = 1 the interface is prime, and if all x ∈ X are located by ~X , the interface is local. As in (Mil04) we write
G : → J or G : I→ for G : I→ J when we are not concerned about about I or J, respectively.

A bigraph G : I→ J is called ground, or an agent, if I = ε , prime if I is local and J prime, and a wiring if m = n = 0,
where m and n are the widths of I and J, respectively. For I = 〈m,~X ,X〉, bigraph idI : I→ I consists of m roots, each
root ri containing just one site si, and a link graph linking each inner name x ∈ X to name x.

2.5. Discrete and Regular Bigraphs

We say that a bigraph is discrete iff every free link is a name and has exactly one point. The virtue of discrete bigraphs
is that any connectivity by internal edges must be bound, and node ports can be accessed individually by the names of
the outer face. In Figure 1, only R,R′ and d are discrete, because the free internal edges of a and C have two points.
Further, a bigraph is name-discrete iff it is discrete and every bound link is either an edge, or (if it is an name in the
outer face) has exactly one point. Note that name-discrete implies discrete.

A bigraph is regular if, for all nodes v and sites i, j,k with i≤ j ≤ k, if i and k are descendants of v, then j is also a
descendant of v. Further, for roots ri′ and r j′ , and all sites i and j where i is a descendant of ri′ and j of r j′ , if i≤ j then
i′ ≤ j′. The bigraphs in the figures are all regular, the permutation in Table 1 is not. The virtue of regular bigraphs is
that permutations can be avoided when composing them from basic bigraphs.

2.6. Tensor Product, Parallel Product, and Composition

For bigraphs G1 and G2 that share no names or inner names, we can make the tensor product G1⊗G2 by juxtaposing
their place graphs, constructing the union of their link graphs, and increasing the indexes of sites in G2 by the number
of sites of G1. For instance, bigraph d of Figure 1 is a tensor product of four primes. We write

⊗n
i Gi for the iterated

tensor G0⊗·· ·⊗Gn−1, which, in case n = 0, is idε .
The parallel product G1 ||G2 is like the tensor product, except global names can be shared: if y is shared, all points

of y in G1 and G2 become the points of y in G1 ||G2.
We can compose bigraphs G2 : I→ I′ and G1 : I′→ J, yielding bigraph G1 ◦G2 : I→ J, by plugging the sites of

G1 with the roots of G2, eliminating both, and connecting names of G2 with inner names of G1—as in Figure 1, where
a = C ◦ (idz⊗R) ◦ d. In the following, we will omit the ‘◦’, and simply write G1G2 for composition, letting it bind
tighter than tensor product.

2.7. Active, Passive and Atomic Controls

In addition to arity, each control is assigned a kind, either atomic, active or passive, and describe nodes according
to their control kinds. We require that atomic nodes contain no nodes except sites; any site being a descendant of a
passive node is passive, otherwise it is active. If all sites of a bigraph G are active, G is active.

2.8. Bigraphical Reactive Systems

Bigraphs in themselves model two essential parts of context: locality and connectivity. To model also dynamics, we
introduce bigraphical reactive systems (BRS) as a set of rules. Each rule R→ρ R′ consists of a regular redex R : I→ J,
a reactum R′ : I′ → J, and an instantiation ρ , mapping each site of R′ to a site of R2. Interfaces I = 〈m,~X ,X〉 and
I′ = 〈m′, ~X ′,X ′〉 must be local, and are essentially related by X ′i = Xρ(i).3 We illustrate ρ by a ‘i := j’, as shown in
Figure 1, whenever ρ(i) = j 6= i. Given an instantiation ρ and a discrete bigraph d = d0⊗·· ·⊗dk with prime di’s, we
let ρ(d) = dρ(0)⊗·· ·⊗dρ(k), allowing copying, discarding and reordering parts of d.

Given an agent a, a match of redex R is a decomposition a =C(idZ⊗R)d, with active context C, discrete parameter

2 The direction of ρ from R′ to R allows copying from one site of R to 0, 1 or more sites of R′.
3 When copying sites with local names, one has to also rename local names of copied sites, which makes the relation slightly less straightforward.
We elide the details here, as they are not central to matching, and refer the reader to (JM04, Chapter 12) for the full formal details.
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Table 1. Basic bigraphs, abstraction, and metavariables ranging over bigraphs.
Notation Example

Substitution
σ

~y/~X : X → Y [y1,y2,y3]/[{x1,x2},{},{x3}] =
x1

y1

x2

y2

x3

y3

Renaming
α,β

~y/~x : X → Y [y1,y2,y3]/[x1,x2,x3] =

x1

y1

x2

y2

x3

y3

Closure /X : X →{} /{x1,x2,x3} = x1 x2 x3

Wiring
ω

ω : X → Y
([y1,y2]/[y1,y2]⊗/{z1,z2})
[y1,z1,y2,z2]/
[{},{x1,x2},{x3,x4},{x5}]

=

y1

x1 x2 x3

y2

x4 x5

Merge mergen : n→ 1 merge3 =
0 1 2

Concretion pXq : (X)→ 〈X〉 p{x1,x2}q =
0

x1

x1

x2

x2

Permutation
π~X ,π

{i 7→ j, . . .}~X :
(~X) → (π(~X))

{0 7→ 2,1 7→ 0,2 7→ 1}[{x}, /0,{y}] =
1 2 0

y

y

x

x

Ion K~y(~X) : ({~X})→ 〈{~y}〉 K[y1,y2 ]([{x1},{x2,x3},{}]) =
K

y1 y2

x1 x2 x3

Abstraction (Y )P : I→〈1, [Y ],Z]Y 〉 ({y1,y2})p{y1,y2,z}q =
0

y1

y1

y2

y2

z

z

d and its global names Z. Dynamics is achieved by transforming a into a new agent a′ = C(idZ ⊗R′)d′, where d′ =
ρ(d)—an example is shown in Figure 1. This definition of a match is as in (Mil09), except that we here also require
R to be regular. The restriction to regular redexes R, which simplifies the inductive characterization, does not limit the
set of possible reactions, because sites in R and R′ can be renumbered to render R regular.

2.9. Notation, Basic Bigraphs, and Abstraction

In the sequel, we will use the following notation: ] denotes union of sets required to be disjoint4; we write {~Y}
for Y0 ] ·· · ]Yn−1 when ~Y = Y0, . . . ,Yn−1, and similarly {~y} for {y0, . . . ,yn−1}. For interfaces, we write n to mean
〈n, [ /0, . . . , /0], /0〉, X to mean 〈0, [ ],X〉, 〈X〉 to mean 〈1, [{}],X〉, (X) to mean 〈1, [X ],X〉, and (~X) to mean 〈n,~X ,{~X}〉,
when the length of ~X is n.

Any bigraph can be constructed by applying composition, tensor product and abstraction to identities (on all
interfaces) and a minimal set of basic bigraphs (DB06). Given a prime P, the abstraction operation localizes a subset
of its outer names. The scope rule is necessarily respected since the inner face of a prime P is required to be local,
so all points of P are located within its root. The abstraction operator is denoted by (·)· and reaches as far right as
possible.

We illustrate the basic bigraphs and abstraction in Table 1. Substitutions introduce open linking and closures
create edges. Renamings are one-one substitutions, while wirings ω range over all expressions built by composition
and tensor from substitutions and closures. A merge bigraph merges sites into a single root, a concretion maps local
inner names to global outer names, while a permutation serves to produce any ordering of sites inside roots. The ion
introduces nodes, mapping free ports to global outer names and bound ports to sets of local inner names.

4 Thus, premises, side conditions and other expressions involving A]B can only be valid and true if A∩B = /0.



8 T. C. Damgaard, A. J. Glenstrup, L. Birkedal and R. Milner

M ::= (K~y(~X)⊗ idZ)(X)P molecule
Q ::= pαq | M singular top-level node
P ::= (mergen⊗idY )(

⊗
i∈n Qi) global discrete prime

N ::= (σ̂ ⊗ idZ)(X)P discrete prime
D ::= (

⊗
i∈n Ni)π discrete bigraph without global inner names

G ::= (ω⊗ id(~X))(D⊗ idY ) binding bigraph

Figure 4. Grammar for bigraph G on normal form; for regular bigraphs, π = id.

The resulting inductive language for building bigraphs is fairly heavy, but it is easy to derive more sugared lan-
guages, resembling closely standard notation used for mobile process calculi, based on these basic bigraphs and op-
erators. In this paper, we shall not be concerned much with concrete notation, though; we refer the interested reader
to (BDE+06) or the forthcoming tutorial book on bigraphs by Milner.

We shall only use a few basic conventions for shortening expressions. For a renaming α : X →Y , we write pαq to
mean (α ⊗ id1)pXq, and when σ : U → Y , we let σ̂ = (Y )(σ ⊗ id1)pUq. We write substitutions ~y/[ /0, . . . , /0] : ε → Y
as Y . For permutations, when used in any context, π~X G or Gπ~X , ~X is given entirely by the interface of G; hence, we
shall typically elide the names of π~X and write only π . Note that [ ]/[ ] = / /0 = π0 = idε and merge1 = p /0q= π1 = id1,
where πi is the nameless permutation of width i.

To conclude this section, we illustrate the basic bigraphs and operations by showing expressions for some of the
bigraphs in the previous examples. The bigraph of Figure 3 can be expressed as

G = (ω⊗ (({y0})(y0/Y0⊗ id1)pY0q))(((Y0)P1)⊗P2⊗ y2/x1) , where
ω = (/e0⊗ id{y1,y2})[y1,y2,e0]/[{y1},{y2,y′2,y

′′
2},{e0,e′0}], Y0 = {y0,y′0,y

′′
0}

P1 = (id{y0,y1,y′2,e0}⊗merge2)
(
(id{y0,e0}⊗K0[y′0]

)K1[y0,e0]⊗K2[y′′0 ,y1,y′2]
merge0

)
P2 = (id{e′0,y

′′
2}⊗merge2)(K3[e′0,y

′′
2 ]([{x0,x2}])⊗p /0q),

and for Figure 1 we have a = (id{consultancy,corporation}⊗/z)(p1 || p2), where

p1 = (idz⊗Building[consultancy]([{}])Laptop)Folder[z]Datamerge0
p2 = (idz⊗Building[corporation]([{y1,y2}]))({y1,y2})(id{z,y1,y2}⊗merge2)(p′2⊗ p′′2)
p′2 = (id{z,y1}⊗Laptopmerge2)(Folder[z]Datamerge0⊗Folder[y1]Datamerge0)
p′′2 = (idy2 ⊗Laptop)Folder[y2]Datamerge0

3. Inductive Characterization of Matching

In this section we present our inductive characterization of matching. To ease the presentation we shall disregard the
requirement that the context in a match must be active (it is straightforward to extend the presentation to include
that requirement). To simplify notation we shall write id for local identity bigraphs, without a subscript showing the
interface, when it is clear from the context what interface is intended. Furthermore, we use the name molecule for a
prime with just one outermost node.

3.1. Discrete decomposition

We base our characterization on discrete decomposition of bigraphs, as shown in Figure 4, which separates global
(or free) wiring from the place graph and local wiring. The following proposition expresses how any bigraph may be
decomposed into a global wiring ω , and a discrete bigraph D (cf. Section 2.5).

Proposition 3.1 (Discrete decomposition). Any bigraph G can be decomposed into a composition of the following
form

G = (ω⊗ id)(D⊗ idY ),

where D is discrete and with local inner face. Any other decomposition of G on this form takes the form G = (ω ′⊗
id)(D′⊗ idY ), where ω ′ = ω(α⊗ idY ) and D′ = (α−1⊗ id)D, for suitable α .
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a

id⊗ωa

agent
=

d

idZ
R

ωR id

idZ]Y C

id⊗ωC
context

redex

agent︷ ︸︸ ︷
(id⊗ωa)a =

context︷ ︸︸ ︷
(id⊗ωC)(idZ]Y ⊗C)(idZ⊗

redex︷ ︸︸ ︷
(id⊗ωR)R)d.

Figure 5. Illustrating valid matching sentences

This is proven by factoring out the top-level local linking of D, and factoring idY into D, resulting in the expression
(ω⊗ σ̂)D′, and then applying the normal form theorem of (DB06).

3.2. Matching Sentences

We now define matching sentences and rules for deriving valid matching sentences. Given general a′, C′, R′, d for
which we want to infer a match a′ = C′(R′⊗ idZ)d, then by Proposition 3.1, we can decompose a′, C′, and R′, ob-
taining a′ = (id⊗ωa)a, C′ = (id⊗ωC)(C⊗ idY ⊗ idZ), and R′ = (id⊗ωR)R. The matching sentences now relate the
constituents of these decompositions:

Definition 3.2 (Matching sentence). A matching sentence is a 7-place relation among wirings and bigraphs, written
ωa,ωR,ωC ` a,R ↪→C,d, where ωa, ωR, ωC are wirings, and a, R, C, d are discrete bigraphs, R and C have local inner
faces, and R is regular.

Definition 3.3 (Valid matching sentence). A matching sentence ωa,ωR,ωC ` a,R ↪→C,d, where ωR :→Y , and d has
global outer names Z, is valid, denoted ωa,ωR,ωC � a,R ↪→C,d, iff

(id⊗ωa)a = (id⊗ωC)(C⊗ idY ⊗ idZ)(idZ⊗ (id⊗ωR)R)d.

where unqualified identities are local and determined from their context.

Note that for a valid sentence ωa,ωR,ωC ` a,R ↪→C,d, if we let a′ = (id⊗ωa)a, C′ = (id⊗ωC)(C⊗ idY ⊗ idZ), and
R′ = (id⊗ωR)R, then a′ =C′(R′⊗ idZ)d. Thus, valid sentences precisely capture the abstract definition of matching.

Rearranging a few identities, we can illustrate the discrete decomposition of the agent, context, and redex in a
valid matching sentence schematically as in Figure 5. We draw bigraph composition as vertical composition, and
tensor product as horizontal juxtaposition.

3.3. Rules for Matching

In Figure 6 and Figure 7, we present a set of rules and axioms for inferring matching sentences. In PAR we require
further that the tensor products of all discrete components be defined. Also, in the premises of the rules PERM and
ION, and in the conclusion of rules MERGE, ION, and SWITCH we require the id’s to have width 0 (hence be link graph
identities). This determines them entirely from the context.

Valid matching sentences can be inferred using the rules by following the structure of the bigraph normal forms in
Figure 4. We now explain each of the rules, and to illustrate how the matching rules work together, in the following
section (Section 4) we provide an inference tree for inferring the match in the example depicted in Figure 1.

Given a permutation π and n primes, we can find a pushed-through permutation π̄ depending only on π and the
inner faces of the primes, such that π ◦

⊗n
i Pi = (

⊗n
i Pπ−1(i))◦ π̄ (DB06, Lemma 2). Using this, the PERM rule simply

pushes a permutation on the inside of the context through the redex, permuting the discrete primes, and producing a
pushed-through permutation π , depending on π and the inner face of the redex.

The PAR rule explains how to match a product, given two valid matches. The two valid matches are allowed to share
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PERM
ωa,ωR,ωC ` a,

⊗m
i Pπ−1(i) ↪→C,(π⊗ id)d

ωa,ωR,ωC ` a,
⊗m

i Pi ↪→Cπ,d

PAR
ωa,ωR,ωC ||ω ` a,R ↪→C,d ωb,ωS,ωD ||ω ` b,S ↪→D,e

ωa ||ωb,ωR ||ωS,ωC ||ωD ||ω ` a⊗b,R⊗S ↪→C⊗D,d⊗ e

LSUB
σa⊗ωa,ωR,σC⊗ωC ` p,R ↪→P,d

ωa,ωR,ωC ` (σ̂a⊗ id)(Z)p,R ↪→(σ̂C⊗ id)(U)P,d
,

σa : Z→
σC : U →

MERGE
ωa,ωR,ωC ` a,R ↪→C,d

ωa,ωR,ωC ` (merge⊗ id)a,R ↪→(merge⊗ id)C,d
, a global

ION
ωa,ωR,ωC ` ((~v)/(~X)⊗ id)p,R ↪→((~v)/(~Z)⊗ id)P,d

σ ||ωa,ωR,σα ||ωC ` (K~y(~X)⊗ id)p,R ↪→(K~u(~Z)⊗ id)P,d
,

α =~y/~u
σ : {~y}→

SWITCH
ωa, idε ,ωC(ασ ⊗ωR⊗ idZ) ` p, id ↪→P,d
ωa,ωR,ωC ` p,(σ̂ ⊗ id)(W )P ↪→pαq,d

,
σ : W →U
d : 〈m,~X ,X ]Z〉

CLOSE
σa,σR, idY ⊗σC ` a,R ↪→C,d

(id⊗/(Y ]X))σa,(id⊗/Y )σR,(id⊗/X)σC ` a,R ↪→C,d
,

σC :→ Z]X
σR :→U ]Y

Figure 6. Rules for matching binding bigraphs

PRIME-AXIOM
α : X →U β : V → Z σ : U ]Z→ τ : Y → X p : 〈Y ]Z〉

σ(ατ⊗β ), idε ,σ ` p, id(X) ↪→pαq,(X)(τ⊗β ⊗ id1)p

WIRING-AXIOM
y,Y,y/Y ` idε , idε ↪→ idε , idε

Figure 7. Axioms for matching binding bigraphs

some context wiring ω , if the redices share (global) names. Figure 8 illustrates the conclusion of a match using PAR.
The wirings are depicted above the underlying discrete bigraphs: a product of two agents a and b containing a single
node; a product of two contexts C and D, which contain only a site; and, a product of two redices R and S containing
a single node (for this example, the parameters are empty). As the parallel product of the redex wirings ωR and ωS
already maps the links from w1 and w2 to a shared name w, the link from w is shared wiring ω (while the links from x
and y1 are in ωa = ω ||ωC, and the links from y2 and z are in ωb = ω ||ωD).

The LSUB rule allows us to match any discrete prime by matching an underlying free prime with the wiring of
agent and context extended with the underlying global substitutions σa and σC. In other words, this rule expresses that
we can match a single-rooted bigraph with local names by matching the corresponding free bigraph (i.e., forgetting
the locality of the names).

The MERGE rule simply states that if we can match (global) bigraphs with several roots, then we can merge those
roots into a single root, and still have a valid match.

The ION rule states intuitively that if we have two valid matches with primes in agent and context, we can compose
both primes with an ion (i.e., a node with wiring) and still have a valid match. For any given match of discrete primes,
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K L

x w1y1 y2w2 z

a b

ωa ωb

YC = {w}
YD = {w,z}

x y1 y2 z

x y1 y2

w

w

ω

z

C⊗ idYC idYD ⊗D

ωC ωD

K L

x w1y1 y2w2 z

R S

ωR ωS

Figure 8. Matching a product using the PAR rule

K

y1 y2

y′1 y′2
σ

p
x1 x2 x3 x4

a

K

u1 u2

y′1 y′2
σα

P
z1 z2 z3 z4

C

v1 v2 v3

p
x1 x2 x3 x4

a′

v1 v2 v3

P
z1 z2 z3 z4

C′

Figure 9. Matching an ion in the agent a with context C by matching a′ with context C′

we can compose with ions K~y(~X) or K~u(~Z), if we extend the wirings of agents and contexts with isomorphic wiring on
the outer names~y and~u; stated in the rule by requiring that we extend with σ and σα (where α =~y/~u). For example,
if we seek to match the agent a = (id⊗K~y(~X))p with a context C = (id⊗K~u(~Z))P, then it suffices to consider matching

of a′ = (~v)/(~X)p with a context C′ = (~v)/(~Z), as illustrated in Figure 9. The local linkage remaining in a′ and C′ is
the local substitutions underlying the ions in a and C.

Given an agent and considering an inference tree operationally bottom up, the rules specify how to decompose the
agent while constructing the corresponding context (cf., e.g., the ION rule). At the point where the root of the redex is
matched, the SWITCH rule is applied, switching the redex into context position, so that further decomposition of the
agent checks that the redex matches. A redex root needs to be matched when the only remainder of the context is a
site, possibly with some local linkage. Thus, when inferring a match, every rule except SWITCH can be used in two
modes: one where the agent and redex are given, resulting in a context and parameter; and, after a SWITCH, one where
the agent and context are given, resulting in a parameter. This is reflected in the fact, that in the premise of SWITCH,
in the matching sentence the redex-position is id and the redex-wiring is empty, since we are now only concerned with
checking the redex, and constructing the parameter. (Note, that this means that for d : 〈1,(Y ),Y ]Z〉, the unspecified
id in the context-wiring is necessarily idZ .)

In Figure 10, we depict an application of SWITCH. As illustrated the agent does not change when applying the
rule; we simply try to infer a match between the current agent structure a, and a new context C′ constructed as the
composition of the former context C composed with the former redex R. As required, the new redex R′ is an identity
and the parameter d is preserved.

The PRIME-AXIOM and WIRING-AXIOM axioms are the base cases of matching inferences. The latter axiom is
used to match bigraphs of zero width (i.e., bigraphs which only contain wiring). By iterated application of this axiom
and PAR, we handle matching of any idle names (i.e., outer names not connected to anything). Intuitively, this axiom
allows us to only be concerned with wiring with no idle names (i.e., epi wiring) in all other rules (cf., Note A.21 in the
appendix, immediately following the proof of Lemma 3.8 concerned with WIRING-AXIOM.)

The PRIME-AXIOM handles the case where we have matched all nodes in the redex and context; this is the case
when only sites remain. The axiom expresses this for primes only; as PAR allows us to combine several valid matches
with product, most other rules simply need to be concerned with the prime case. Hence, the axiom requires both redex
and context to be single sites (in the context allowing renaming of local names), and requires the agent and parameter
place graph to be equal and their wiring to be compatible.
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a R C d
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z1 z2 z3 z4 y z

y1 y2 y3
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ωR→
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y1
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z
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ωC→

α →

σ →
← ωR⊗ idZ

L

z

a R′ = id1 C′ =C(R⊗ idZ) d

Figure 10. Matching a =C(R⊗ idZ)d by matching a =C′(R′⊗ idZ)d using the SWITCH rule.

a R C d

K

y1 y2 y3 v

x1 x2

u1 u2 z

τ →

α →

← σ

← β

x1 x2

x1 x2

u1 u2

x1 x2

z
σ →

α
K

x1 x2 z

τ
β

Figure 11. Matching a =C(R⊗ idZ)d by using PRIME-AXIOM.

Figure 11 depicts an instance of PRIME-AXIOM. The agent and parameter contain a node of the same control K,
and the wirings τ , β , α , and σ , which are composed to determine the wiring of C(R⊗ idZ)d, matches the wiring of a
(which in the figure is split accordingly, to illustrate this match).

Finally, the CLOSE rule allows us to infer a match for bigraphs where all global links are open, and “close” this
match by replacing names in wirings with edges, cf. Figure 12.

3.4. Soundness and Completeness of the Characterization

The two following theorems state that the rules constitute a sound and complete characterization of matching.

Theorem 3.4 (Soundness). The rules for matching in Figures 6 and 7 are sound, that is, any derivable matching
sentence is valid.

Proof. Straightforward, by standard algebraic manipulations.
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z1

y

y

a′ R′ C′

Figure 12. Matching closed links within and between redex and context

The completeness theorem is proved by induction on the size of valid sentences, which is defined as follows.

Definition 3.5 (Size of a matching sentence). The size of a matching sentence ωa,ωR,ωC ` a,R ↪→C,d is the num-
ber of ions in a.

The following lemmas express how a valid sentence may be derived by applications of inference rules to valid
sentences of lesser or equal size. The proofs proceed by first decomposing the components of the given valid sentence,
then defining the components of the valid sentence(s) claimed to exist and, finally, verifying that (1) the sentences
claimed to exist really are valid and (2) that the given sentence can indeed be derived as claimed. The decompositions
are obtained via Proposition 3.1 and other normal forms for binding bigraphs, and the verifications proceed using
uniqueness results for normal forms based on those found in (DB06). We give extensive details for the proofs of these
lemmas in the Appendix.

Lemma 3.6. Every valid sentence ωa,ωR,ωC � a,R ↪→C,d is provable using the CLOSE and the PERM rules on a
valid sentence, of equal size, of the form σa,σR,σC � a,S ↪→

⊗n
i Pi,e.

Lemma 3.7. Every valid sentence σa,σR,σC � a,R ↪→
⊗n

i Pi,d, with each Pi prime and discrete, is provable using the
PAR rule on valid sentences, of lesser or equal size, of the form σ0

a ,σ
0
R,σ

0
C ||σS

C � p,S ↪→P0,e and σ1
a ,σ

1
R,σ

1
C ||σS

C �
a′,R′ ↪→

⊗n
i=1 Pi,e′. All substitutions mentioned above are required to be epi (i.e., with no idle names).

Lemma 3.8. Every valid sentence σa,σR,σC � a,R ↪→ idε ,d is provable using PAR and WIRING-AXIOM.

Lemma 3.9. Every valid sentence σa,σR,σC � p,R ↪→P,d, with p and P prime and discrete, is provable using the
LSUB rule on a valid sentence, of lesser or equal size, of the form σ ′a,σ

′
R,σ

′
C � p′,R ↪→P′,d, where p′ and P′ are

discrete free primes. All substitutions mentioned above are required to be epi (i.e., with no idle names).

Lemma 3.10. Every valid sentence σa,σR,σC � p,R ↪→Q,d, with p and Q discrete and free primes, is provable using
the MERGE, PAR (iterated), and SWITCH rules on valid sentences, each of lesser or equal size, and each on one of two
forms:

• σ ′a,σ
′
R,σ

′
C � pN, id ↪→PN,e, where pN and PN are free discrete primes,

• σ ′a,σ
′
R,σ

′
C � m,S ↪→M,e, where m and M are free discrete molecules.

All substitutions mentioned above are required to be epi (i.e., with no idle names).

Lemma 3.11. Every valid sentence σa,σR,σC � m,R ↪→M,d, with m and M free discrete molecules, is provable
using the ION rule on a valid sentence σ ′a,σ

′
R,σ

′
C � p,R ↪→P,d, of lesser size, where p and P are discrete primes. All

substitutions mentioned above are required to be epi (i.e., with no idle names).

Lemma 3.12. Every valid sentence σa,σR,σC � p, id ↪→P,e, with p and P free discrete primes, is provable using
the MERGE and PAR (iterated) rules on valid sentences of equal or lesser size, which are either instances of rule
PRIME-AXIOM or of the form σ ′a,σ

′
R,σ

′
M �m,R ↪→M,d. All substitutions mentioned above are required to be epi (i.e.,

with no idle names).

Theorem 3.13 (Completeness). The rules for matching in Figures 6 and 7 are complete, that is, any valid matching
sentence can be derived from the rules.
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Figure 13. Inferring the match in Figure 1

Proof. By induction on the size of a sentence. By the lemmas above, we have that all valid sentences with size n can
be derived from valid sentences of the form σa,σR,σC � m,R ↪→M,d, with m and M free discrete molecules, of size
less than or equal to n. By Lemma 3.11, these can be derived from sentences of size less than n.

4. An Example: Inferring a Match

In this section, we give an inference tree for inferring the match in the example depicted in Figure 1. To fit the inference
tree in three reasonably small figures (Figures 13, 14, and 15), we use a more humble visual style, than in Figure 1, to
depict roots, nodes and names.

Roots are only drawn when there are more than one; in that case we use a dashed separating line to indicate
separate roots (see for example the conclusion of PAR in Figure 13). Controls of nodes are indicated with the shape
(and colour) of the node: Buildings are (blue) rectangles, laptops are (gray) rectangles with rounded corners, folders
are (yellow) circles, and data-nodes are black squares with a D inside. Instead of the name consultancy we use n and
instead of corporation we use c. Finally, we do not depict the basic redex R and parameter d, which are illustrated
already in Figure 1.

We build the inference bottom up and start by decomposing a and C discretely to obtain a sentence that we aim
to prove as the conclusion of an application of CLOSE in Figure 13. (Note that in contrast to a and C, bigraphs R and
d are already discrete as depicted in Figure 1.) The application of CLOSE allows us to match and introduce the edge
between names e0 and e1 in the agent, and between names e0 and z in the context. We are building an inference bottom
up, so in the premise we simply introduce a fresh outer name e to map these names to.

Next, we aim to use an application of PAR to pair up two inferences of matches between top-level nodes of the
agent and the context. The top-level nodes of the agent and the context are in the same root, though, so after using
PAR to pair up two such inferences, we need to apply MERGE to merge the roots introduced by PAR into a single root.

Matching the left root of the agent to the left root of the context is a simple matter, as the agent and context are
isomorphic, both in wiring and underlying discrete bigraph, while the redex and parameter are empty (consequentially,
we leave out the details for that subderivation). The derivation D0 is depicted in Figure 14.

In the conclusion of the derivation D0 we use an application of ION to match the top-level building node of the
right root of the agent to the building node of the right root of the context. Reading the application of the ION rule
bottom up, we see that removing the building node in both agent and context requires us to match and remove the
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Figure 14. The derivation D0

global wiring upon free ports of the building node (e/e1 and e/z, respectively), and introduce a common local outer
name x to map linkage upon binding ports to.

We immediately proceed to remove that local name. The LSUB rule allows to introduce local names and local
wiring; so when building up an inference tree, we simply introduce new global names (in this case, x0 and x1 in the
agent, and y in the context), and wire those names through global wiring instead.

In the resulting premise of LSUB the only remainder of the context is a concretion pyq (i.e., a single site), so
we can SWITCH to matching the redex. This means that we need to try to infer a match between the current agent
structure (in the derivation) and the remainder of the context (i.e., the context wiring and pyq) composed with the
redex R—with identity redex and the same parameter d. The composition pyqR makes global the name y of R, which
is subsequentially wired to an x in the context-wiring. Consequentially, in the context in the premise of SWITCH we
have R with two global names y0 and y1, which are wired through the link x/{y0,y1}. The redex in the premise is id4
to match the four roots of the parameter d.

Now, we aim again to use an application of PAR to pair up two inferences of matches between the top-level nodes
of the current agent and context. After using PAR to pair up those inferences, we need again to apply MERGE to merge
the roots introduced by PAR into a single root. The remaining two derivations for matching folders with data in the
agent to folders and data in the (former) redex and parameter are very similar; we show the leftmost derivation D1 in
Figure 15.

We conclude the derivation D1 as we did D0, namely with an application of ION, in this case, to match and remove
a laptop node. Folder nodes have no ports, so here we need not be concerned with wiring.

Another application of the rules MERGE and PAR allows to combine two derivations, the left of which is an in-
stance of PRIME-AXIOM. The PRIME-AXIOM requires both redex and context to be single sites (in the context allowing
renaming of local names), and requires the agent and parameter place graph to be equal and their wiring to be com-
patible. In this case, only the names e1 and z differ, but as they are internal (i.e., disappear when composing the wiring
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Figure 15. The derivation D1

with the discrete underlying bigraph), we can construct suitable wirings σ = e/z and β = z/e1 to verify that we have
a valid instance of PRIME-AXIOM.

In the remaining rightmost derivation we need a single application of ION, before being able to conclude the entire
derivation with a very simple instance of PRIME-AXIOM, as data nodes have no ports to connect wiring to.

5. Towards Algorithms for Matching

The completeness theorem tells us that we can find all valid matching sentences by applications of the rules for
matching. Thus the rules for matching define an algorithm for matching, for instance easily expressed in Prolog,
which simply operates by searching for inference trees using the rules.

Although we can base a matching algorithm directly upon the matching rules, we do not claim that an efficient
matching algorithm has to be so based. We have introduced matching rules for a dual purpose: first, to characterize
matching structurally and inductively in order to understand it (in particular, to understand the relation to representa-
tions based on normal forms and to understand exactly where choices between different matches can be made during
matching); second, to provide a specification from which to begin the search for truly efficient matching algorithms,
and to verify them against. This rigorous approach to matching is justified, in our view, because matching will be the
workhorse of any implementation of bigraph dynamics.

In practice, one is, of course, interested in minimizing unnecessary blind search, and thus, for instance, only search
for inference trees of a certain form. Indeed, one can show that it suffices to consider so-called normal inference trees,
which put restrictions on the order in which the inference rules are applied (such as, e.g., always concluding with the
CLOSE rule). We shall not include a formal definition of normal inference trees here, but rather discuss some of the
possibilities for defining normal inference trees. We first remark that to retain completeness, any definition of normal
inference must, of course, ensure no loss of provability. Looking at the formulations of the lemmas leading up to the
completeness theorem, we see that there are indeed several possibilities for the definition of normal inference tree. For
example, from Lemma 3.6 we see that we are free to conclude each inference tree with CLOSE and then PERM or vice
versa. Further, in several rules we are allowed to propagate closed links, even though CLOSE intuitively makes that
unnecessary. We have chosen to leave this freedom in the rule system and instead comment on how we could extend
the set of rules to allow even more freedom in chosing our definition of normal inference tree. This is important when
thinking about implementations, as each definition of normal inference tree corresponds to a different algorithmic
approach to matching.

One may say that the current set of rules naturally give rise to normal inferences that are a mix between matching
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the link graph “lazily”or “eagerly”. Instead of the CLOSE rule, one could have amended the PAR and ION rules (those
with || in the conclusion) such that they would also handle matching of closures. This would have allowed true “by
need” link-matching. Conversely, one could have amended the CLOSE rule to also compare substitutions, allowing us
to consider matching of discrete bigraphs up to renamings (i.e., isomorphisms) on their outerfaces. If we amended
the LSUB and SWITCH rules to work accordingly, this would actually preclude the need for the wirings ωa,ωR,ωC in
matching sentences. It seems, though, that the tedious complexity added into these rules would mean that we would
gain little in removing complexity from the rules as a whole. Anyhow, these changes would allow us to define a variant
of normal inferences, which would be “strict” in the link graph, in that we would immediately be able to reject possible
matches based on the link graph (instead of the place graph).

Another possibility would be to add a rule GLOB, allowing us to match all wiring stemming from a single prime as
global wiring. This idea seems to indicate that matching in local bigraphs (Mil04) (where there is no global linkage but
instead multilocated names) could be handled similarly, by recasting the rules to work on local links and just locating
names at all roots where they occur.

An implementation of matching must, of course, represent bigraphs in some way. One possibility is to represent
bigraphs directly by place and link graphs, and then implement the normal form lemmas, which express how bigraphs
may be decomposed into simpler bigraphs; then matching can proceed by induction on the decomposed graph. In
general, however, the “decomposition functions” return sets of possible decompositions, because normal forms are
only unique up to certain permutations. (For example, merge(M1⊗M2) = merge(M2⊗M1).) A matching implement-
ation needs to explore all the possible decompositions. This can be made explicit formally, by phrasing the inductive
characterization of matching not on bigraphs but on expressions (i.e., syntax) for binding bigraphs. Doing so forces us
to add an inference rule, which allows one to replace any expression in a matching sentence ωa,ωR,ωC ` a,R ↪→C,d,
say a, by a′, when a′ is provably equal to a via the axioms for structural equality of bigraphs (DB06). Doing so clearly
yields a complete set of rules on bigraphical expressions, but yields a wildly nondeterministic inference system as we
might need to apply equality axioms between every step to infer a match. (This is reminiscent of problems arising
when implementing rewriting logic, i.e., term rewriting modulo a set of static equivalences.) Consequentially, normal
inference trees for rules based on syntax, needs to spell out how and where to apply equality axioms. The definition of
normal inference trees will then formally explicate all the possibilities that a matching algorithm needs to explore.

Based on the considerations above, we have worked out a definition of normal inference tree for matching bigraph
expressions and proved it complete. In particular, we also utilize normal forms for expressions by defining normal
inferences that require each inference to start by rewriting the term to be on normal form. This restricts considerably
the set of expressions that the normal inferences need be concerned with.

This definition of normal inferences is the basis of a prototype implementation of a tool for working with bi-
graphical reactive systems. We report on this in another paper (GDHB10). The prototype tool is also available online
at:

http://tiger.itu.dk:8080/bplweb/

6. Related and Future Work

Bigraphical reactive systems are related to general graph transformations systems; see (EEPT06) for a recent compre-
hensive overview of graph transformation systems. In particular, bigraph matching is strongly related to the general
graph pattern matching (GPM) problem, so general GPM algorithms might be applicable (Ull76, Fu97, LV02, Zün94).
Due to the special structure of bigraphs, general GPM algorithms are expected to be inefficient, although some GPM
tools (VVF05) use heuristic search strategies that might be able to discover and exploit bigraph structure.

A special aspect of bigraphs is that we may match a set of subtrees with a single node (site) in the redex, and match
multiple redex roots in different places within the agent. Fu (Fu97) handles such wildcard nodes and multiple patterns,
but directly applying his algorithm is not straightforward, as he attacks the problem of tree isomorphism of rooted
graphs unfolded to finite unbounded depths. The subtree isomorphism problem (Sel77, Val02, ST99) is simpler than
GPM, but applying it directly to the place graphs of bigraphs would not exploit the constraints imposed by the link
graphs. Rather, efficient implementations of bigraph matching should be derived from the initial implementation by
experimenting with different normal inference tree definitions, and combining it with subtree isomorphism algorithms.
The inductive characterization provided here will make it easier to prove an actual algorithm correct. Finally, as noted
in the introduction, by providing an abstract characterization founded in well-established theory for bigraphs, we
expect to be able to combine or adapt more easily our approach to theory and techniques being developed for bigraphs.
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For a more detailed account of related work, in particular on relations between BRSs, graph transformations, term
rewriting and term graph rewriting, see (Dam06, Section 6).

Future work on bigraph matching include investigating how we may combine, for instance, our approach with
sortings on bigraphs (BDH06), which could be a source of early search elimination. We are also considering rephrasing
the rules to derive a set of constraints for wirings (the three first components of a matching sentence), which could be
fed to a constraint solving algorithm, instead of matching them online as the rules.

7. Conclusion

We have presented a sound and complete inductive characterization of matching for binding bigraphs. The characteriz-
ation provides a formal specification for a matching algorithm for binding bigraphs; and, even further, the specification
has already served as the basis for an implementation of a prototype tool for working with BRSs.
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A. Proofs of Completeness

We give extensive details for the proof of Lemmas 3.6 through 3.12. In proving the main lemmas underpinning the
completeness of the matching rules, we shall need a number of properties of binding bigraph structure.

A.1. Algebraic Properties of Parallel Product

The parallel product G ||H of two bigraphs G : X → Y ]Z and H : U → V ]Z, with X ∩U = Y ∩V = /0, is given by
taking the tensor of the place graphs and the union of the link graph maps.

The equational properties of wiring, composition and tensor product has already been investigated (Mil05, DB06);
in this section we build on this foundation to state directly also a number of properties of wiring and ||, which shall allow
us a number of convenient equational manipulations. We shall mainly use equational reasoning to prove the properties,
in the process illustrating the convenience allowed by the axiomatizations and the normal form for links (cf., loc. cit.).

We start by giving some simple equivalent forms of the definition of the parallel product.

Lemma A.1 (Parallel product). For Z = {z0, . . . ,zn−1}

G ||H =
(
(
⊗|Z|

i zi/{zi,z′i})⊗ idY ⊗ idV
)(

G⊗ ((
⊗|Z|

i z′i/zi)⊗ idV )H
)

=
(
~z/(~z,~z′)⊗ idY ⊗ idV

)(
G⊗ (~z′/~z⊗ idV )H

)
=

(
σ ⊗ idY ⊗ idV

)(
G⊗ (α⊗ idV )H

)
,

where in the second equation we introduce some shorthand notation and in the third equation σ and α are given by
the previous equations.

Proof. (Omitted) Routine from (JM04, Def. 9.13).

Sometimes, we shall need to split up a wiring by its inner- or outerface and analyze it in smaller parts.
When splitting up a wiring ω : U ]V → X ]Y by its innerface or outerface, respectively, we get, for δ a suitable

closure,

ω = (δ ⊗ id)(σ0 ||σ1) σ0 : U → σ1 : V →

respectively

ω = ω0⊗ω1 ω0 :→ X ω1 :→ Y,

for δ , σ0, and σ1; and ω0 and ω1, which are constrained by ω , U , V , X and Y .
Those subwirings (i.e., the substitutions, closures, and wirings) of a splitting are not in general determined uniquely

by ω , U and V , or ω , X and Y . For example, when splitting

ω =

y1

x1 x2 x3

y2

x4 x5

by {x1,x2,x3} and {x4,x5}, we get either

y1

x1 x2 x3

y2

x4

y2

x5

or
x1 x2 x3

y2

x4

y2

x5

y1

When splitting by the innerface, we are free to distribute the idle names of ω . When the wirings have no idle names
(i.e., are epi) the splitting is unique. We state this formally in Lemma A.5.

When splitting by the outerface, it is closures — that introduce edges, that constitute the problem. For instance,
there are four valid splittings of ω above by {y1} and {y2}, corresponding to the four possible ways of distributing the
two closed links between the two wirings. We might, for instance, choose to put both closures in either the lefthand or
the righthand wiring:
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y1

x1 x2 x5

⊗
x3

y2

x4

or
y1

⊗
x1 x2 x3

y2

x4 x5

Splittings by the outerface of pure substitutions (i.e., with no closures), on the other hand, are unique; we state this
formally in Lemma A.6.

We start by recording that for wirings ⊗ and || commute.

Lemma A.2 (Tensor and parallel product commute for wirings). For all wirings ωa :→ Z ]Ya, ωb :→ Z ]Yb,
ωc :→ X ]Yc, and ωd :→ X ]Yd, with all inner faces mutually disjoint, X ∩Z = /0, and (Ya ∩Yc) = (Yb ∩Yd) = /0, it
holds that

(ωa ||ωb)⊗ (ωc ||ωd) = (ωa⊗ωc) || (ωb⊗ωd).

Proof. Equationally,

(ωa ||ωb)⊗ (ωc ||ωd)
= (σZ⊗ id)(ωa⊗ (αZ⊗ id)ωb)⊗ (σX ⊗ id)(ωc⊗ (αX ⊗ id)ωd)
= (σZ⊗ id)(ωa⊗ (αZωZ

b ⊗ω ′b))⊗ (σX ⊗ id)(ωc⊗ (αX ωX
d ⊗ω ′d))

= (σZ⊗σX ⊗ id)(ωa⊗ωc⊗ (αZωZ
b ⊗αX ωX

d ⊗ω ′d⊗ω ′b))
= (σZ⊗σX ⊗ id)(ωa⊗ωc⊗ (αZ⊗αX ⊗ id)(ωZ

b ⊗ω ′d⊗ωX
d ⊗ω ′b))

= (ωa⊗ωc) || (ωb⊗ωd).

— where the first and the last equality are instances of the third equation of Lemma A.1, and ωZ
b , ω ′b, ωX

d , and ω ′d
arises from splitting ωb and ωd by the outerface.

We state and prove Lemma A.3, a cancellation property of parallel product and idle names, only to help us prove
Lemma A.4. The latter lemma tells us, that should the parallel product of two pairs of wirings with matching interfaces
be equal, then those pairs were equal in the first place.

Lemma A.3. For wirings ω i = X i→ Y i]Z (i ∈ {0,1}) with X0∩X1 = Y 0∩Y 1 = /0,

(ω0 ||ω1)(X0⊗ idX1) = Y 0⊗ω
1.

Proof. Equationally,

(ω0 ||ω1)(X0⊗ idX1) = ω0X0 ||ω1

= (Y 0⊗Z) ||ω1

= Y 0⊗ (σZ⊗ idY 1)(Z⊗ (αZ⊗ idY 1)ω1)
= Y 0⊗ (σZ⊗ idY 1)(Z⊗αZω1

Z⊗ω1
Y 1)

= Y 0⊗σZ(Z⊗αZω1
Z)⊗ω1

Y 1

= Y 0⊗α
−1
Z αZω1

Z⊗ω1
Y 1

= Y 0⊗ω1.

where σZ
def
=~z/(~z,~z′), αZ

def
= ~z′/~z (as defined in Lemma A.1), and ω1

Z⊗ω2
Y 1

def
= ω1 is a splitting by the outerface of ω1,

s.t. ω1
Z :→ Z and ω1

Y 1 :→ Y 1.
The fifth equality resolves the composition (equationally, by iterated application of axiom L4 of (DB06)). For our

particular purpose, the axiom can be instantiated to state for each z ∈ Z that z/(z,z′)(z⊗ idz′) = z/z′. Iterating this, we
have also that σZ(Z⊗ idZ′) = α

−1
Z =~z/~z′.

Lemma A.4. Given ω i
c,ω

i
a : X i→ Y i]Z, (i = 0,1) with X0∩X1 = Y 0∩Y 1 = /0, we have that

ω
0
c ||ω1

c = ω
0
a ||ω1

a iff ω
0
c = ω

0
a and ω

1
c = ω

1
a .

Proof. (⇐) Immediate.
(⇒) Composing on both sides of the assumed equation with equal terms, we have,

(/Y 0⊗ idY 1]Z)(ω
0
c ||ω1

c )(X
0⊗ idX1) = (/Y 0⊗ idY 1]Z)(Y

0⊗ω1
c ) = ω1

c , and
(/Y 0⊗ idY 1]Z)(ω

0
a ||ω1

a )(X
0⊗ idX1) = (/Y 0⊗ idY 1]Z)(Y

0⊗ω1
a ) = ω1

a .

— and analogously for ω1
c and ω1

a (using Lemma A.3 to resolve the first equalities).
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And now we can state and prove the two lemmas mentioned earlier, which tell us when a splitting of wiring is
unique.

Lemma A.5 (Splitting by the innerface). The splitting of ω : U ]V → (i.e., with U ∩V = /0) by its innerface into
ω = (δ ⊗ id)(σ0⊗σ1) with σ0 : U → and σ1 : V → is unique (up to iso) if ω is epi.

Proof. Suppose wlog. that ω : U ]V → Z. We analyse the underlying link-function linkω of ω . When ω is epi, the
link-function has codomain exactly linkω(U ]V ) = Z]E, where E is the set of edges in ω . (There are no edges in E
with no preimage in linkω , as we are concerned with abstract bigraphs, which contain no such idle edges.)

The link-function of σ0 must, for each, u ∈U , either contain u 7→ linkω(u) if linkω(u) ∈ Z, or u 7→ zu for a fresh
name zu if linkω(u) ∈ E; in the latter case, δ must also contain zu 7→ /0. The same goes for σ1.

We can freely choose the names for transferring closed links, such as zu; having chosen those names, both the
interfaces of σ0 and σ1 are also determined, since Z contains only images of U ]V . By Lemma A.4 this determines
them wholly.

Lemma A.6 (Splitting by the outerface). The splitting of σ :→ X ]Y (i.e., with X ∩Y = /0) by its outerface into
σ = σ0 ||σ1 with σ0 :→ X and σ1 :→ Y is unique.

Proof. Suppose wlog. that σ : U → X ]Y . Since σ is a substitution its underlying link-function is defined precisely
on linkσ : U → X ]Y (i.e., there are no ports or names in the link-function).

The relation link−1
σ relates to each x ∈ X and y ∈ Y a (possibly empty) set Ux ⊆U or Uy ⊆U , respectively. Since

linkσ is a function, it is clear that all these sets are distinct and disjoint.
Hence, we can construct mechanically the domain U0 of linkσ0 by taking the union of the preimage of the names

in X , i.e., U0 = link−1
σ (X); and this set is disjoint from U1 = link−1

σ (Y ). This procedure determines the interfaces of σ0
and σ1 uniquely, hence, by Lemma A.4 it determines them wholly.

Finally, we record a few further convenient properties of the interplay of substitutions with parallel product.

Lemma A.7. When both sides are defined, we have:

σ ||σα = σ(id ||α), (1)
σ(ω0 ||ω1) = σω0 ||σω1, (2)

(σ0 ||σ1 ||σ2)(ω0 ||ω1) = (σ0 ||σ2)ω0 || (σ1 ||σ2)ω1. (3)

Proof. (1) By definition of || and normal form for σ (see, (DB06)).
(2) Follows easily from (1).
(3) Immediate from the earlier properties.

A.2. Valid Matching Sentences and Normal Forms

We start by stating two propositions, which can be derived from the normal form theorem for binding bigraphs (DB06,
Theorem 1(2)).

Proposition A.8. Any discrete bigraph D of width n with local innerface can be decomposed such that

D =
( n⊗

i

(σ̂i⊗ id)Pi
)
π,

where the Pi’s are name-discrete and prime. Any other decomposition on this form of D takes the form
(⊗n

i (σ̂
′
i ⊗

id)P′i
)
π ′, where, for some α̂i, ρi, for all i, P′i = (α̂i

−1⊗ id)Piρi (
⊗n

i ρi)π
′ = π , and σ̂ ′i = σ̂iα̂i.

The normal forms of name-discrete primes and free discrete molecules can be found in loc. cit.
One can decompose binding ions K~y(~X) into K~y(~u)

⊗n
i (ui)/(Xi). Such decompositions will be useful because of the

following property, which is a corollary of the normal form for free discrete molecules.
In analyzing molecules, it shall be useful that the uniqueness property for free discrete molecules actually holds

also for all free molecules.

Proposition A.9. For primes P and Q, if(
K~y(~x)⊗ id

)
P =

(
K~y(~z)⊗ id

)
Q,
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then for α =~x/~z, K~y(~x)α̂ = K~y(~z) and P = (α̂⊗ id)Q.

Proof. (Omitted) Follows easily from normal form for primes and molecules.

We give a number of convenient equivalent forms for Definition 3.3 of valid matching sentences. Both are simply
results of equational manipulations of the original form. In particular, the second is more compact, while the third
separates global linkage from discrete bigraphs. In the proofs, we shall refer to the following Fact instead of Defini-
tion 3.3.

Fact A.10 (Valid matching sentence—with equivalent forms). Any matching sentence ωa,ωR,ωC ` a,R ↪→C,d,
where ωR : U → Y , for C with global outer names V , and d with global outer names Z, is valid, denoted ωa,ωR,ωC �
a,R ↪→C,d, iff

(id⊗ωa)a = (id⊗ωC)(C⊗ idY ⊗ idZ)(idZ⊗ (id⊗ωR)R)d
= (id⊗ωC)((C⊗ωR)R⊗ idZ)d
= (id⊗ωC(idV ⊗ωR⊗ idZ))((C⊗ idU )R⊗ idZ)d.

where unqualified identities are local and determined from the context.

The bigraph ((C⊗ idU )R⊗ idZ)d (i.e., the composition of the underlying discrete bigraphs of context, redex and
parameter in the last form given in Fact A.10) is not discrete in general. Discreteness is not preserved by composition
— in composing discrete D and E, local non-discrete linkage of E may be made global by composition with D. On
the other hand, the expression is a ground product of primes where all edges are bound. We record some properties of
these kinds of bigraphs, which follow easily from the normal form theorems based on discrete decomposition.

We start by giving a simple restatement of Proposition 3.2, eliding the details of the representation of discrete
primes.

Corollary A.11. Any discrete bigraph D with local innerface of width n can be decomposed such that

D = (
n⊗
i

Pi)π,

where Pi are discrete prime. Any other decomposition on this form of D can be written as (
⊗n

i P′i)π ′, where for some
ρi, P′i = Piρi and (

⊗n
i ρi)π

′ = π .

We call bigraphs with only bound edges globally open.

Definition A.12 (Globally open). G is globally open iff all edges in G are bound.

The following property of globally open bigraphs allows us to use the decomposition in Fact A.10 to establish a
relation between the wiring of the agent and the wirings of the context, redex and parameter, even though the latter is
not discretely decomposed. (We state the proposition only for ground bigraphs, as that is enough for our purposes.)

Proposition A.13 (Semi-discrete decomposition). If (id⊗ωd)d = (id⊗ωb)b, where both identities are local, d is
discrete and b is globally open, then there exists a substitution σ , s.t., ωd = ωbσ and (id⊗σ)d = b.

Proof. Follows easily from Proposition 3.1.
By Proposition 3.1, and since b is globally open, there exists σe and e, where e is discrete, s.t., b = (id⊗σe)e. By

uniqueness of the normal form of Proposition 3.1, we have

ωd = ωbσeβ ,

d = (id⊗β
−1)e.

We simply take σ = σeβ , and we are done.

We define products of primes with arbitrary ordering of the sites and call them link-contained, as they are characterized
precisely by having no links that span several roots. In particular, a link-contained bigraph of width 1 is simply a prime.

Definition A.14 (Link-contained). G is link-contained iff G is a product of primes with arbitrary ordering of the
sites.

In other words, G (of width n) can be written as (
⊗n

i Pi)π , where each Pi is prime.

Link-containedness is simply a generalization of discreteness.
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Lemma A.15 (Discreteness implies link-containedness).

Proof. (Omitted) Immediate from Definition A.14 and normal form for discrete.

A virtue of link-containedness (as opposed to discreteness) is that it is preserved by composition.

Lemma A.16 (Link-containedness is preserved by composition). If D and E are link-contained, then DE is link-
contained.

Proof. (Omitted) Routine.

With regard to Fact A.10, Lemmas A.15 and A.16 ensures us that ((C⊗ idU )R⊗ idZ)d is link-contained.
Link-contained bigraphs share essentially all the nice properties with discrete bigraphs, that we used for estab-

lishing their normal forms. From Proposition 3.1 and Corollary A.11, we derive a normal form for link-contained
bigraphs.

Corollary A.17 (Normalform for link-contained bigraphs). If G is link-contained, then G can be expressed as

G = (
n⊗
i

(ωi⊗ id)Pi)π,

where each Pi is prime and discrete. Further, any other expression for G on this format is of the form

(
n⊗
i

(ω ′i ⊗ id)Qi)π
′,

where (∀i ∈ n) there exists αi and ρi, s.t. ωi = ω ′i αi, Qi = (αi⊗ id)Piρi, and (
⊗n

i ρi)π
′ = π .

Proof. (Omitted) Follows easily from the definition of link-contained and the normal forms for bigraphs and discrete
bigraphs.

Finally, we state the following simple property of abstraction.

Lemma A.18.

(U)P = (U)Q iff P = Q

Proof.
(⇐) Immediate.
(⇒) Nearly immediate; equationally, by composing with equal concretions:

P = (pUq⊗ id)(U)P = (pUq⊗ id)(U)Q = Q.

A.3. Proofs of Lemmas 3.6 through 3.12

In this section we give the proofs for the lemmas which support the main theorem on completeness, i.e., Theorem 3.13.
For ease of reading, we repeat each lemma immediately before each proof.

In the following proofs, we use equational techniques as allowed by the axiomatization of structural congruence
of binding bigraphs (DB06). In particular, in manipulating terms, we shall need to introduce quite a lot of id’s on
interfaces determinable from the context. We shall adopt the convention of using only unqualified local identities,
when the interface is determinable, and inessential for the analysis. For global identities, we shall strive to use the
metavariables introduced in Fact A.10 — i.e., we use V ’s for identities on context wiring, U’s for identities on redex
wiring, and Z’s for identities on parameter-wiring.

We start by proving two sublemmas, of which Lemma 3.6 will be a simple corollary. As CLOSE and PERM work
solely on the three link graph and four discrete components, respectively, we proceed by proving a lemma for each of
these rules.

Lemma A.19. Every valid sentence ωa,ωR,ωC � a,R ↪→C,d is a consequence by PERM on a valid sentence, of equal
size, of the form ωa,ωR,ωC � a,S ↪→

⊗n
i Qi,e, where each Qi is prime (and discrete).
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Proof. By Fact A.10 and Corollary A.11, C can be decomposed directly as (
⊗n

i Qi)π , while (regular) R can be de-
composed as

⊗m
i Pi (for prime and discrete Qi, Pi).

Applying these decompositions and the push-through lemma of (DB06) we find by standard manipulations

(id⊗ωa)a = (id⊗ωC)

((
n⊗
i

Qi

)
π⊗ωR

)((
m⊗
i

Pi

)
⊗ idZ

)
d,

= (id⊗ωC)

((
n⊗
i

Qi

)
⊗ωR

)((
m⊗
i

Pπ−1(i)

)
⊗ idZ

)
(π⊗ idZ)d.

Choosing S =
⊗m

i Pπ−1(i) and e = (π ⊗ idZ)d by Fact A.10 we have a valid sentence ωa,ωR,ωC � a,S ↪→
⊗n

i Qi,e,
which taken as the premise in the PERM yields the required sentence as conclusion.

Lemma A.20. Every valid sentence ωa,ωR,ωC � a,R ↪→C,d is a consequence by CLOSE on a valid sentence, of equal
size, of the form σ ′a,σ

′
R,σ

′
C � a,R ↪→C,d.

Proof. We may write ωa,ωR and ωC as (by the normal form for linkage, cf. (Mil05))

(id⊗/Ya)σa
def
= ωa, (id⊗/YR)σR

def
= ωR, (id⊗/YC)σC

def
= ωC.

(Note, that for this proof (only) we use unqualified global identies.)
We have |Ya| = |YR|+ |YC|; as, in particular, the number of free edges in the agent must be equal to the number

of free edges in the context composed with the redex and the parameter. The discrete bigraphs d, C and R contain no
free edges, so the free edges must be created entirely by ωR and ωC. Hence, there exists a renaming α : Ya→YR]YC.
Assuming validity of the original sentence, we calculate

(id⊗ (id⊗α)σa)a = (id⊗ (σC⊗ idYR)(idV ⊗σR⊗ idZ))((C⊗ idU )R⊗ idZ)d,

which by Fact A.10 means that the sentence

(id⊗α)σa,σR,σC⊗ idYR � a,R ↪→C,d,

is valid. This sentence is on the required form, and, checking, we see that applying CLOSE to this sentence, we arrive
at

(id⊗/(YC]YR))(id⊗α)σa,(id⊗/YR)σR,(id⊗/YC)σC � a,R ↪→C,d,

which, since by construction /(YC]YR)(id⊗α) = /Ya, is equal to

ωa,ωR,ωC � a,R ↪→C,d.

Lemma (3.6). Every valid sentence ωa,ωR,ωC � a,R ↪→C,d is provable using the CLOSE and the PERM rules on a
valid sentence, of equal size, of the form σa,σR,σC � a,S ↪→

⊗n
i Pi,e.

Proof. Immediate by combining Lemma A.20 and Lemma A.19.

Lemma (3.7). Every valid sentence σa,σR,σC � a,R ↪→
⊗n

i Pi,d, with each Pi prime and discrete, is provable using
the PAR rule on valid sentences, of lesser or equal size, of the form σ0

a ,σ
0
R,σ

0
C ||σS

C � p,S ↪→P0,e and σ1
a ,σ

1
R,σ

1
C ||σS

C �
a′,R′ ↪→

⊗n
i=1 Pi,e′. All substitutions mentioned above are required to be epi (i.e., with no idle names).

Proof. By Fact A.10 and Corollary A.11, a can be decomposed as
⊗n

i pi (with discrete and prime pi). We immediately
utilize that, assuming validity of the original sentence, the width of a and

⊗n
i Pi must be equal.

We have, by Fact A.10 (using, as usual, unqualified local identities and introducing C def
=
⊗n

i=1 Pi)

(id⊗σa)
n⊗
i

pi = (id⊗σC(idV0 ⊗ idV ⊗σR⊗ idZ))((P0⊗C⊗ idU )R⊗ idZ)d.

By Proposition A.13, there exists a substitution σL, s.t.,

σa = σC(idV0 ⊗ idV ⊗σR⊗ idZ)σ
L, (4)

and (id⊗σ
L)

n⊗
i

pi = ((P0⊗C⊗ idU )R⊗ idZ)d. (5)
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We can partition the redex according to the innerfaces of P0 and C; and then partition the parameter according to the
partioning of the redex. From (5) we can derive

(id⊗σ
L)

n⊗
i

pi = ((P0⊗ idU0)R0⊗ idZ0)d0⊗

((C⊗ idU ′)
m⊗

i=1

Ri⊗ idZ′)
l⊗

i=1

di, (6)

introducing a few more convenient metavariables: For the partioned parts of the redex and parameter, we let
⊗m

i Ri
def
= R

and
⊗l

i di
def
= d (where each Ri and di is a product of primes). Also, in the following, we shall use the shorthands

R′ def
=
⊗m

i=1 Ri and d′ def
=
⊗l

i=1 di.

From (6) we see that we must be able to partition σL equally. The substitution must be on the form σL =(
σL

P0
⊗σL

R0
⊗σL

d0

)
⊗
(
σL

C ⊗σL
R′ ⊗σL

d′
)
, as we can split σL according to the outerfaces of ((P0⊗ idU0)R0⊗ idZ0)d0

and ((C⊗ idU ′)R′⊗ idZ′)d′. (This splitting is unique; as are all the other splittings of wiring in this lemma, since we
work only on epi substitutions — cf. Lemma A.5 and Lemma A.6.)

By Corollary A.17, as the bigraphs are ground (and hence, there are no permutations to consider), we find

(id⊗σ
L
P0
⊗σ

L
R0
⊗σ

L
d0
)p0 = ((P0⊗ idU0)R0⊗ idZ0)d0 (7)

and (id⊗σ
L
C ⊗σ

L
R′ ⊗σ

L
d′)

n⊗
i=1

pi = ((C⊗ idU ′)R
′⊗ idZ′)d

′. (8)

We can also split σa by its innerface, which it shares with σL (cf. (4)), and define(
σ

P0
a ||σR0

a ||σd0
a

)
||
(

σ
C
a ||σR′

a ||σd′
a

)
def
= σa.

(In the following we also use σR
a

def
= σ

R0
a ||σR′

a .)
Equally, we can split σR by its innerface into σR0 ||σR′ (corresponding to the outerface of σL

R0
and σL

R′ , respect-
ively). Finally, we split σC by its innerface (cf. (4)), to define

σ
P0
C ||σ

d0
C ||σ

R
C ||σC

C ||σ
d′
C

def
= σC.

We cannot immediately split σR
C into two, as we could for σR

a . This part of the context-wiring needs special care.
Now (4) can be expressed like this (rearranging terms slightly to compose matching wirings)

σ
P0
a ||σd0

a ||σR
a ||σC

a ||σd′
a = (σ

P0
C ||σ

d0
C ||σ

R
C ||σC

C ||σ
d′
C )◦

σ
L
P0
⊗σ

L
d0
⊗ (σR0 σ

L
R0
||σR′σ

L
R′)⊗σ

L
C ⊗σ

L
d′

= σ
P0
C σ

L
P0
||σd0

C σ
L
d0
||σR

C (σR0σ
L
R0
||σR′σ

L
R′) ||σ

C
C σ

L
C ||σd′

C σ
L
d′ .

We note that by Lemma A.4, as each pair of wirings of the parallel product have equal interfaces, they are equal (i.e.,
σ

P0
a = σ

P0
C σL

P0
, σ

d0
a = σ

d0
C σL

d0
, . . . ).

We now consider the substitution working on the redex stemming from the context, σR
C , which needs a little extra

care. We have, by the arguments above, in particular σR
a = σR

C (σR0σL
R0
||σR′σ

L
R′).

Splitting σR
C by the outerfaces of σR0 and σR′ , we get

σ
R
a = σ

R0
a ||σR′

a = (σ
R0
C ||σ

R′0
C ||σ

R′
C )(σR0σ

L
R0
||σR′σ

L
R′),

as, in general, σR0 and σR′ can share names in their outerface; σ
R′0
C works on those shared names.

For ease of notation, we break our metavariable conventions for substitutions temporarily, and introduce φ R
C =

σ
R0
C ||σ

R′0
C and ψR

C = σ
R′0
C ||σ

R′
C . Applying Lemma A.7(2), we have

σ
R0
a ||σR′

a = (φ R
C σR0σ

L
R0
||ψR

C σR′σ
L
R′),
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and, applying Lemma A.4, we find that

σ
R0
a = φ

R
C σR0σ

L
R0
, (9)

σ
R′
a = ψ

R
C σR′σ

L
R′ . (10)

And now, finally, we are set to utilize what we have learnt from these somewhat tedious symbol manipulations.
Composing on both sides of (7) with id⊗

(
σ

P0
C ||φ

R
C σR0 ||σ

d0
C

)
, and using the equalities for the substitutions that we

have found above, we derive(
id⊗

(
σ

P0
C ||φ

R
C σR0 ||σ

d0
C

))
(id⊗σ

L
P0
⊗σ

L
R0
⊗σ

L
d0
)p0 =(

id⊗
(

σ
P0
C ||φ

R
C σR0 ||σ

d0
C

))
((P0⊗ idU0)R0⊗ idZ0)d0

⇐⇒
(
id⊗

(
σ

P0
a ||σR0

a ||σd0
a

))
p0 =

(
id⊗

(
(σ

P0
C ||φ

R
C ||σ

d0
C )(idV0 ⊗σR0 ⊗ idZ0)

))
◦

((P0⊗ idU0)R0⊗ idZ0)d0

By analogous manipulations from (8) and, using in particular (10), we can deduce that we have valid sentences

σ
P0
C ||σ

R0
a ||σd0

a ,σR0 ,σ
P0
C ||σ

d0
C ||σ

R0
C ||σ

R′0
C � p0,R0 ↪→P0,d0,

and

σ
C
a ||σR′

a ||σd′
a ,σR′ ,σ

C
C ||σ

d′
C ||σR′

C ||σ
R′0
C �

n⊗
i=1

pi,R′ ↪→
n⊗

i=1

Pi,d′,

which by PAR yields the original sentence.

Lemma (3.8). Every valid sentence σa,σR,σC � a,R ↪→ idε ,d is provable using PAR and WIRING-AXIOM.

Proof. Since C = idε , a must have width 0, hence also a = idε the only discrete bigraph with local innerface (in
this case, actually ground innerface) of width 0. Similarly, R and d must have width 0, hence be idε . We analyze the
wirings, in turn:

Agent By Fact A.10, the agent is expressible as (σa⊗ idε)idε , hence σa = Y for some Y .

Context Equally, by Fact A.10, the context is (σC⊗ idε)(idε ⊗ idU ) (for some names U stemming from the redex
(wiring)). Hence, σC : U → Y .

Redex And finally, also by Fact A.10, redex is (σR⊗ idε)idε , hence σR : ε →U =U .

By the arguments above, the original sentence must be on the form,

Y,U,σC � idε , idε ↪→ idε , idε (σC : U → Y ).

By induction on the size of Y it is immediate that this sentence is derivable by |Y | − 1 applications of PAR from
sentences, which are instances of WIRING-AXIOM.

Note A.21. Iterating Lemma 3.7 allows us to break any product of discrete primes in context and agent into prime
parts, resulting in sentences of the form

σa,σR,σC � p,R ↪→P,d,

for (discrete) primes p,P and epi substitutions σa,σR,σC. We treat in Lemma 3.7 only wirings with no idle names; we
handle the idle names by (iterated) application of Lemma 3.8, where there are no primes in the context or agent.

Hence, in the following lemmas all wiring is epi substitutions, and we are guarenteed that any splitting of wiring
is unique.

Lemma (3.9). Every valid sentence σa,σR,σC � p,R ↪→P,d, with p and P prime and discrete, is provable using the
LSUB rule on a valid sentence, of lesser or equal size, of the form σ ′a,σ

′
R,σ

′
C � p′,R ↪→P′,d, where p′ and P′ are

discrete free primes. All substitutions mentioned above are required to be epi (i.e., with no idle names).
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Proof. We have (by Fact A.10 and Proposition A.8),

p = (σ̂q⊗ idW )(Xq)q, and P = (σ̂Q⊗ idV )(XQ)Q,

where q and Q are free primes.
Hence, given validity of the original sentence; by standard manipulations,

(σa⊗ id)(σ̂q⊗ idW )(Xq)p = (σC⊗ id)((((σ̂Q⊗ idV )(XQ)Q)⊗σR)R⊗ idXq)d
⇐⇒ (σa⊗ id)(X)(σq⊗ idW ⊗ id)p = (σC⊗ id)◦

((((X)(σQ⊗ idV ⊗ id)Q)⊗σR)R⊗ idXq)d
⇐⇒ (X)(σa⊗σq⊗ id)p = (X)(σC⊗σQ⊗ id)((Q⊗σR)R⊗ idXq)d,

assuming σ̂q (hence, necessarily also σ̂Q) has outerface (X).
Now, by Lemma A.18, we also have

(σa⊗σq⊗ id)p = (σC⊗σQ⊗ id)((Q⊗σR)R⊗ idXq)d.

Hence, choosing σ ′a = σa⊗σq, σ ′C = σC⊗σQ, p′ = q, and P′ = Q, we have a valid sentence, which by LSUB yields
the original sentence.

Lemma (3.10). Every valid sentence σa,σR,σC � p,R ↪→Q,d, with p and Q discrete and free primes, is provable
using the MERGE, PAR (iterated), and SWITCH rules on valid sentences, each of lesser or equal size, and each on one
of two forms:

• σ ′a,σ
′
R,σ

′
C � pN, id ↪→PN,e, where pN and PN are free discrete primes,

• σ ′a,σ
′
R,σ

′
C � m,S ↪→M,e, where m and M are free discrete molecules.

All substitutions mentioned above are required to be epi (i.e., with no idle names).

Proof. By Fact A.10, and the propositions on normal forms (for namediscrete primes, (DB06, Theorem 1(2)) and for
discrete, Proposition A.8), we see that,

p = (merge⊗id)
k⊗
i

mi,

Q = (merge⊗id)

((
n⊗
i

pαiq

)
⊗

m⊗
i

Mi

)
π,

and R =
l⊗
i

Pi,

as R is regular. Then by Fact A.10 and Proposition A.13, there exists a substitution σL, s.t.,

σa = σC(σR⊗ idV ⊗ idZ)σ
L, (11)

and

(id⊗σ
L)(merge⊗id)

k⊗
i

mi

= (merge⊗id)

((((
n⊗
i

pαiq

)
⊗

m⊗
i

Mi

)
π⊗ idU

)(
l⊗
i

Pi

)
⊗ idZ

)
d. (12)
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Working on (12) we get (applying the push-through-lemma (DB06)),

(id⊗σ
L)(merge⊗id)

k⊗
i

mi

= (merge⊗id)

(((
n⊗
i

pαiq

)
⊗

(
m⊗
i

Mi

)
⊗ idU

)(
l⊗
i

Pπ−1(i)

)
⊗ idZ

)
πd

= (merge⊗id)

((
n⊗
i

(pαiq⊗ id)Pπ−1(i)

)
⊗

(
m⊗
i

(Mi⊗ id)Si

)
⊗ idZ

)
πd

= (merge⊗id)

((
n⊗
i

(
(pαiq⊗ id)Pπ−1(i)⊗ id

)
ei

)
⊗

m⊗
i

((Mi⊗ id)Si⊗ id) fi

)
,

= (merge⊗id)

((
n⊗
i

ti

)
⊗

m⊗
i

ui

)
, (13)

where we define

m⊗
i

Si
def
=

l⊗
i=n

Pπ−1(i),

(
n⊗
i

ei

)
⊗

m⊗
i

fi
def
= π d,

∀i ∈ n ti
def
=
(
(pαiq⊗ id)Pπ−1(i)⊗ id

)
ei, and

∀i ∈ m ui
def
= ((Mi⊗ id)Si⊗ id) fi.

Each ei, Si and fi are determined by the innerfaces of the corresponding Pπ−1(i), Mi and Si, respectively.
Since σL shares global outerface with the product of the ti’s and ui’s, we can partition it according to the outerfaces

of those primes.(
n⊗
i

σ
t
i

)
⊗

m⊗
i

σ
u
i = σ (14)

We do not want to break the redex and parameter entirely into molecules in this step. Instead, as each mi represent
a top-level node of the agent, it is easily seen that we can permute and partition the mi’s into n products, pi, and m
molecules, ni, which match the place-graph structure in each ti and ui, respectively:(

n⊗
i

pi

)
⊗

m⊗
i

ni
def
= (ρ⊗ id)

k⊗
i

mi (15)

for some permutation ρ . Since σL was also partitioned according to the outerfaces of ti and ui, the outerface of each
pi will match the innerface of each σ t

i , and the outerface of each ni will match the innerface of each σu
i .

More formally, we can easily prove a little lemma for ground molecules and primes, saying that

(merge⊗id)
n⊗
i

mi = (merge⊗id)
m⊗
i

pi

iff (for some ρ , ki)

∀ i ∈ m pi = (merge⊗id)

(
ki⊗
j

mρ( j)

)
.

To underline the point: When we have split one of the products under a merge wholly into molecules, we can express
each prime pi by each of the molecules mi that match it.
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Consequentially, by combining (14) and (15), we find that

(∀i ∈ n) (σ t
i ⊗ id)pi = ti (16)

and (∀i ∈ m) (σu
i ⊗ id)ni = ui (17)

Now we concern ourselves with the wirings of equation (11). We split σa by the innerface according to the inner-
faces of the σ t

i ’s and σu
i ’s, to get

σa =

(
n

i
σ

t
i,a

)
||

(
m

i
σ

u
i,a

)
.

We also split σC(σR⊗ idV ⊗ idZ) accordingly

σC(σR⊗ idV ⊗ idZ)

((
n⊗
i

σ
t
i

)
⊗

m⊗
i

σ
u
i

)

= σC

((
n

i
σ

t
i,R

)
||

(
m

i
σ

u
i,R

)
⊗ idV ⊗ idZ

)((
n⊗
i

σ
t
i

)
⊗

m⊗
i

σ
u
i

)

=

((
n

i
σ

t
i,C(σ

t
i,R⊗ id)

)
||

(
m

i
σ

u
i,C(σ

u
i,R⊗ id)

))((
n⊗
i

σ
t
i

)
⊗

m⊗
i

σ
u
i

)
(18)

in the first step splitting σR, s.t.

σR =

(
n

i
σ

t
i,R

)
||

(
m

i
σ

u
i,R

)
,

and in the second step using Lemma A.7(3) (iterated) to split shared wiring in σC into n+m substitutions according
to σ t

i,R and σu
i,R.

As each σ t
i,a and σu

i,a has the same interfaces as σ t
i,C(σ

t
i,R⊗ id) and σu

i,C(σ
u
i,R⊗ id), respectively, by Lemma A.4

they are equal. By equational manipulations identical to those concluding the proof of Lemma 3.7, we can infer from
(16), (17), and (18), that,

(∀i ∈ n)
(
σ

t
i,a⊗ id

)
pi =

(
σ

t
i,C
(
σ

t
i,R⊗ id

)
⊗ id

)
ti

and (∀i ∈ m)
(
σ

u
i,a⊗ id

)
ni =

(
σ

u
i,C
(
σ

u
i,R⊗ id

)
⊗ id

)
ui.

We check and find, that we have n+m valid sentences which by PAR (iterated) yields the original sentence by a single
application of MERGE.

Finally, we note that each sentence corresponding to the first n equations,

σ
t
i,a,σ

t
i,R,σ

t
i,C � pi,Pπ−1(i) ↪→pαiq,ei,

is a consequence by SWITCH of the sentence,

σ
t
i,a, idε ,σ

t
i,C

(
αiσπ−1(i)⊗σ

t
i,R⊗ id

)
� pi, id ↪→PN

π−1(i),ei

for Pi = (σ̂i⊗ id)(Yi)PN
i ; where PN

π−1(i) is discrete, free and prime.

Lemma (3.11). Every valid sentence σa,σR,σC � m,R ↪→M,d, with m and M free discrete molecules, is provable
using the ION rule on a valid sentence σ ′a,σ

′
R,σ

′
C � p,R ↪→P,d, of lesser size, where p and P are discrete primes. All

substitutions mentioned above are required to be epi (i.e., with no idle names).

Proof. By Fact A.10, and the normal form for free discrete molecules (cf. (DB06)), we can express m as

m =
(

K~y(~X)⊗ id
)

q,

and M as

M =
(

K~u(~W )⊗ id
)

Q,
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where q and Q are namediscrete and prime.5
Assuming validity of the original sentence, by Fact A.10 and Proposition A.13, there exists a substitution σL, s.t.,

σa = σC(idV ⊗σR⊗ idZ)σ
L. (19)

and (id⊗σ
L)
(

K~y(~X)⊗ id
)

q =
(((

K~u(~W )⊗ id
)

Q⊗ idU

)
R⊗ idZ

)
d. (20)

Since the K-node on the righthand-side is wired discretely to ~u’s, the lefthand-side must match this. Hence, we must
have

σ
L =~u/~y⊗σ

L
1 .

We define,

σ̂(~X)
def
=

|~X |⊗
i

(xi)/(Xi) and φ̂(~W )
def
=

|~W |⊗
i

(xi)/(Wi),

such that we can decompose the ions, and express (20) as,(
K~u(~x)⊗ id

)(
σ̂(~X)⊗σ

L
1

)
q =

(
K~u(~x)⊗ id

)(((
φ̂(~W )⊗ id

)
Q⊗ idU

)
R⊗ idZ

)
d. (21)

Applying Proposition A.9, we have,(
σ̂(~X)⊗σ

L
1

)
q =

(((
φ̂(~W )⊗ id

)
Q⊗ idU

)
R⊗ idZ

)
d. (22)

We split σa and σC into the wiring linked to the K-node (i.e., the~y’s, and the~u’s, respectively) and a remainder.

σ
K
a ||σ r

a
def
= σa,

and σ
K
C~u/~y ||σ r

C (σR⊗ id)σ
L
1

def
= σC (idV ⊗σR⊗ idZ)

(
~u/~y⊗σ

L
1
)
.

From (19), with the help of Lemma A.4, then also, as the interfaces of the corresponding substitutions match,

σ
K
a = σ

K
C~u/~y,

and σ
r
a = σ

r
C (idV ⊗σR⊗ idZ)σ

L
1 .

Composing on both sides of (22) with
(
id⊗σ r

C (idV ⊗σR⊗ idZ)
)

and using the equalities defined above, we find,

(id⊗σ
r
a)
(

σ̂(~X)⊗ id
)

q

= (id⊗σ
r
C (idV ⊗σR⊗ idZ))

(((
φ̂(~W )⊗ id

)
Q⊗ idU

)
R⊗ idZ

)
d.

Choosing σ ′a = σ r
a , σ ′R = σR, σ ′C = σ r

C, p =
(

σ̂(~X)⊗ id
)

q, and

P =
(((

φ̂(~W )⊗ id
)

Q⊗ idU

)
R⊗ idZ

)
d,

we have a valid sentence, which by ION yields the original sentence.

Lemma (3.12). Every valid sentence σa,σR,σC � p, id ↪→P,e, with p and P free discrete primes, is provable using
the MERGE and PAR (iterated) rules on valid sentences of equal or lesser size, which are either instances of rule
PRIME-AXIOM or of the form σ ′a,σ

′
R,σ

′
M �m,R ↪→M,d. All substitutions mentioned above are required to be epi (i.e.,

with no idle names).

Proof. (Sketch) The proof is similar to the proof of Lemma 3.10, but simpler as the redex is a (local) identity. This
also implies σR = idε , since for some local identity (id⊗σR)R must be defined. For the concretions in P, instead of
arriving at sentences which are derivable by SWITCH, each such sentence is an instance of PRIME-AXIOM. We treat
these basecases in more detail below.

5 Note, that for this proof only, we break our convention of only eliding interfaces on local identities. The identities introduced in the expressions
for m and M are global, but as they are inessential for the analysis, to ease the notational clutter, we shall elide the interfaces for these two identities.
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The analysis for the wirings is simplified as σR is an identity. We find (focusing only on the wiring concerned with
the concretions of P),

(∀i ∈ n) σ
t
i,a = σ

t
i,Cσ

t
i . (23)

Performing an analysis analogous to that in the proof of Lemma 3.10 we have (instead of (16))

(∀i ∈ n) (σ t
i ⊗ id)pi = (αi⊗ id⊗ idZi)(pUiq⊗ idZi)ei, (24)

for renamings αi : Xi→Ui, and primes ei : 〈Zi]Ui〉 stemming from the parameter.
From (24), we can derive an expression for ei in terms of pi. For each i ∈ n, we have

(σ t
i ⊗ id)pi = (αi⊗ id⊗ idZi)(pUiq⊗ idZi)ei

⇐⇒ (α−1⊗ id⊗ idZi)(σ
t
i ⊗ id)pi = (pUiq⊗ idZi)ei

⇐⇒ (Xi)(α
−1⊗ id⊗ idZi)(σ

t
i ⊗ id)pi = ei

(25)

Since we know ei is discrete, from (25) we see that σ t
i must be a renaming on all names not linked to Ui (to be localized

by the abstraction). Hence, for each i ∈ n,

σ
t
i = σ

t′
i ⊗βi,

for βi :→ Zi and σ t′
i :→Ui.

By composing on both sides of (24) with (σ t
i,C⊗ id) and utilizing the forms for ei from (25)

(∀i ∈ n) (σ t
i,C(σ

t′
i ⊗βi)⊗ id)pi

= (σ t
i,C⊗ id)(pαiq⊗ idZi)(Xi)(α

−1
i ⊗ id⊗ idZi)(σ

t
i ⊗ id)pi (26)

To be strict, we also need to refer to equation (23) to see that σ t
i,C(σ

t′
i ⊗βi) is, in fact, wiring stemming from the agent.

In other words, (23) gives an equation of the agent wiring in terms of the wiring from the context and parameter.
The n equations stated in (26), means that we have n valid sentences on the form

σ
t
i,C(σ

t′
i ⊗βi), idε ,σ

t
i,C � pi, id(Xi) ↪→pαiq,(Xi)(α

−1
i ⊗ id⊗ idZi)(σ

t
i ⊗ id)pi.

It is easily verified that those sentences are instances of PRIME-AXIOM (choosing, in particular, τ equal to α
−1
i σ t′

i ).


