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Abstract. We show how to construct a logical relation for countable
nondeterminism in a guarded type theory, corresponding to the internal
logic of the topos Sh (ω1) of sheaves over ω1. In contrast to earlier work
on abstract step-indexed models, we not only construct the logical rela-
tions in the guarded type theory, but also give an internal proof of the
adequacy of the model with respect to standard contextual equivalence.
To state and prove adequacy of the logical relation, we introduce a new
propositional modality. In connection with this modality we show why
it is necessary to work in the logic of Sh (ω1).

1 Introduction

Countable nondeterminism arises naturally when modeling properties of concur-
rent systems or systems with user input, etc. Still, semantic models for reason-
ing about must-contextual equivalence of higher-order programming languages
with countable nondeterminism are challenging to construct [3, 7, 1, 10–13, 17].
Recently, it was shown how step-indexed logical relations, indexed over the first
uncountable ordinal ω1, can be used to give a simple model of a higher-order pro-
gramming language Fµ,? with recursive types and countable nondeterminism [4],
allowing one to reason about must-contextual equivalence. Using step-indexed
logical relations is arguably substantially simpler than using other models, but
still involves some tedious reasoning about indices, as is characteristic of any
concrete step-indexed model.

In previous work [8, 5], the guarded type theory corresponding to the inter-
nal logic of the topos Sh (ω) of sheaves3 on ω has been proved very useful for
developing abstract accounts of step-indexed models indexed over ω. Such ab-
stract accounts eliminate much of the explicit tedious reasoning about indices.
We recall that the internal logic of Sh (ω) can be thought of as a logic of discrete
time, with time corresponding to ordinals and smaller ordinals being the future.
In the application to step-indexed logical relations, the link between steps in the
operational semantics and the notion of time provided by the internal logic of
Sh (ω) is made by defining the operational semantics using guarded recursion [5].

In this paper we show how to construct a logical relation for countable non-
determinism in a guarded type theory GTT corresponding to the internal logic

3 Considered as sheaves on the topological space ω equipped with the Alexandrov
topology.
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of the topos Sh (ω1) of sheaves over ω1. For space reasons we only consider the
case of must-equivalence; the case for may-equivalence is similar. In contrast to
earlier work on abstract step-indexed models [8, 5], we not only construct the
logical relation in the guarded type theory, but also give an internal proof of the
adequacy of the model with respect to must-contextual equivalence. To state and
prove adequacy of the logical relation we introduce a new propositional modal-
ity �: intuitively, �ϕ holds if ϕ holds at all times. Using this modality we give
a logical explanation for why it is necessary to work in the logic of Sh (ω1): a
certain logical equivalence involving � holds in the internal logic of Sh (ω1) but
not in the internal logic of Sh (ω) (see Lemma 4).

To model must-equivalence, we follow [4] and define the logical relation using
biorthogonality. Typically, biorthogonality relies on a definition of convergence; in
our case, it would be must-convergence. In an abstract account of step-indexed
models, convergence would need to be defined by guarded recursion (to show
the fundamental lemma). However, that is not possible in the logic of Sh (ω1).
There are two ways to understand that. If one considers the natural guarded-
recursive definition of convergence,4 using Löb induction one could show that
a non-terminating computation would converge! Another way to understand
this issue is in terms of the model. The stratified convergence predicate ⇓β
from [4] is not a well-defined subobject in Sh (ω1). Intuitively, the reason is that
all predicates in GTT are closed wrt. the future (smaller ordinals), but if an
expression converges to a value in, say, 15 computation steps, then it does not
necessarily converge to a value in 14 steps. Instead we observe that the dual
of stratified must-convergence, the stratified may-divergence, is a subobject of
Sh (ω1) and can easily be defined as a predicate in GTT using guarded recursion.
Thus we use the stratified may-divergence predicate to define biorthogonality,
modifying the definition accordingly.

The remainder of the paper is organized as follows. In Section 2 we explain
the guarded type theory GTT, which we use to define the operational semantics
of the higher-order programming language Fµ,? with countable nondetermin-
ism (Section 3) and to define the adequate logical relation for reasoning about
contextual equivalence (Section 4). We include an example to demonstrate how
reasoning in the resulting model avoids tedious step-indexing. Finally, in Sec-
tion 5 we show that the guarded type theory GTT is consistent by providing
a model thereof in Sh (ω1). Thus, most of the paper can be read without un-
derstanding the details of the model Sh (ω1). For reasons of space, most proofs
have been omitted; they can be found in the accompanying technical report [6].

2 The logic GTT

The logic GTT is the internal logic of Sh (ω1). In this section we explain some
of the key features of the logic; in the subsequent development we will also use
a couple of additional facts, which will be introduced as needed.

4 must-converge(e)↔ ∀e′, e e′ → .(must-converge(e′)).
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The logic is an extension of a multisorted intuitionistic higher-order logic
with two modalities . and �, pronounced “later” and “always” respectively.
Types (aka sorts) are ranged over by X, Y ; we denote the type of propositions
by Ω and the function space from X to Y as Y X . We write P (X) = ΩX for the
type of the power set of X. We think of types as variable sets (although in the
logic we will not deal with indices explicitly). There is a subset of types which we
call constant sets; given a set a, we denote by ∆(a) the type which is constantly
equal to a. Constant sets are closed under product and function space. For each
type X there is a type IX and a function symbol nextX : X → IX. Intuitively
IX is “one time step later” than the type X, so we can only use it later, i.e. after
one time step and nextX(x) freezes x for a time step so it is only available later.

We also single out the space of total types. Intuitively, these are the types
whose elements at each stage have evolved from some elements from previous
stages, i.e. they do not appear out of nowhere.

Definition 1. For a type X we define Total (X) to mean that nextX is surjective

Total (X)
4↔ ∀x : IX,∃x′ : X,nextX(x′) = x

and say that X is total when Total (X) holds.

Note that for each X, Total (X) is a formula of the logic, but Total itself is not
a predicate of the logic. Constant sets ∆(a) for an inhabited a are total. For
simplicity, we do not formalize how to construct constant sets. In the following,
we shall instead just state for some of the types that we use that they are
constant; these facts can be shown using the model in Section 5.

We will adopt the usual “sequent-in-context” judgment of the form Γ | Ξ ` ϕ
for saying that the formula ϕ is a consequence of formulas in Ξ, under the typing
context Γ .

The . modality on formulas is used to express that a formula holds only
“later”, that is, after a time step. More precisely, there is a function symbol
. : Ω → Ω which we extend to formulas by composition. We require . to satisfy
the following properties (Γ is an arbitrary context).

1. (Monotonicity) Γ | ϕ ` .ϕ
2. (Löb induction rule) Γ | (.ϕ→ ϕ) ` ϕ
3. . commutes over >, ∧, → and ∨ (but does not preserve ⊥).
4. For all X,Y and ϕ we have Γ, x : X | ∃y : Y, .ϕ(x, y) ` . (∃y : Y, ϕ(x, y)).
5. For all X,Y and ϕ we have Γ, x : X | . (∀y : Y, ϕ(x, y)) ` ∀y : Y, .ϕ(x, y).

The converse entailment in the last rule holds if Y is total.

Following [5, Definition 2.8] we define a notion of contractiveness which will
be used to construct unique fixed points of morphisms on total types.

Definition 2. We define the predicate Contr on Y X as

Contr(f)
4↔ ∀x, x′ : X, .(x = x′)→ f(x) = f(x′)

and we say that f is (internally) contractive if Contr(f) holds.
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Intuitively, a function f is contractive if f(x) now depends only on the value of
x later, in the future. The following theorem holds in the logic.

Theorem 1 (Internal Banach’s fixed point theorem). Internally, any con-
tractive function f on a total object X has a unique fixed point. More precisely,
the following formula is valid in the logic of Sh (ω1):

Total (X)→ ∀f : XX ,Contr(f)→ ∃!x : X, f(x) = x.

We will use Theorem 1 in Section 4 on a function of type P (X) → P (X) for
a constant set X. We thus additionally assume that Total (P (X)) holds for any
constant set X.

The � modality is used to express that a formula holds for all time steps.
It is thus analogous to the � modality in temporal logic. It is defined as the
right adjoint to the ¬¬-closure operation on formulas and behaves as an interior
operator. More precisely, for a formula ϕ in context Γ , �ϕ is another formula
in context Γ . In contrast to the . modality, � on formulas does not arise from a
function on Ω and consequently does not commute with substitution, i.e., in gen-
eral (�ϕ) [t/x] is not equivalent to � (ϕ [t/x]), although (�ϕ) [t/x] always implies
� (ϕ [t/x]) which is useful for instantiating universally quantified assumptions.
Thus, to be precise, we would have to annotate the � with the context in which
it is used. However, restricting to contexts consisting of constant types, � does
commute with substitution and since we will only use it in such contexts we will
omit explicit contexts.

The basic rules for the � modality are the following. In particular, note the
first rule which characterizes � as the right adjoint to the ¬¬-closure.

Γ | ¬¬ϕ ` ψ
Γ | ϕ ` �ψ

============
Γ | ϕ ` ψ

Γ | �ϕ ` �ψ−−−−−−−−−−−−
Γ | �ϕ ` ϕ−−−−−−−−−−

Γ | �ϕ ` ��ϕ Γ | ¬¬(�ϕ) ` �ϕ Γ | ¬¬ϕ ` �(¬¬ϕ)

Note that some of the rules can be derived from others. A simple consequence
of the rules is that ¬¬ϕ ↔ �(¬¬ϕ) and ¬¬(�ϕ) ↔ �ϕ. Thus one way to
understand �ϕ is as the largest predicate that implies ϕ and is ¬¬-closed.

Proposition 1. Using the rules for � stated above we can prove the following
in the logic.

�> ↔ > and �⊥ ↔ ⊥ Γ | ∅ ` �(ϕ ∧ ψ)↔ �ϕ ∧�ψ
Γ | ∅ ` �(∀x : X,ϕ)↔ ∀x : X,�ϕ Γ | ∅ ` �(ϕ→ ψ)→ �ϕ→ �ψ

A useful derived introduction rule for the � modality is the well-known �-
introduction rule for S4. It states that if we can prove ϕ using only �’ed facts,
then we can also conclude �ϕ. Formally:

Γ | Ξ ` ϕ
Γ | Ξ ` �ϕ

Ξ = �ϕ1,�ϕ2, . . . ,�ϕn
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τ ::= α | 1 | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | µα.τ | ∀α.τ | ∃α.τ
e ::= x | 〈〉 | 〈e1, e2〉 | inl e | inr e | λx.e | Λ.e | pack e | unfold e | fold e

| ? | proji e | e1 e2 | case (e, x1.e1, x2.e2) | e[] | unpack e1 as x in e2

E ::= − | 〈E, e〉 | 〈v,E〉 | inl E | inr E | packE | projiE | E e | v E | E[]

| case (E, x1.e1, x2.e2) | unpack E as x in e | unfoldE | foldE

Fig. 1. Syntax of Fµ,?: types τ , terms e and evaluation contexts E. inl e and inr e
introduce terms of sum type. case (e, x1.e1, x2.e2) is the pattern matching construct
that eliminates a term e of the sum type with the left branch being e1 and right branch
e2. pack e and unpack e1 as x in e2 introduce and eliminate terms of existential types
and Λ.e and e[] introduce and eliminate terms of universal types.

3 The language Fµ,?

In this section we introduce Fµ,?, a call-by-value functional language akin to
System F, i.e., with impredicative polymorphism, existential and general recur-
sive types, extended with a countable choice expression ?. We work informally
in the logic outlined above except where explicitly stated.

Syntax We assume disjoint, countably infinite sets of type variables, ranged over
by α, and term variables, ranged over by x. The syntax of types, terms and
evaluation contexts is defined in Figure 1. Values v and contexts (terms with a
hole) C can be defined in the usual way. The free type variables in a type ftv(τ)
and free term variables in a term fv(e), are defined in the usual way. The notation
σ[τ/α] denotes the simultaneous capture-avoiding substitution of types τ for
the free type variables α in the type σ; similarly, e[v/x] denotes simultaneous
capture-avoiding substitution of values v for the free term variables x in e. We
define the type of natural numbers as nat = µα.1 +α and the corresponding
numerals as 0 = fold (inl 〈〉) and n+ 1 = fold (inr n) by induction on n.

The judgment∆ ` τ expresses ftv(τ) ⊆ ∆. The typing judgment∆ | Γ ` e : τ
expresses that e has type τ in type variable context ∆ and term variable context
Γ . Typing rules are the same as for system F with recursive types, apart from
the typing of the ?, which has type nat in any well-formed context.

We write Type for the set of closed types τ , i.e. types τ satisfying ftv(τ) = ∅.
We write Val (τ) and Tm (τ) for the sets of closed values and terms of type τ ,
respectively. Stk (τ) denotes the set of evaluation contexts E with the hole of
type τ . The typing of evaluation contexts can be defined as in [4] by an inductive
relation. We write Val and Tm for the set of all closed values and closed terms,
respectively, and Stk for the set of all evaluation contexts.

Using the model in Section 5, we can show that the types of terms, values,
evaluation contexts and contexts are constant sets. We use this fact in the proof
of adequacy in Section 4.

Operational semantics The operational semantics of Fµ,? is given in Figure 2
by a one-step reduction relation e  e′. The rules are standard apart from
the rule for ? which states that the countable choice expression ? evaluates
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proji 〈v1, v2〉 7−→ vi unfold (fold v) 7−→ v

(λx.e) v 7−→ e[v/x] unpack (pack v) as x in e 7−→ e[v/x]

(Λ.e)[] 7−→ e case (inl v, x1.e1, x2.e2) 7−→ e1[v/x1]

? 7−→ n (n ∈ N) case (inr v, x1.e1, x2.e2) 7−→ e2[v/x2]

E[e] E[e′] if e 7−→ e′

Fig. 2. Operational semantics of Fµ,?: basic reductions 7−→ and one step reduction  .

nondeterministically to any numeral n (n ∈ N). We extend basic reduction 7−→
to the single step reduction relation  using evaluation contexts E.

To define the logical relation we need further restricted reduction relations.
These will allow us to ignore most reductions in the definition of the logical
relation, except the ones needed to prove the fundamental property (Corollary 1).

Let  ∗ be the reflexive transitive closure of  . Following [4] we call unfold-
fold reductions those of the form unfold (fold v) 7−→ v, and choice reductions
those of the form ? 7−→ n (n ∈ N). Choice reductions are important because
these are the only ones that do not preserve equivalence. We define

– e
p
 e′ if e ∗ e′ and none of the reductions is a choice reduction;

– e
0
 e′ if e ∗ e′ and none of the reductions is an unfold-fold reduction;

– e
1
 e′ if e ∗ e′ and exactly one of the reductions is an unfold-fold reduction;

– e
p,0
 e′ if e

p
 e′ and e

0
 e′;

– e
p,1
 e′ if e

p
 e′ and e

1
 e′.

The
1
 reduction relation will be used in the stratified definition of divergence

and the other reduction relations will be used to state additional properties of
the logical relation in Lemma 1. Note that although some of the relations are
described informally using negation they can be described constructively in a

positive way. For instance,
p
 can be defined in the same way as the  ∗ but

using a subset of the one step relation  .

Divergence relations We define the logical relation using biorthogonality. As we
explained in the introduction we use two may-divergence predicates, which are,
informally, the negations of the two must-convergence relations from [4]. Thus
we define, in the logic, the stratified may-divergence predicate 7→ as the unique
fixed point of Ψ : P (Tm)→ P (Tm) given as

Ψ(A) =
{
e : Tm

∣∣ ∃e′ : Tm, e
1
 e′ ∧ . (e′ ∈ A)

}
.

Ψ is internally contractive and since Tm is a constant set P (Tm) is total. By
Theorem 1, Ψ has a unique fixed point.

We also define the non-stratified may-divergence predicate ↑ as the greatest
fixed-point of Φ : P (Tm)→ P (Tm) given as

Φ(A) =
{
e : Tm

∣∣ ∃e′ : Tm, e e′ ∧ e′ ∈ A
}
.
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Since Φ is monotone and P (Tm) is a complete lattice, the greatest fixed point
exists by Knaster-Tarski’s fixed-point theorem, which holds in our logic.5 Ob-
serve that Ψ is almost the same as Φ ◦ ., apart from using a different reduction
relation. We write e↑ and e 7→ for e ∈ ↑ and e ∈ 7→, respectively.

The predicates 7→ and ↑ are closed under some, but not all, reductions.

Lemma 1. Let e, e′ : Tm. The following properties hold in the logic GTT.

if e
p
 e′ then e↑ ↔ e′↑ if e

p,0
 e′ then e 7→ ↔ e′ 7→

if e
0
 e′ then e′ 7→ → e 7→ if e

1
 e′ then . (e′ 7→)→ e 7→

Must-contextual approximation Contexts can be typed as second-order terms,
by means of a typing judgment of the form C : (∆ | Γ V τ)# (∆′ | Γ ′ V σ),
stating that whenever ∆ | Γ ` e : τ holds, ∆′ | Γ ′ ` C[e] : σ also holds. The typ-
ing of contexts can be defined as an inductive relation defined by suitable typing
rules, which we omit here due to lack of space; see [2]. We write C : (∆ | Γ V τ)
to mean there exists a type σ, such that C : (∆ | Γ V τ)# (∅ | ∅V σ) holds.

We define contextual must-approximation using the may-divergence predi-
cate. This is in contrast with the definition in [4] which uses the must-convergence
predicate. However externally, in the model, the two definitions coincide.

Definition 3 (Must-contextual approximation). In GTT, we define must-
contextual approximation ∆ | Γ ` e1 .ctx

⇓ e2 : τ as

∆ | Γ ` e1 : τ ∧∆ | Γ ` e2 : τ ∧ ∀C, (C : (∆ | Γ V τ)) ∧ C[e2]↑ → C[e1]↑.

Note the order in the implication: if C[e2] may-diverges then C[e1] may-diverges.
This is the contrapositive of the definition in [4] which states that if C[e1] must-
converges then C[e2] must-converges. Must-contextual approximation defined
explicitly using contexts can be shown to be the largest compatible adequate
and transitive relation, so it coincides with contextual approximation in [4].

4 Logical relation

In this section we give an abstract account of the concrete step-indexed model
from [4] by defining a logical relation interpretation of types in GTT. The result
is a simpler model without a proliferation of step-indices, as we will demonstrate
in the example at the end of the section.

Relational interpretation of types Let Type(∆) = {τ | ∆ ` τ} be the set
of types well-formed in context ∆. Given τ, τ ′ ∈ Type let VRel (τ, τ ′) =
P (Val (τ)×Val (τ ′)), TRel (τ, τ ′) = P (Tm (τ)×Tm (τ ′)) and SRel (τ, τ ′) =
P (Stk (τ)× Stk (τ ′)). We implicitly use the inclusion VRel (τ, τ ′) ⊆ TRel (τ, τ ′).
For a type variable context ∆, we define VRel (∆) to be{

(ϕ1, ϕ2, ϕr)
∣∣ ϕ1, ϕ2 : ∆→ Type,∀α ∈ ∆,ϕr(α) ∈ VRel (ϕ1(α), ϕ2(α))

}
5 Knaster-Tarski’s fixed point theorem holds in the internal language of any topos.
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J∆ ` αK (ϕ) = ϕr(α)

J∆ ` 1K (ϕ) = Id1

J∆ ` τ1 × τ2K (ϕ) = {(〈v, u〉, 〈v′, u′〉) | (v, v′) ∈ J∆ ` τ1K (ϕ) , (u, u′) ∈ J∆ ` τ2K (ϕ)}
J∆ ` τ1 + τ2K (ϕ) = {(inl v, inl v′) | (v, v′) ∈ J∆ ` τ1K (ϕ)}∪

{(inru, inru′) | (u, u′) ∈ J∆ ` τ2K (ϕ)}
J∆ ` τ1 → τ2K (ϕ) = {(λx.e, λy.e′) | ∀(v, v′) ∈ J∆ ` τ1K (ϕ),(

e[v/x], e′[v′/y]
)
∈ J∆ ` τ2K (ϕ)>>}

J∆ ` ∀α.τK (ϕ) = {(Λ.e, Λ.e′) | ∀σ, σ′ ∈ Type, ∀s ∈ VRel
(
σ, σ′) ,(

e, e′
)
∈ J∆,α ` τK (ϕ

[
α 7→ (σ, σ′, s)

]
)
>>}

J∆ ` ∃α.τK (ϕ) = {(pack v, pack v′) | ∃σ, σ′ ∈ Type, ∃s ∈ VRel
(
σ, σ′) ,(

v, v′
)
∈ J∆,α ` τK (ϕ

[
α 7→ (σ, σ′, s)

]
)}

J∆ ` µα.τK (ϕ) = fix
(
λs.{(fold v, fold v′) | .

(
(v, v′) ∈ J∆,α ` τK (ϕ [α 7→ s])

)
}
)

where the ·>> : VRel (τ, τ ′) → TRel (τ, τ ′) is defined with the help of ·> :
VRel (τ, τ ′)→ SRel (τ, τ ′) as follows

r> = {(E,E′) | ∀(v, v′) ∈ r, E′[v′]↑ → E[v] 7→}

r>> = {(e, e′) | ∀(E,E′) ∈ r>, E′[e′]↑ → E[e] 7→}.

Fig. 3. Interpretation of types. All the relations are on typeable terms and contexts.

where the first two components give syntactic types for the left and right hand
sides of the relation and the third component is a relation between those types.
The interpretation of types, J· ` ·K, is shown in Figure 3. The definition is by
induction on the judgement ∆ ` τ . Given a judgment ∆ ` τ , and ϕ ∈ VRel (∆),
we have J∆ ` τK (ϕ) ∈ VRel (ϕ1(τ), ϕ2(τ)) where ϕ1 and ϕ2 are the first two
components of ϕ, and ϕi(τ) denotes substitution of types in ϕi for free type
variables in τ . Since we are working in the logic GTT, the interpretations of all
type constructions are simple and intuitive. For instance, functions are related
when they map related values to related results, two values of universal type are
related if they respect all value relations. In particular, there are no admissibility
requirements on the relations, nor any step-indexing — but just a use of . in
the interpretation of recursive types, to make it well-defined as a consequence of
Theorem 1, using that the type P (Tm×Tm) is total.

The definition of >>-closure is where we connect operational semantics and
the . modality, using the stratified may-divergence predicate 7→. >>-closed rela-
tions are closed under some reductions. More precisely, the following holds.

Lemma 2. Let τ, τ ′ : Type and r ∈ VRel (τ, τ ′).

– If e
p,0
 e1 and e′

p
 e′1 then (e, e′) ∈ r>> ↔ (e1, e

′
1) ∈ r>>.

– If e
1
 e1 then for all e′ : Tm, if .((e1, e

′) ∈ r>>) then (e, e′) ∈ r>>.

We use this fact extensively in the proofs of the fundamental property and
example equivalences.
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In order to define logical relations, we need first to extend the interpreta-
tion of types to the interpretation of contexts (note that in particular, related
substitutions map into well-typed values):

J∆ ` Γ K (ϕ) = {(γ, γ′) | γ, γ′ : Valdom(Γ ),

∀x ∈ dom (Γ ) , (γ(x), γ′(x)) ∈ J∆ ` Γ (x)K (ϕ)}

The logical relation and its fundamental property We define the logical relation
on open terms by reducing it to relations on closed terms by substitution.

Definition 4 (Logical relation). ∆ | Γ ` e1 .log
⇓ e2 : τ if

∀ϕ ∈ VRel (∆) ,∀(γ, γ′) ∈ J∆ ` Γ K (ϕ), (e1γ, e2γ
′) ∈ J∆ ` τK (ϕ)

>>
.

To prove the fundamental property of logical relations and connect the logical
relation to contextual-must approximation we start with some simple properties
relating evaluation contexts and relations. All the lemmata are essentially of
the same form: given two related evaluation contexts at a suitable type, the
contexts extended with an elimination form are also related at a suitable type.
We only state the case for unfold , since it shows the interplay between unfold-
fold reductions and the stratified may divergence predicate.

Lemma 3. If (E,E′) ∈ J∆ ` τ [µα.τ/α]K (ϕ)
>

then

(E ◦ (unfold []), E′ ◦ (unfold [])) ∈ J∆ ` µα.τK (ϕ)
>
.

Proof. Given (fold v, fold v′) ∈ J∆ ` µα.τK (ϕ) suppose E′ [unfold (fold v′)] ↑.
By Lemma 1 we have E′ [v′] ↑ and so .(E′[v′]↑). By definition of interpretation
of recursive types we have . ((v, v′) ∈ J∆ ` τ [µα.τ/α]K (ϕ)). Thus .(E[v] 7→) and
so by Lemma 1 we have E[unfold (fold v)] 7→. ut

Note that the proof would not work, were we to use the ↑ relation in place of 7→
in the definition of the >> closure since the last implication would not hold.

Proposition 2. The logical approximation relation is compatible with the typing
rules (see also [6, Prop. 2.4.17]).

Proof. We only give two cases, to show how to use the context extension lemmata.

Elimination of recursive types: we need to show

∆ | Γ ` e .log
⇓ e′ : µα.τ

∆ | Γ ` unfold e .log
⇓ unfold e′ : τ [µα.τ/α]

.

So take ϕ ∈ VRel (∆) and (γ, γ′) ∈ J∆ ` Γ K (ϕ). Let f = eγ and f ′ = e′γ′. We

have to show (unfold f, unfold f ′) ∈ J∆ ` τ [µα.τ/α]K (ϕ)
>>

. So take (E,E′) ∈
J∆ ` τ [µα.τ/α]K (ϕ)

>
. By assumption (f, f ′) ∈ J∆ ` µα.τK (ϕ)

>>
so it suffices

to show (E ◦ (unfold []), E′ ◦ (unfold [])) ∈ J∆ ` µα.τK (ϕ)
>

and this is exactly
the content of Lemma 3.
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The ? expression: we need to show ∆ | Γ ` ? .log
⇓ ? : nat. It is easy to see by

induction that for all n ∈ N, (n, n) ∈ J` natK. So take (E,E′) ∈ J` natK> and
assume E′[?]↑. By definition of the ↑ relation there exists an e′, such that ? e′

and E′[e′]↑. Inspecting the operational semantics we see that e′ = n for some
n ∈ N. This implies E[n] 7→ and so by Lemma 1 we have E[?] 7→. ut

Corollary 1 (Fundamental property of logical relations). If ∆ | Γ ` e : τ

then ∆ | Γ ` e .log
⇓ e : τ

Proof. By induction on the typing derivation ∆ | Γ ` e : τ , using Prop. 2. ut

We need the next corollary to relate the logical approximation relation to must-
contextual approximation.

Corollary 2. For any expressions e, e′ and context C, if ∆ | Γ ` e .log
⇓ e′ : τ

and C : (∆ | Γ V τ)# (∆′ | Γ ′ V σ) then ∆′ | Γ ′ ` C[e] .log
⇓ C[e′] : τ ′.

Proof. By induction on the judgment C : (∆ | Γ V τ)# (∆′ | Γ ′ V σ), using
Proposition 2. ut

Adequacy We now wish to show soundness of the logical relation with respect
to must-contextual approximation. However, the implication

∆ | Γ ` e .log
⇓ e′ : τ → ∆ | Γ ` e .ctx

⇓ e′ : τ

does not hold, due to the different divergence relations used in the definition of
the logical relation. To see precisely where the proof fails, let us attempt it. Let
∆ | Γ ` e .log

⇓ e′ : τ and take a well-typed closing context C with result type σ.

Then by Corollary 2, ∅ | ∅ ` C[e] .log
⇓ C[e′] : σ. Unfolding the definition of the

logical relation we get (C[e], C[e′]) ∈ J∅ ` σK>>. It is easy to see that (−,−) ∈
J∅ ` σK> and so we get by definition of >> that C[e′]↑ → C[e] 7→. However the
definition of contextual equivalence requires the implication C[e′]↑ → C[e]↑,
which is not a consequence of the previous one.

Intuitively, the gist of the problem is that ↑ defines a time-independent pred-
icate, whereas 7→ is time-dependent, since it is defined by guarded recursion.
However, in the model in Section 5, we can show the validity of a formula ex-
pressing a connection between ↑ and 7→:
Lemma 4. e : Tm | ∅ ` �(e 7→)→ e↑ holds in the logic GTT.

Thus we additionally assume this principle in our logic. Note that this lemma
is not valid in the logic of the topos of trees [5] and this is the reason we must
work in the logic of Sh (ω1). We sketch a proof of the lemma at the end of
Section 5 which shows the role of � and why the lemma does not hold in the
topos of trees. Using Lemma 4 we are led to the following corrected statement
of adequacy using the � modality.6

6 Readers who are familiar with concrete step-indexed models will note that the �
modality captures the universal quantification over all steps used in the the definition
of concrete step-indexed logical relations.
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Theorem 2 (Adequacy). If e and e′ are of type τ in context ∆ | Γ then

�(∆ | Γ ` e .log
⇓ e′ : τ) implies ∆ | Γ ` e .ctx

⇓ e′ : τ .

To prove this theorem we first observe that all the lemmata used in the proof
of Corollary 2 are proved in constant contexts, using only other constant facts.
Hence, Corollary 2 can be strengthened, yielding the following restatement.

Proposition 3. �[∀∆,∆′, Γ, Γ ′, τ, σ, C, e, e′, C : (∆ | Γ V τ)# (∆′ | Γ ′ V σ)

→ ∆ | Γ ` e .log
⇓ e′ : τ → ∆′ | Γ ′ ` C[e] .log

⇓ C[e′] : τ ′].

Note that all the explicit universal quantification in the proposition is over con-
stant types. One additional ingredient we need to complete the proof is the fact
that ↑ is ¬¬-closed, i.e. e↑ ↔ ¬¬(e↑). We can show this in the logic using the
fact that ↑ is the greatest post-fixed point by showing that ¬¬↑ is another one.
This fact further means that �(e↑) ↔ (e↑) (using the adjoint rule relating ¬¬
and � in Section 2). We are now ready to proceed with the proof of Theorem 2.

Proof (Theorem 2). Continuing the proof we started above we get, using Propo-
sition 1, that �(C[e′]↑ → C[e] 7→) and thus also �(C[e′]↑)→ �(C[e] 7→). Moreover,
�(C[e′]↑) ↔ C[e′]↑ and, by Lemma 4, �(C[e] 7→) → C[e]↑. We thus conclude
C[e′]↑ → C[e]↑, as required. ut

Thus, if we can prove that e and e′ are logically related relying only on
constant facts we can use this theorem to conclude that e must-contextually
approximates e′. In particular, the fundamental property (Corollary 1) can be
strengthened to a “boxed” statement.

Completeness As in [4] we also get completeness with respect to contextual ap-
proximation. The proof proceeds as in [4] via the notion of CIU-approximation [15,
4]. This property relies on the fact that we have built the logical relation using
biorthogonality and using typeable realizers.

Theorem 3. For any ∆, Γ , e, e′ and τ ,

∆ | Γ ` e .CIU
⇓ e′ : τ ↔ ∆ | Γ ` e .ctx

⇓ e′ : τ ↔ �(∆ | Γ ` e .log
⇓ e′ : τ)

Applications We can now use the logical relation to prove contextual equiva-
lences. Indeed, the accompanying technical report [6] provides internal proofs of
all the examples done in the concrete step-indexed model in [4]; these proofs are
simpler than the ones in [4]. As an example, in this paper we include the proof of
syntactic minimal invariance for must-equivalence. Remarkably, the proof below
is just as simple as the proof of the minimal invariance property in the abstract
account of a step-indexed model for the deterministic language Fµ [8].

Let fix : ∀α, β.((α→β)→(α→β))→ (α→β) be the term Λ.Λ.λf.δf (fold δf )
where δf is the term λy.let y′ = unfold y in f (λx.y′ y x).

Consider the type τ = µα.nat+α→ α. Let id = λx.x and consider the term

f ≡ λh, x.case (unfoldx, y.fold (inl y), g.fold (inrλy.h(g(h y)))) .
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We show that fix[][] f .log
⇓ id : τ → τ . The other direction is essentially the

same. Since we prove this in the context of constant facts we can use Theorem 3
to conclude that the terms are contextually equivalent.

We show by Löb induction that (fix[][] f, id) ∈ Jτ → τK>>. It is easy to see

that fix[][] f
p,1
 λx.case (unfoldx, y.fold (inl y), g.fold (inrλy.h(g(h y))))

where h = λx.δf (fold δf )x. Let

ϕ = λx.case (unfoldx, y.fold (inl y), g.fold (inrλy.h(g(h y)))) .

We now show directly that (ϕ, id) ∈ Jτ → τK which suffices by Lemma 2.
Let us take (u, u′) ∈ JτK. By the definition of the interpretation of recursive

and sum types there are two cases:

– u = fold (inln) and u′ = fold (inln) for some n ∈ N: immediate.
– u = fold (inr g), u′ = fold (inr g′) for some g, g′ such that .((g, g′) ∈

Jτ → τK). We then have that ϕu
p,1
 fold (inrλy.h(g(h y))) and id u′

p
 u′

and so it suffices to show . (λy. (h(g(h y)), g′) ∈ Jτ → τK). We again show
that these are related as values so take .((v, v′) ∈ JτK) and we need to

show .
(

(h(g(h v)), g′ v′) ∈ JτK>>
)

. Take .((E,E′) ∈ JτK>). Löb induction

hypothesis gives us that .((h′, id) ∈ Jτ → τK>>), where h′ is the body of h,

i.e h = λx.h′ x. It is easy to see that this implies .((h, id) ∈ Jτ → τK>>)
and so by extending the contexts three times using lemmata analogous to

Lemma 3 we get .
(

(E[h (g (h []))], E′[g′ []]) ∈ JτK>
)

.

So, assuming .(E′[g′ v′]↑) we get .(E[h (g (h v))] 7→), concluding the proof.

5 The model for GTT

In this section, we present a model for the logic GTT, where all the properties
we have used in the previous sections are justified. The model we consider is
the topos of sheaves over the first uncountable ordinal ω1 (in fact, any ordinal
α ≥ ω1 would suffice). We assume some basic familiarity with topos theory, on
the level described in [14]. We briefly recall the necessary definitions.

The objects of Sh (ω1) are sheaves over ω1 considered as a topological space
equipped with the Alexandrov topology. Concretely, this means that objects of
Sh (ω1) are continuous functors from (ω1 + 1)op to Set. We think of ordinals as
time, with smaller ordinals being the future. The restriction maps then describe
the evolution of elements through time.

Sh (ω1) is a full subcategory of the category of presheaves PSh (ω1 + 1).
The inclusion functor i has a left adjoint a : PSh (ω1 + 1)→ Sh (ω1) called the
associated sheaf functor. Limits and exponentials are constructed as in presheaf
categories. Colimits are not constructed pointwise as in presheaf categories, but
they require also the application of the associated sheaf functor.

There is an essential geometric morphism Π1 a ∆ a Γ : Sh (ω1) → Set,
with ∆ the constant sheaf functor, Γ the global sections functor and Π1(X) =
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X(1) the evaluation at 1 (we consider 0 to be the first ordinal). Given a set a,
the constant sheaf ∆(a) is not the constant presheaf: rather it is equal to the
singleton set 1 at stage 0, and to a at all other stages. For a sheaf X, an element
ξ ∈ X(ν) and β ≤ ν we write ξ|β for the restriction X(β ≤ ν)(ξ).

Analogously to the topos of trees [5], there is a “later” modality on types, i.e.
a functor I : Sh (ω1)→ Sh (ω1) defined as (we consider 0 a limit ordinal)

IX(ν + 1) = X(ν), IX(α) = X(α) for α limit ordinal.

There is an obvious natural transformation nextX : X → IX.
The subobject classifier Ω is given by Ω(ν) = {β

∣∣ β ≤ ν} and its restriction
maps are given by minimum. There is a natural transformation . : Ω → Ω given
as .ν(β) = min{β + 1, ν}.

Kripke-Joyal semantics [9] is a way to translate formulas in the logic to
statements about objects and morphisms of Sh (ω1); we refer to [14, Section
VI.5] for a detailed introduction and further references. We now briefly explain
the Kripke-Joyal semantics of GTT.

Let X be a sheaf and ϕ,ψ formulas in the internal language with a free
variable of type X. Intuitively, for an ordinal ν and an element ξ ∈ X(ν),
ν 
 ϕ(ξ) means that ϕ holds for ξ at stage ν. A formula ϕ is valid if it holds for
all ξ and at all stages.

Let ν ≤ ω1 and ξ ∈ X(ν). The rules of Kripke-Joyal semantics are the usual
ones (see, e.g., [14, Theorem VI.7.1]), specialized for our particular topology:

– ν 
 ⊥ iff ν = 0;
– ν 
 > always;
– ν 
 ϕ(t)(ξ) iff JϕKν (JtKν(ξ)) = ν, for a predicate symbol ϕ on X;
– ν 
 ϕ(ξ) ∧ ψ(ξ) iff ν 
 ϕ(ξ) and ν 
 ψ(ξ);
– ν 
 ϕ(ξ) ∨ ψ(ξ) iff ν 
 ϕ(ξ) or ν 
 ψ(ξ);
– ν 
 ϕ(ξ)→ ψ(ξ) iff for all β ≤ ν, β 
 ϕ(ξ|β) implies β 
 ψ(ξ|β);
– ν 
 ¬ϕ(ξ) iff for all β ≤ ν, β 
 ϕ(ξ|β) implies β = 0.

Note that 0 
 ϕ for any ϕ, as is usual in Kripke-Joyal semantics for sheaves
over a space: intuitively, the stage 0 represents the impossible world. Moreover,
if ϕ is a formula with free variables x : X and y : Y , ν ≤ ω1 and ξ ∈ X(ν) then:

– For ν a successor ordinal: ν 
 ∃y : Y, ϕ(ξ, y) iff there exists ξ′ ∈ Y (ν) such
that ν 
 ϕ(ξ, ξ′);

– For ν a limit ordinal: ν 
 ∃y : Y, ϕ(ξ, y) iff for all β < ν there exists
ξβ ∈ Y (β) such that β 
 ϕ(ξ|β , ξβ);

– ν 
 ∀y : Y, ϕ(ξ, y) iff for all β ≤ ν and for all ξβ ∈ Y (β): β 
 ϕ(ξ|β , ξβ).

The semantics of . is as follows. Let ϕ be a predicate on X, then

ν 
 .ϕ(α) iff for all β < ν, β 
 ϕ(α|β).

For successor ordinals ν = ν′ + 1 this reduces to

ν + 1 
 .ϕ(α) iff ν′ 
 ϕ(α|ν′).
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The predicate Total (X) in Definition 1 internalizes the property that all X’s
restriction maps are surjections which intuitively means that elements at any
stage β evolve from elements in the past. Total sheaves are also called flabby in
homological algebra literature, but we choose to use the term total since it was
used in previous work on guarded recursion to describe an analogous property.

The properties of . stated in Section 2 can be proved easily using the Kripke-
Joyal semantics. The rules are similar to the rules in [5, Theorem 2.7], except
the case of the existential quantifier in which the converse implication does not
hold, even if we restrict to total and inhabited types, or even to constant sets.
As a consequence, we cannot prove the internal Banach’s fixed point theorem in
the logic in the same way as in the topos of trees, cf. [5, Lemma 2.10].

In contrast to that in the topos of trees [5, Theorem 2.9], which requires
the type X only to be inhabited, the internal Banach’s fixed point theorem in
Sh (ω1) (Theorem 1) has stronger assumptions: we require X to be total, which
implies that it is inhabited. The additional assumption seems to be necessary
and is satisfied in all the instances where we use the theorem. In particular, for
a constant X, P (X) is total.

The operator ¬¬ : Ω → Ω gives rise to a function ¬¬X on the lattice of
subobjects Sub (X). In Sh (ω1), ¬¬X preserves suprema7 on each Sub (X) and
therefore has a right adjoint �X : Sub (X)→ Sub (X) defined as

�XP =
∨{

Q
∣∣ ¬¬Q ≤ P} .

If X = ∆(a) then �XP has a simpler description:

�∆(a)(P )(ν) =

{
1 if ν = 0⋂ω1

β=1 P (β) otherwise.

Thus for a predicate P on a constant set ∆(a), �(P ) contains only those elements
for which P holds at all stages.

However, in contrast to ¬¬ which commutes with reindexing, � does not.
There is a general reason for this: in any category with pullbacks, any defla-
tionary operation � that preserves the top element and is natural, i.e. com-
mutes with reindexing, is necessarily the identity [16, Proposition 4.2]. However
∆(f)∗

(
�∆(a) (P )

)
= �∆(b) (∆(f)∗ (P )) for any f : a → b in Set and since ∆

preserves products we do get that � in the logic commutes with substitution
when restricted to constant contexts.

The external interpretation of ↑ is exactly the negation of the must-conver-
gence predicate ⇓ from [4]. In particular, ↑ is a constant predicate. In contrast,

7→(ν) is a set of expressions e such that there exists a reduction of length at least
ν starting with e. This can easily be seen using the description of Kripke-Joyal
semantics above. Thus, 7→ is externally the pointwise complement of the stratified
must-convergence predicate {⇓β}β<ω1 from [4]. Then, the proof that � 7→ → ↑
corresponds to the proof that ⇓⊆

⋃
β<ω1

⇓β in [4]. Here we technically see the
need for indexing over ω1.

7 Recall that this is not the case in every topos.
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