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Abstract. We consider Boolean exact threshold functions defined by
linear equations, and in general degree d polynomials. We give upper
and lower bounds on the maximum magnitude (absolute value) of the
coefficients required to represent such functions. These bounds are very
close. In the linear case in particular they are almost matching. This
quantity is the same as the maximum magnitude of integer coefficients
of linear equations required to express every possible intersection of a
hyperplane in Rn and the Boolean cube {0, 1}n, or in the general case
intersections of hypersurfaces of degree d in Rn and the Boolean cube
{0, 1}n. In the process we construct new families of ill-conditioned ma-
trices. We further stratify the problem (in the linear case) in terms of
the dimension k of the affine subspace spanned by the solutions, and give
upper and lower bounds in this case as well. Our bounds here in terms
of k leave a substantial gap, a challenge for future work.

1 Introduction

A (linear) exact threshold function is a Boolean function that decides whether a
real valued linear equality in its Boolean inputs holds. The related class of (linear)
threshold functions consist of those Boolean functions that decide whether a real
valued linear inequality in their Boolean inputs holds. To be more precise, an
exact threshold function on n Boolean inputs x1, . . . , xn is a Boolean function
that decides whether w1x1 + · · · + wnxn = t, where w1, . . . , wn are real valued
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weights, and t is a real valued threshold. A threshold function on n Boolean inputs
x1, . . . , xn is then a Boolean function that decides whether w1x1+· · ·+wnxn ≥ t.

Threshold functions have been studied extensively in many areas of computer
science (cf. [11, 14, 13]). Less attention has been given to exact threshold func-
tions, but they have been considered in Boolean circuit complexity [4, 6–9] and
in structural complexity theory [1]. We believe that studying exact threshold
functions in itself is natural and interesting. However, an important reason for
this is that such a study may bring additional insight to the study of thresh-
old functions. For the results of [4, 6–8] proved for exact threshold functions, it
is not currently known whether they also hold for threshold functions. A long
standing open question for threshold functions is to prove good lower bounds
for depth two circuits. Recent work [9] shows that circuit classes defined using
exact threshold functions seamlessly interleave in the usual hierarchy of thresh-
old circuit classes. In particular the class of depth two exact threshold circuits
is shown to be a subclass of depth two threshold circuits. For this class no good
lower bounds are known as well.

One can readily extend the notions of exact threshold functions as well as
threshold functions to higher degree. A polynomial exact threshold function of
degree d is a Boolean function that decides whether a real valued polynomial of
degree d vanishes when evaluated on the Boolean input. Polynomial threshold
functions are defined as an analogous generalization of threshold functions.

In this work we are interested in exact threshold functions from the funda-
mental perspective of representations of Boolean functions. More precisely, we
are interested in the magnitude (absolute value) of integer weights needed to
represent any possible exact threshold function. It is not hard to see that with-
out loss of generality one may assume that the real valued weights and threshold
defining an exact threshold function are in fact integers (as is also the case with
threshold functions), thereby making the question we study well–defined.

The analogous question of the magnitude of weights required for threshold
function has a long history of research. An upper bound on the magnitude of
integer weights required to represent any threshold function was obtained by
Muroga, Toda and Takasu [12] (cf. [13]). They showed that weights of magnitude
≤ (n + 1)(n+1)/2/2n are sufficient. Also, several examples of explicit functions
that require weights of magnitude 2Ω(n) are known [13, 14]. The existence of
such functions may also be established by a counting argument, since there are
at least 2n(n−1)/2 threshold functions on n variables [18, 17].

An almost optimal lower bound was obtained by H̊astad [10]. Let n be a
power of 2. Then H̊astad constructed a threshold function requiring an integer
weight of magnitude at least (1/n)e−4nβ

nn/2/2n, where β = log(3/2). Thus in
the case when n is a power of 2 the upper bound and this lower bound differ
only by a subexponential factor. Generalizing this work, for any constant d, [16]
constructed a polynomial threshold function of degree d that requires integer
weights of magnitude nΩ(nd).

Alon and Vũ [2], building on the techniques of H̊astad, gave a new con-
struction of ill-conditioned matrices. For a non-singular n × n matrix A, let
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B = A−1 = (bij) and define χ(A) = maxi,j |bij |. Define further χ1(n) as the
maximum of χ(A) over all non-singular n × n 0/1 matrices A. Define χ2(n) to
be the analogous quantity where (−1, 1) matrices are considered instead.

With these definitions, Alon and Vũ provide for every n an explicit n × n
(0, 1) matrix A1 and an explicit n × n (−1, 1) matrix A2 such that χ(Ai) ≥
nn/2/2n(2−o(1)) for i = 1, 2. When n is a power of 2 these lower bounds may
be improved to nn/2/2n(1−o(1)). Upper bounds for χi(n) are derived from the
Hadamard inequality.

Theorem 1 (Alon and Vũ). n
n
2 /2n(2−o(1)) ≤ χi(n) for i = 1, 2.

χ1(n) ≤ n
n
2 /2n−1, and χ2(n) ≤ (n− 1)

n−1
2 /2n−1.

Alon and Vũ are able to apply their construction of ill-conditioned matrices to
answer questions about flat simplices, weights of threshold functions, coin weigh-
ing, and indecomposable hypergraphs. In particular, they construct a threshold
function on n variables that requires a weight of magnitude ≥ nn/2/2n(2−o(1)).

Let maxwT (n) denote the minimal W such that every possible possible
threshold function on n variables can be realized using integer weights of mag-
nitude ≤ W . We summarize the above discussion in the following theorem.

Theorem 2 (Muroga et al.; H̊astad; Alon and Vũ).
n

n
2 /2n(2−o(1)) ≤ maxwT (n) ≤ (n + 1)

n+1
2 /2n.

We are now in position to state our first theorem. We define maxwE(n)
for exact threshold functions as the analogous quantity of maxwT (n). For this
quantity we obtain the following upper and lower bounds.

Theorem 3. n
n
2 /2n(2−o(1)) ≤ maxwE(n) ≤ n

n
2 +1.

As is evident from Theorems 1, 2 and 3, the quantities χi(n), maxwT (n) and
maxwE(n) are very close, in fact they are equal up to an exponential factor.
Furthermore, when n is a power of 2, the bounds for χi(n) and maxwT (n) differ
only by a subexponential factor. We do not know if the same holds for maxwE(n).

While some of our methods are related to the methods employed in the
study of threshold functions, we do not see an explicit relationship between the
quantities maxwT (n) and maxwE(n). The proofs of Theorem 2 and Theorem 3
in fact show that χ2(n) ≤ maxwT (n) and χ1(n−1) ≤ maxwE(n), but we do not
know whether it is possible to turn a threshold function that requires certain
magnitude into an exact threshold function requiring a similar magnitude or
conversely.

A property that seems to be unique to (linear) exact threshold functions is
that we can speak of the dimension of such functions. For a given exact threshold
function f defined by a linear equation w1x1 + · · ·+ wnxn = t, consider the real
affine space V generated by the points of the Boolean cube that satisfy the
equation. We can then define the dimension of f to be the dimension of V .

Let maxwE(n, k) denote the minimal W such that every exact threshold func-
tion of dimension k of n Boolean variables can be realized using integer weights
of magnitude ≤ W . Our second result gives the following for this quantity.
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Theorem 4. For all n and all 1 ≤ k ≤ n, (bn
k ck−1)/2k ≤ maxwE(n, k) ≤ n2k

.

For polynomial exact threshold functions, let maxwE
d (n) denote the magni-

tude of weights required to represent every possible exact degree d polynomial
threshold function on n variables. Our final result is the following generalized
bounds.

Theorem 5. n
1
2 nd

/22nd+o(nd)+d ≤ maxwE
d (2dn) ≤ n

dnd

2 +d.

This result is analogous to results for threshold functions, see [16]. For the lower
bounds in this theorem we prove a specific generalization of Theorem 1.

The remainder of the paper is organized as follows. In Section 2 we state
precisely the definitions we use and present some simple observations. In Section
3.1 we provide an example of a function of an exact threshold function that
requires exponential magnitude of weights by an elementary argument. We prove
Theorem 3 in Section 3.2. The proof of Theorem 4 is given in Sections 3.3 and
3.4 respectively. Theorem 5 is proved in Section 3.5. We conclude with open
problems in Section 4.

2 Preliminaries

We consider here a Boolean function f to be a function f : {0, 1}n → {0, 1}.
We say that a Boolean function f on n variables is an exact threshold function
if there exist real numbers w1, . . . , wn (the weights) and a real number t (the
threshold value), such that f(x) = 1 if and only if

∑n
i=1 wixi = t, for all x ∈

{0, 1}n. We may say that the list of weight w1, . . . , wn and the threshold t as
well as the expression w1x1 + · · · + wnxn = t are a realization of the function
f . Similarly, a Boolean function f on n variables is a threshold function if there
exist real numbers w1, . . . , wn and a real number t, such that f(x) = 1 if and
only if

∑n
i=1 wixi ≥ t for any x ∈ {0, 1}n.

One may observe that without loss of generality it can be assumed that the
real valued weights as well as the real valued threshold are in fact integers. Often
when considering threshold functions one considers the Boolean cube {−1, 1}n

instead of {0, 1}n as we do in this work. This is of no consequence to the possible
weights of exact threshold and threshold functions. This is elaborated on in
Appendix A. Furthermore, since, in this work we are only interested in the
weights of exact threshold functions, we may without loss of generality restrict
our attention to exact threshold functions f for which f(0, . . . , 0) = 1. Again,
this is elaborated on in Appendix A.

Identifying a Boolean function f with the subset f−1(1), an exact threshold
function corresponds to the intersection of a hyperplane in Rn with the Boolean
n-cube {0, 1}n, and in the higher degree case an intersection with a degree d
hypersurface. In the linear case, from the discussion above, for studying weights
of exact threshold functions we may restrict our attention to affine spaces that
are in fact subspaces of Rn and are spanned by vectors of the Boolean cube
{0, 1}n. Because of this fact we will mainly phrase our theorems in vector space
terminology.
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3 Weights of an Exact Threshold Function

3.1 Example

An interesting example of an exact threshold function is the (sequence) equal-
ity function. Define the equality function EQ on 2n variables x1, . . . , xn and
y1, . . . , yn by EQ(x, y) = 1 if and only if xi = yi for all i.

It turns out that the set of weights that realize this exact threshold function
corresponds precisely to solutions to the well known problem of finding n positive
integers a1 < · · · < an such that all sums of the form

∑
i∈I ai are distinct. We

explain this correspondence in Appendix B. Using this insight it is easy to see
that weights of exponential magnitude are needed to realize the EQ function.

3.2 Upper and Lower Bounds for the Linear Case

Before proving the upper bound, we state three lemmas. Their proofs may be
found in Appendices C, D and E.

Lemma 1 (Faddeev and Sominskii [5]). Let A be a n × n matrix with all
entries 0 or 1. Then |det(A)| ≤ (n + 1)

n+1
2 /2n.

Lemma 2. Let v1, . . . , vn−1 ∈ {0, 1}n be linearly independent. Then there exist
integers w1, . . . , wn such that the equation w1x1 + · · · + wnxn = 0, defines the
linear subspace span({v1, . . . , vn−1}), and satisfy |wi| ≤ n

n
2 /2n−1.

Lemma 3. Let V be a vector space and let k = n−dim(span(V ∩{0, 1}n)). Then
there exist vector spaces V1, . . . , Vk such that dim(span(Vi∩{0, 1}n)) = n−1 for
all i and V ∩ {0, 1}n =

(⋂k
i=1 Vi

)
∩ {0, 1}n.

Theorem 6. Let V be a vector space in Rn. Then there exist integers w1, . . . , wn

such that for all x ∈ {0, 1}n we have x ∈ V if and only if w1x1 + · · ·+wnxn = 0
and furthermore satisfy |wi| ≤ n

n
2 +1 for all i.

Thus every exact threshold function f on n variables can be realized using
integer weights of absolute value at most n

n
2 +1 as well.

Proof. Let k = n−dim(span(V ∩{0, 1}n)). Then by Lemma 3 there exist vector
spaces V1, . . . , Vk of dimension n− 1 spanned by vectors from {0, 1}n such that
V ∩ {0, 1}n =

(⋂k
i=1 Vi

)
∩ {0, 1}n. For each Vi, by Lemma 2 there exist integers

wij such that for all x ∈ {0, 1}n we have x ∈ Vi if and only if the equation
wi1x1 + · · · + winxn = 0 is satisfied, and furthermore |wij | ≤ n

n
2 /2n−1. We

conclude the proof by the probabilistic method.
For i = 1, . . . , k, pick ci ∈ {−2n−1, . . . , 2n−1} uniformly at random, and

consider the combined equation
∑k

i=1

∑n
j=1 ciwijxj = 0. Clearly, every x ∈

V ∩{0, 1}n must satisfy this equation, since every such x satisfies the individiual
equations for all i.

Now consider x ∈ {0, 1} \ V . There must be some i such that x 6∈ Vi, and
for this i the chosen x does not satisfy the corresponding equation. This implies
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that the chosen x satisfies the combined equation with probability < 2−n. Since
|{0, 1}n\V | ≤ 2n, the probability that some x ∈ {0, 1}n\V satisfies the combined
equation is < 1, and thus there is a fixed choice ĉ for c with this property. Hence,
wj =

∑k
i=1 ĉiwij satisfies the requirements, since each |ĉiwij | ≤ n

n
2 . ut

Ziegler [19] using the results of Theorem 1 gave a lower bound on the maximal
coefficient of an inequality defining a facet of a full-dimensional (0, 1) polytope
in Rn. Since the polytope is of full dimension the hyperplane given by the facet
is uniquely determined by points from {0, 1}n and hence corresponds to a unique
exact threshold function, and the lower bound applies to our setting also. We
state the lower bound below, and additionally point out that the construction
provides a lower bound on the magnitude of all the coefficients.

Theorem 7. For any n, there exists an exact threshold function f on n vari-
ables such that any realization of f requires an integer weight of magnitude
n

n
2 /2n(2−o(1)).

The proof is given in Appendix F

Observation 1. Alon and Vũ show when n− 1 is a power of 2, that the inverse
of the (n− 1)× (n− 1) matrix A they construct actually has a column (in fact
many columns) where all entries are of magnitude n

n
2 /2Θ(n). This means that

in the construction above, when n − 1 is a power of 2, one can obtain that all
the first n− 1 coefficients are of this magnitude.

In other words, for every n, not only is it such that one may be required to
use Ω(n log n) bits to store the largest weight, but to store all the weights one
may be required to use Ω(n2 log n) bits.

3.3 Small Dimension Upper Bound

Theorem 8. Let V be a vector space in Rn and let k = dim(span(V ∩{0, 1}n)).
Then there exist integers w1, . . . , wn such that for all x ∈ {0, 1}n we have x ∈ V

if and only if w1x1 + · · ·+ wnxn = 0 and furthermore satisfy |wi| ≤ n2k

for all
i. Thus every exact threshold function f on n variables of dimension at most k

can be realized using integer weights of absolute value at most n2k

as well.

Proof. Let v1, . . . , vk ∈ {0, 1}n be a basis of span(V ∩ {0, 1}n). For α ∈ {0, 1}k

define the set Sα = {i ∈ {1, . . . , n} | ∀j ∈ {1, . . . , k} : (vj)i = αj}. Number the
nonempty such sets S1, . . . , SK for K ≤ 2k. For i ∈ {1, . . . ,K}, let ni = |Si|, and
assume Si = {ai1, . . . , aini}. Further, define χi ∈ {0, 1}n to be the characteristic
vector of the set Si.

Now, consider the vector space W in RK defined by y ∈ W if and only if∑K
i=1 yiχi ∈ V . Note that, if

∑K
i=1 yiχi ∈ {0, 1}n, we must have y ∈ {0, 1}K

by construction. By Theorem 6 we have integer weights ŵ1, . . . , ŵK such that
for all y ∈ {0, 1}K we have y ∈ W if and only if ŵ1y1 + · · · + ŵKyK = 0 and
furthermore satisfy |ŵi| ≤ K

K
2 +1. Thus, we also have for all y ∈ {0, 1}K it holds

that
∑K

i=1 yiχi ∈ V if and only if ŵ1y1 + · · ·+ ŵKyK = 0.
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We now define integer weights w1, . . . , wn as follows. Let N =
∏K

l=1 nl. If
ni = 1 we simply define wai1 = Nŵi. Otherwise we give the first element of each
set Si weight as wai1 = −(ni−1)

∏i−1
l=1 nl +Nŵi, and the remaining elements are

given weights as waij
=

∏i−1
l=1 nl, for j = 2, . . . , ni. By construction we obtain

the property that if w1x1 + · · ·+wnxn = 0 for x ∈ {0, 1}n we must have that for
all i we have that all coordinates xaij

have the same value, 0 or 1. Thus x must
be of the form

∑K
i=1 yiχi ∈ W for y ∈ {0, 1}K . The converse trivially holds.

Now, finally note that for all i we have |wi| ≤ K
K
2 +1

∏K
j=1 nj ≤ K

K
2 +1

(
n
K

)K =
nK

KK/2−1 ≤ nK ≤ n2k

. ut

3.4 Small Dimension Lower Bound

Suppose k ≤ n/2, let d = bn
k c, and define a k dimensional vector space V by

V = span{
d︷ ︸︸ ︷

1 . . . 1

n−d︷ ︸︸ ︷
0 . . . 0 ,

d︷ ︸︸ ︷
0 . . . 0

d︷ ︸︸ ︷
1 . . . 1

n−2d︷ ︸︸ ︷
0 . . . 0 , . . . ,

(k−1)d︷ ︸︸ ︷
0 . . . 0

d︷ ︸︸ ︷
1 . . . 1

n−kd︷ ︸︸ ︷
0 . . . 0}.

Theorem 9. Suppose w1, . . . , wn are integers satisfying x ∈ V if and only if∑n
i=1 wixi = 0 for all x ∈ {0, 1}n. Then we must have maxi |wi| ≥ dk−1

2k ∼ nk

2kk+1 .
Thus there exist an exact threshold function on n variables of dimension k that
requires an integer weight of absolute value at least (dk − 1)/2k as well.

Proof. First we relabel the weights, w1, . . . , wkd by w1,1, . . . , w1,d; w2,1, . . . , w2,d;
. . . ;wk,1, . . . , wk,d, where wi,j = w(i−1)d+j (i ∈ [k], j ∈ [d]). For each i ∈ [k]
define the (multi)-set Si by Si = {wi,1, wi,2, . . . , wi,d}. For a (multi-)set S ⊂ Z
define sum(S) =

∑
y∈S y. By assumption and by the definition of V we have

sum(Si) = 0, for all i. We claim that if maxi |wi| < dk−1
2k , then there exist

subsets S̃i ⊆ Si for each i ∈ [k], such that
∑k

i=1 sum(S̃i) = 0, and at least one S̃i

satisfies S̃i 6= ∅, S̃i 6= Si. In other words there would exist x ∈ {0, 1}n satisfying∑n
i=1 wixi = 0 and x /∈ V , leading to a contradiction. Hence we can conclude

that maxi |wi| ≥ dk−1
2k . We next prove this claim, thereby completing the proof

of the theorem.
Let M = maxi |wi|. By assumption we have M < dk−1

2k . Since sum(Si) = 0,
i.e. wi,1 + wi,2 + · · · + wi,d = 0, we can arrange {wi,1, . . . , wi,d} in an order
{w̃i,1, . . . , w̃i,d} such that: (1) w̃i,1 ≥ 0; (2) for each 2 ≤ j ≤ d, if

∑j−1
l=1 w̃i,l ≥ 0,

then w̃i,j ≤ 0, otherwise w̃i,j > 0. It is easy to see that for any i ∈ [k], j ∈ [d]
we have, −M ≤ w̃i,1 + w̃i,2 + · · ·+ w̃i,j ≤ M.

Now, for each k-tuple (l1, . . . , lk) ∈ [d]k, consider the double summation∑k
i=1

∑li
j=1 w̃i,j . By the previous equation we have −kM ≤ ∑k

i=1

∑li
j=1 w̃i,j ≤

kM . But in total there are dk different k-tuples (l1, . . . , lk), and 2kM + 1 <

2k · dk−1
2k + 1 = dk. Therefore there exist two k-tuples (l1, . . . , lk) 6= (l′1, . . . , l

′
k),

such that
∑k

i=1

∑li
j=1 w̃i,j =

∑k
i=1

∑l′i
j=1 w̃i,j .

For each i ∈ [k], we define a set S̃i as follows. If li ≥ l′i, let S̃i = {w̃i,l′i+1, . . . , w̃i,li}.
Otherwise, let S̃i = Si \ {w̃i,li+1, . . . , w̃i,l′i}. Combining the previous equation
with the fact that sum(Si) = 0, we obtain

∑k
i=1 sum(S̃i) = 0.
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It is clear that S̃i 6= Si for all i, and since (l1, . . . , lk) 6= (l′1, . . . , l
′
k), there

must exist i such that S̃i 6= ∅. ut

3.5 Higher Degree Bounds

The upper bound for polynomial exact threshold functions follows easily from
the upper bound for the linear case. We give the proof in Appendix G.

As to the lower bound we proceed similarly to the case of degree 1. We start
by a specific generalization of Alon and Vũ’s lower bound on χ(A) [2]. This could
be done by translating the analysis of [16] to matrix terminology analogous of
Alon and Vũ’s translated analysis of H̊astad’s result [10]. But instead we shall
prefer to present a technically simpler proof using matrix terminology based on
the results of [2]. We note, however, that although this proof differs from the
proof in [16], the underlying ideas are the same.

In what follows we use parameters n and d, where d denotes the degree of the
polynomial and nd is the number of input variables. We denote input variables
by xij for i = 1, . . . , d, j = 1, . . . , n and suppose they range over {0, 1}. Let
x1 = (x1,1, . . . , x1,n), . . . , xd = (xd,1, . . . , xd,n). Let x = (x1, . . . , xd). We denote
by Md the set of monomials {x1,j1x2,j2 · · ·xd,jd

|j1, . . . , jd ∈ {1, . . . , n}} (that is,
we take exactly one variable from each xi). For the matrix A we denote by Aij

its submatrix obtained by deleting the ith row and the jth column.
To state our generalization we first need the following definition.

Definition 1. A matrix A ∈ {0, 1}m×m is called d-generable if we can label
each column of A with a unique monomial from Md and label each row of A by
an assignment to the variables (an input) in such a way that each entry aij is
exactly the value of the monomial corresponding to the column j when evaluated
on the input corresponding to the row i.

Now we can provide the generalization of Alon and Vũ’s lower bound.

Theorem 10. For any d and any n there exist an (explicit) matrix A(d) ∈
{0, 1}nd×nd

such that A(d) is d-generable, | detA
(d)

1,nd/ detA(d)| ≥ n
1
2 nd

/22nd+o(nd)

and A(d) has the form
[
eT
1

B

]
, where eT

1 is a row (1, 0, . . . , 0) of length nd and B

is an (nd − 1) × nd matrix. (Note that the function hidden in o-notation above
depends on n but does not depend on d.)

Proof (sketch). The proof goes by induction on d. In the base case, d = 1,
the matrix A(1) can be easily obtained from the matrix constructed in [2]. For
inductive step we need the following notation.
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For a matrix A = {aij}n
i,j=1, let A denote the matrix obtained by reflecting

A in the vertical median, i.e., A = {ai,n+1−j}n
i,j=1. Now we define A(d) by

A(d) =




A(d−1) 0 0 · · ·

eT
n

A
(d−1)

0 · · ·

0
eT
1

A(d−1) . . .

...
...

. . . . . .




This matrix has n×n blocks. In the diagonal blocks we have matrices A(d−1),
A

(d−1)
, A(d−1), . . .. In the blocks right below the diagonal only the first row is

nonzero and these rows are eT
n , eT

1 , eT
n , . . .. All other blocks consists exclusively

of zeros.
It is now just a matter of checking that A(d) satisfies all required properties.

To verify the claimed inequality, we repeatedly apply Lemma 2.3.1 from [2]. The
details of the proof are given in the Appendix H. ut

Now we prove the main result of this section.

Theorem 11. maxwE
d (2dn) ≥ n

1
2 nd

/22nd+o(nd)+d.

Proof. We will now have variables xij , yij ∈ {0, 1} for i = 1, . . . , d and j =
1, . . . , n (that is, we have twice the number of variables), and consider integer
polynomials p(x, y) of degree d. In fact it will be more convenient for us to
consider polynomials q(x − y, x + y) instead (recall that x and y are vectors of
variables). It is easy to check that we can always convert a polynomial p(x, y) into
an equivalent polynomial q(x−y, x+y) and vice versa. Moreover, if q(x−y, x+y)
has a large coefficient then the corresponding polynomial p(x, y) will also have
a large coefficient.

Observation 2. Suppose all coefficients of a degree-d integer polynomial p(x, y)
are of absolute value at most s. Let q(u, v) = p((v + u)/2, (v − u)/2). Then
p(x, y) = q(x− y, x + y), and 2dq(u, v) has integer coefficients of absolute value
at most 2ds. ¤

We will now construct a polynomial exact threshold function with the de-
sired properties. We start with the matrix A(d) given by Theorem 10. First of
all we switch the labeling of the matrix: in each monomial in the labeling of
A(d) we substitute each variable xij by the expression xij − yij . Thus now our
columns correspond to monomials in variables x− y. Let us denote this new set
of monomials corresponding to columns of A(d) by M ′

d. To complete the labeling



10

we must change the row labels correspondingly. This is possible since we can
find values of xij and yij in such a way that the old value of xij is equal to the
new value of xij − yij . Now we proceed with a proof.

Let us consider the matrix B =
[
A(d) e1

]
. That is, we add one column to the

matrix A(d). Let z ∈ {0, 1} be a new variable and let the new column correspond
to the monomial θ = (x11 − y11)(x21 − y21) . . . (xd1 − yd1)z. We next need to
extend the assignments labeling the rows to include values of z. For the first row
we let z = 1 and for the others rows we let z = 0. Now it is easy to see that
each entry of B is equal to the value of monomial corresponding to the column
on the assignment corresponding to the row.

Let us now consider an exact polynomial threshold gate over the set of mono-
mials M ′

d ∪ {θ} coefficient vector w of which is a nonzero integer solution of the
system Bw = 0. Note that the dimension of the solution space of this system
is 1 since A(d) is nonsingular and thus w is uniquely determined up to a multi-
plicative factor. We denote this polynomial by p(x−y, z) and the corresponding
exact threshold function by f(x, y, z).

Now we will prove that any integer representation w′ of the same exact
threshold function over the set of all monomials over the variables x− y, x + y
and over the monomial θ must have a large coordinate. First, note that such
representation should satisfy the system

[
B B′]

(
u
v

)
= 0, (1)

where the columns B′ corresponds to monomials in variables x − y and x + y

which are not in M ′
d and

(
u
v

)
is w′ where u corresponds to the B-part and v

corresponds to the B′-part. Entries of the matrix B′ are as usual equal to the
value of the monomial corresponding to the column on the input corresponding
to the row. So, B′ is {0,±1}-matrix.

Proposition 1. Bu = 0.

The proof of this proposition uses a symmetry argument and can be found in
the Appendix I.

Now if we detach the last column of the matrix and move it to the right-hand
side we will get system with the square matrix:

A(d)




u1

u2

...
und


 =




und+1

0
...
0


 .

Note that und+1 should be nonzero since otherwise all ui are zero (recall that A(d)

is nonsingular). Now by Cramer’s rule we have that |und | =
∣∣∣∣
u

nd+1 det A
(d)
1,nd

det A(d)

∣∣∣∣ ≥
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∣∣∣∣
det A

(d)
1,nd

det A(d)

∣∣∣∣. Now we get rid of z. Define the function g(x, y) = f(x, y, 0). It is

obviously a polynomial exact threshold function. Moreover any degree-d inte-
ger polynomial representing g(x, y) can be transformed into a degree-d integer
polynomial representing f(x, y, z). Indeed, let the polynomial for g be given by
the vector of coefficients u. Add to it an integer coefficient for the monomial θ
in such a way that resulting vector u′ satisfy the first row of the system (1).
Note also that it automatically satisfies all other rows of this system (since they
refer to inputs with z = 0). Thus u′ is a solution of the system (1) and hence

|und | ≥
∣∣∣∣
det A

(d)
1,nd

det A(d)

∣∣∣∣ ≥ n
1
2 nd

22nd+o(nd)
.

Now we have proved the lower bound on the coefficient of an integer polyno-
mial of degree at most d in variables x − y and x + y which represents g(x, y).
And by Lemma 2 we have desired lower bound for polynomials in variables x
and y (here a factor 2d appears in the denominator). ut
Remark 1. Note that the place where we needed a new variable z is Proposi-
tion 1. If we should try instead to write a system without the variable z and
with nontrivial right-hand side we would not be able to perform the symmetry
argument.

Remark 2. We can reprove lower bound on the maxwT
d (n) (which is a general-

ization of maxwT (n) to degree-d threshold functions) from [16] similarly gener-
alizing proof of the lower bound on maxwT (n) from [2]. See Appendix J.

4 Conclusion

We have obtained upper and lower bounds for the magnitude of integer weights
required to represent exact threshold functions, for linear exact threshold func-
tions as well as polynomial exact threshold functions in general. For the linear
case, we also gave bounds for the interesting special case of small dimension
functions. In the small dimension case there seems to be ample room for further
improvement of the bounds. In the other cases our bounds are very close, espe-
cially for the linear case, leaving little room for improvement. However our proof
raises an interesting question: Is it possible that exact threshold functions on n
variables of dimension less than n − 1 can require larger weights than those of
dimension n−1, or is the worse upper bound an artifact of our proof. For obtain-
ing the lower bounds for polynomial exact threshold functions we constructed
ill-conditioned matrices with special properties – these may have additional ap-
plications.

Another question arises from comparing results known for threshold func-
tions and for exact threshold functions. Beigel [3] give a techinique for showing
that a simple linear threshold function require exponential weights even for rep-
resentations of degree n1/2−ε. This technique was generalized in [15] to the case
of higher degree polynomial threshold functions. Beigel’s approach and its ex-
tensions does not seem to be applicable to exact threshold functions. Obtaining
analogous results for exact threshold functions is therefore an open problem.
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Appendix

Remark: Additional references used in the appendix are found at the end of the
appendix.

A Elaboration on Preliminaries

One may observe that without loss of generality one may assume that the real
valued weights as well as the real valued threshold are in fact integers. Often
when considering threshold functions one chooses to consider the Boolean cube
{−1, 1}n instead of {0, 1}n as we do in this work. This is of no consequence
to the possible weights of exact threshold and threshold functions. Suppose
f(x1, . . . , xn) is such a function in variables x1, . . . , xn ∈ {0, 1}. Then substi-
tuting (yi + 1)/2 for xi for all i and multiplying the resulting expression by 2
yields an equivalent function in variables y1, . . . , yn ∈ {−1, 1}n with the exact
same weights. Suppose on the other hand that f(y1, . . . , yn) is a such a function
in variables y1, . . . , yn ∈ {−1, 1}n. Substitute 2xi − 1 for yi and expand the new
expression. If the new constant coefficient is even we may divide the expression
by 2. If the constant coefficient is odd, we may in case of a threshold function
divide by 2 and round the new threshold value up to the nearest integer. In case
of an exact threshold function the expression can never be satisfied, making the
function trivial. We may thus for example replace the new constant coefficient
with a sufficiently large even integer and divide the expression by 2. In all cases
we obtain an equivalent function in variables x1, . . . , xn ∈ {0, 1} with the exact
same weights.

Since, in this work we are only interested in the weights of exact thresh-
old functions, we may without loss of generality restrict our attention to exact
threshold functions f for which f(0, . . . , 0) = 1. This may be seen as follows.
Suppose f is a non–constant exact threshold function where f(0, . . . , 0) = 0,
and consider any realization of f . Since f is non–constant, let x̂ ∈ {0, 1}n be
such that f(x̂) = 1. Whenever x̂i = 1 substitute 1 − yi for xi and when x̂i = 0
substitute yi for xi. This yields a realization of a new exact threshold function
g that satisfy g(0, . . . , 0) = 1. Now note that the sets of magnitudes of weights
of the two realizations are exactly the same.

B The EQ exact threshold function

Proposition 2. Suppose that EQ is realized as an exact threshold function by∑n
i=1 wixi +

∑n
i=1 w′iyi = t. Then t = 0 and wi = −w′i for all i. Thus EQ is also

realized by the expression
∑n

i=1 |wi|(xi − yi) = 0.

Proof. Clearly t = 0 since EQ(0 . . . 0, 0 . . . 0) = 1. Now, for a given i, let xi =
yi = 1 and xj = yj = 0 for j 6= i. Since EQ(x, y) = 1 we also have wi = −w′i.
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Now, given x and y, let x′i = xi and y′i = yi if wi > 0 and let x′i = yi and
y′i = xi otherwise. We then have

∑n
i=1 |wi|(xi − yi) = 0 ⇔ ∑n

i=1 wi(x′i − y′i) =
0 ⇔ x′ = y′ ⇔ x = y. ut

We thus have the following characterization of representations of EQ as an
exact threshold function.

Corollary 1. Suppose that EQ is realized by an exact threshold function given
by

∑n
i=1 wixi +

∑n
i=1 w′iyi = t. Then all sums of the form

∑
i∈I |wi| for I ⊆ [n]

must be distinct. Conversely, if w1, . . . , wn are positive real numbers such that
all sums of the form

∑
i∈I wi for I ⊆ [n] are distinct, then

∑n
i=1 wi(xi− yi) = 0

defines EQ.

Thus the problem of determining the magnitude of integers weights required
for realizing the EQ function on 2n variables is precisely the well known problem
of finding n positive integers a1 < · · · < an such that all sums of the form

∑
i∈I ai

are distinct. Clearly we can obtain an ≤ 2n−1 and it is also easy to see that
an ≥ 2n

n is necessary. Erdös conjectured that an ≥ c2n for some constant c, but
this remains unresolved. Erdös and Moser [24] proved that an ≥ 2n

4
√

n
. Conway

and Guy [22] showed that an < 0.23513 ·2n. Since then both the lower and upper
bound have been improved, albeit only by constant factors. The upper bound
has been improved by Bohman [21] to an < 0.22002 · 2n, for sufficiently large
n. The lower bound was improved to an > 2−n

(
2n
n

) ∼ 2n√
πn

by Elkies [23], and

this have been further improved asymptotically by a factor
√

3
2 by Aliev and a

factor
√

2 by Elkies and Gleason [20].

C Proof of Lemma 1

Proof. Following Williamson [25], define the (n + 1)× (n + 1) matrix Â with all
entries −1 or 1 by

Â =
[
1 −1T

1 2A− J

]
,

where J is the n × n matrix which have all entries 1. Adding the first column
to the other columns and then expanding the determinant from the first row we
see that

det(Â) = 2n det(A) .

Applying the Hadamard inequality to Â we obtain

det(Â)2 ≤
n+1∏

i=1




n+1∑

j=1

(âij)2


 ≤ (n + 1)n+1 .

Combining the two equations we obtain the result. ut
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D Proof of Lemma 2

Proof. Let A be the (n−1)×n matrix, whose rows are the vectors v1, . . . , vn−1.
Then w must be any nonzero solution to the linear system Aw = 0. Let Ai be
the (n− 1)× (n− 1) matrix obtained from A by deleting the ith column. Then
a solution is given by wi = (−1)i+1 det(Ai). Since the entries of the matrices Ai

are 0 or 1 the result follows using Lemma 1. ut

E Proof of Lemma 3

Proof. Let W be the collection of vector spaces W satisfying that V ∩{0, 1}n ⊂
W and dim(span(W ∩ {0, 1}n)) = n− 1. By dimension arguments it is sufficient
to show that V ∩ {0, 1}n =

(⋂
W∈W W

) ∩ {0, 1}n.
Let x ∈ {0, 1} \ V be arbitrary. We will construct W ∈ W such that x 6∈ W ,

and this implies the above statement. This can be done by the following iterative
procedure. For i = 1, . . . , n − 1, since {0, 1}n ( span({v1, . . . , vi−1, x}) we can
pick vi ∈ {0, 1}n \ span({v1, . . . , vi−1, x}), and we have x 6∈ span({v1, . . . , vi}).
After this procedure, simply let W = span({v1, . . . , vn−1}). ut

F Proof by Ziegler

Proof. (Ziegler)
Let A be the (n− 1)× (n− 1) matrix given by Theorem 1. Assume without

loss of generality that χ(A) = det(A11)
det(A) ≥ n

n
2

2n(2−o(1)) . Form the (n− 1)× n matrix

Â by
Â =

[
A e1

]
,

As in Lemma 2 we get that weights w for the exact threshold function defined by
the rows of Â must be a solution to the linear system Âw = 0. One such solution
is given by wi = (−1)i+1 det(Âi), and any solution is a scalar multiple of this.
Now, w1 = det(A11) and wn = (−1)n+1 det(A), and thus |w1/wn| = χ(A). Thus
any integer solution ŵ must have |ŵ1| ≥ χ(A). ut

G Proof of Upper Bound of Theorem 5

Consider some polynomial exact threshold function of degree d on n variables.
Let p(x) be a corresponding integer degree-d polynomial. Substitute each mono-
mial by a new fresh variable ui. There are at most nd monomials in p (since
it is assumed to be multilinear) so we need at most nd new variables u =
(u1, . . . , und). Thus we obtained a linear polynomial in the variables ui. De-
note this polynomial by q(u), and consider the linear exact threshold func-
tion corresponding to q. By Theorem 6 we obtain a linear polynomial q′(u)
corresponding to this function with integer weights of absolute value at most
(nd)

nd

2 +1 = n
dnd

2 +d. Now we simply substitute back in the polynomial q′(u) all
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variables ui by the corresponding monomials in the variables xi. Doing this we
obtain polynomial p′(x) with integer weights of absolute value at most n

dnd

2 +d

which corresponds to the exact threshold function f(x). ut

H Details of the Proof of Theorem 10

Recall that our proof is by induction on d. For d = 1 every matrix A ∈ {0, 1}n×n

is 1-generable. So if we had no extra requirement on the first row, we could just
take for the matrix A(1) a matrix constructed by Alon and Vũ. To fulfill this last
constraint we denote by C ∈ {0, 1}(n−1)×(n−1) the matrix constructed by Alon
and Vũ such that χ(C) = | detC1,n−1/ detC| ≥ n

n
2 /22n−o(n) and let

A(1) =




1 0 . . . 0
1
0
0 C
...
0




.

It is easy to check that | detA
(1)
1,n/ detA(1)| = | detC1,n−1/ det C|.

Now suppose we have a matrix A(d−1) ∈ {0, 1}nd−1×nd−1
satisfying the state-

ment of the theorem. Let us construct a matrix A(d) ∈ {0, 1}nd×nd

. Note that
the number of columns is equal to the number of monomials in Md, so we need
all monomials to label the columns.

Now we define this labeling. We divide the columns in n blocks: the first
block consists of the first nd−1 columns, the second block of next nd−1 columns
and so on. Let us denote by m1,m2, . . . , mnd−1 the monomials corresponding to
the columns of A(d−1). We now assign to columns in the jth block the monomials
m1xd,j ,m2xd,j , . . . , mnd−1xd,j .

Recall that for a matrix A = {aij}n
i,j=1 we denote by A the matrix obtained

by reflecting A in the vertical median, i.e.,

A =




a1,n a1,n−1 . . . a1,1

a2,n a2,n−1 . . . a2,1

. . . . . . . . . . . . . .
an,n an,n−1 . . . an,1


 .
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Then matrix A(d) is defined by




1 0 . . . 0

A(d−1)

0 . . . 0 1 0 . . . 0 1

A
(d−1)

1 0 . . . 0 1 0 . . . 0

A(d−1)

. . . . . .




.

In the diagonal blocks we have matrices A(d−1), A
(d−1)

, A(d−1), . . .. On the dia-
gram we have written the first row of each block separately and we have placed
a box around an entry for which

| detB/ detA(d−1)| ≥ n
1
2 nd−1

22nd−1+o(nd−1)
,

where by B we denote the corresponding submatrix. In the blocks right below
the diagonal only the first row is nonzero and these rows are eT

n , eT
1 , eT

n , . . .. All
other blocks consists exclusively of zeros.

Let us check that matrix A(d) has all required properties (possibly after a
permutation of the columns). First of all, the first row is obviously of the correct
form. Next we show that it is d-generable. We have already explained how we
label the columns. Now we label the rows. Our rows are naturally divided into
n blocks and we label each block separately. Let us consider the kth row of the
lth block. Let the assignment of values to the variables xij for i = 1, . . . , d − 1,
j = 1, . . . , n be the same as for the kth row of the matrix A(d−1). If k > 1 or
l = 1 then let xdl = 1 and xdj = 0 for j 6= l. If k = 1 and l > 1 then let
xd,l−1 = xd,l = 1 and xdj = 0 for j 6= l − 1, l. It is easy to check that with this
labeling of columns and rows, each element of the matrix is exactly the value of
the monomial corresponding to the column evaluated on the input corresponding
to the row.

In the following proof we will make use of Lemma 2.3.1 from [2]. We state it
here for the sake of completeness.
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Lemma 4 (Alon, Vũ). Let S = {si,j}n1
i,j=1 and T = {ti,j}n2

i,j=1 be two matrices
and let

R =




s11 . . . s1n1 0 . . . 0
s21 . . . s2n1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
sn11 . . . sn1n1 0 . . . 0
0 0 . . . 0 1 t11 . . . t1n2

0 0 . . . 0 0 t21 . . . t2n2

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 tn21 . . . tn2n2




.

Then

χ(R) ≥
∣∣∣∣
detR1,n1+n2

R

∣∣∣∣ =
∣∣∣∣
det S1n1

detS

det T1n2

det T

∣∣∣∣ .

¤

It only remains to prove the lower bound on | detA
(d)

1,nd/ detA(d)|. By repeti-
tion of the trick from Lemma 4 we can prove the following claim.

Claim. There exist k ∈ {1, . . . , nd} such that

| detA1,k/ detA| ≥ n
1
2 nd

22nd+o(nd)
.

Proof. We prove by induction on i that for principal submatrix B(i) of A(d)

consisting of first i blocks of rows and columns and for some j it is true that

∣∣∣det B
(i)
1,j/ det B(i)

∣∣∣ ≥ n
1
2 nd−1i

22nd−1i+o(nd−1)i
.

Moreover, we have j = ind−1 for odd i and j = nd−1(i− 1) + 1 for even i. That
is, j is the last column of B(i) for odd i and j is the first column of the last block
of B(i) for even i.

The basis of induction is obvious. For the inductive step let us consider the
matrix B(i) and assume, say, that i is even. Then B(i) has form




1 0 . . . 0

B(i−1)

0 . . . 0 1 0 . . . 0 1

A
(d−1)




.
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We know that

∣∣∣detB
(i−1)

1,(i−1)nd/ detB(i−1)
∣∣∣ ≥ n

1
2 nd−1(i−1)

22nd−1(i−1)+o(nd−1)(i−1)

and

| detA
(d−1)

1,1 / detA
(d−1)| ≥ n

1
2 nd−1

22nd−1+o(nd−1)
.

From Lemma 4 it immediately follows that one of the entries of the inverse of
B(i) is greater that the product of the above two values. More precisely,

∣∣∣detB
(i)

1,(i−1)nd+1
/ detB(i)

∣∣∣ ≥ n
1
2 nd−1i

22nd−1i+o(nd−1)i
.

ut

Thus if in the matrix A(d) we swap the kth column and the ndth column we
get a matrix as required by Theorem 10. ut

I Proof of Proposition 1

This proof is similar to the proof of Lemma 3 from [16]
Recall that we have the equation

[
B B′]

(
u
v

)
= 0.

Let us denote by B1 the matrix consisting of the columns from B′ such that
in the corresponding monomial there is even number of variables from (x1−y1).
Next denote by B2 the matrix consisting of columns from B′ such that they are
not in B1 and in the corresponding monomial there is even number of variables
from (x2−y2). In general, denote by Bi the matrix consisting of columns from B′

such that they are not in B1, B2, . . . , Bi−1 and in the corresponding monomial
there is even number of variables from (xi − yi). Note that each column of B′

belongs to one of the matrices B1, . . . , Bn since the monomials corresponding to
the columns in B′ are not in Md and have degree at most d. Thus each monomial
corresponding to a column in B′ does not contain variables from xi−yi for some
i. With this notation we can write our system in a more detailed form:

[
B B1 . . . Bn

]



u
v1

...
vn


 = 0, (2)

where v1, . . . , vn are the coordinates of v corresponding to B1, . . . , Bn respec-
tively.



20

Now we are going to use a symmetry argument to get rid of the part v in the
set of coefficients. Note that each monomial in M ′

d ∪ {θ} will change sign if we
switch xi and yi for some i. The same must thus be true for the polynomial p.
This means that if we take values of input corresponding to some row in B and
switch values of xi and yi, the value of p will still be 0 and thus the value of f
will still be 1. Since the polynomial with coefficients w′ represent the function
f the value of this polynomial should also be 0 on this input. Applying this to
i = 1 and all rows of the matrix we get

[−B B1 −B2 . . . −Bn

]




u
v1

v2

...
vn




= 0

since all monomials corresponding to columns which are not in B1 contains odd
number of variables from (x1−y1). Subtracting this system from (2) and dividing
by 2 we get

[
B 0 B2 . . . Bn

]




u
v1

v2

...
vn




= 0

which is equal to

[
B B2 . . . Bn

]



u
v2

...
vn


 = 0

Arguing by the same way consecutively for (x2 − y2), . . . , (xd − yd) we get the
system

Bu = 0.

ut

J Lower bound on maxwT
d

In this section we will prove the following theorem.

Theorem 12.

maxwT
d (2dn) ≥ n

1
2 nd

22nd+o(nd)+2d
.

Proof. As in the proof of Theorem 11 we have variables xij , yij ∈ {0, 1} for
i = 1, . . . , d and j = 1, . . . , n and we consider polynomials in variables x− y and
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x + y. As in the proof of Theorem 11 we consider matrix A(d) and, again, in the
labeling of A(d) we substitute each variable xij by xij − yij .

Let
αi = sign(−1)i det A

(d)

i,nd det A(d)

for i = 1, . . . , nd and let vector w be a solution of the system

A(d)w = α.

Let f(x, y) be a polynomial threshold function of degree d represented by a
polynomial w.

Now consider any integer representation w′ of this function. We have

[
A(d) B′]

(
u
v

)
= β, (3)

where B′, u, v mean the same as in the proof of Theorem 11 and β is an integer
vector (since w′ is an integer vector) such that sign βi = αi.

By symmetry argument analogous to one in the proof of Theorem 11 we can
get

A(d)u = β′,

where β′i are rational numbers with denominators 2d and sign β′i = αi. Now if
we consider this equation as a system of linear equations with variables u, by
Cramer’s rule we get

|wnd | =
∣∣∣∣∣∣

nd∑

i=1

(−1)i
β′iA

(d)

i,nd

A(d)

∣∣∣∣∣∣
=

nd∑

i=1

∣∣∣∣∣∣
β′iA

(d)

i,nd

A(d)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
β′1A

(d)

1,nd

A(d)

∣∣∣∣∣∣
≥ n

1
2 nd

22nd+o(nd)+2d
,

where we have guaranteed the second equation by the choice of α. ut
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