
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 9 – control flow analysis

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Agenda

• Control flow analysis for TIP
with first-class functions

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for
object-oriented languages

2

TIP with first-class functions

3

inc(i) { return i+1; }
dec(j) { return j-1; }
ide(k) { return k; }

foo(n,f) {
var r;
if (n==0) { f=ide; }
r = f(n);
return r;

}

main() {
var x,y;
x = input;
if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }
return y;

}

Control flow complications

• First-class functions in TIP complicate CFG construction:

– several functions may be invoked at a call site

– this depends on the dataflow

– but dataflow analysis first requires a CFG

• Same situation for other features:

– function values with free variables (closures)

– a class hierarchy with objects and methods

– prototype objects with dynamic properties

4

Control flow analysis

• A control flow analysis approximates the call graph

– conservatively computes possible functions at call sites

– the trivial answer: all functions

• Control flow analysis is usually flow-insensitive:

– based on the AST

– the call graph can be used for an interprocedural CFG

– a subsequent dataflow analysis may use the CFG

• Alternative: use flow-sensitive analysis

– potentially on-the-fly, during dataflow analysis

5

CFA for TIP with first-class functions

• For a computed function call

we cannot immediately see which function is called

• A coarse but sound approximation:

– assume any function with right number of arguments

• Use CFA to get a much better result!

6

E(E1, ..., En)

CFA constraints (1/2)

• Tokens are all functions {f1, f2, ..., fk}

• For every AST node, v, we introduce the variable ⟦v⟧
denoting the set of functions to which v may evaluate

• For function definitions f(...){...}:

f ⟦f⟧

• For assignments x = E:

⟦E⟧ ⟦x⟧

7

CFA constraints (2/2)
• For direct function calls f(E1, ..., En):

⟦Ei⟧ ⟦ai⟧ for i=1,...,n ⟦E’⟧ ⟦f(E1, ..., En)⟧

where f is a function with arguments a1, ..., an

and return expression E’

• For computed function calls E(E1, ..., En):

f ⟦E⟧ (⟦Ei⟧ ⟦ai⟧ for i=1,...,n ⟦E’⟧ ⟦(E)(E1, ..., En)⟧)

for every function f with arguments a1, ..., an

and return expression E’

– If we consider typable programs only:
only generate constraints for those functions f
for which the call would be type correct

8

Generated constraints

inc ⟦inc⟧

dec ⟦dec⟧

ide ⟦ide⟧

⟦ide⟧ ⟦f⟧

⟦f(n)⟧ ⟦r⟧

inc ⟦f⟧ ⟦n⟧ ⟦i⟧ ⟦i+1⟧ ⟦f(n)⟧

dec ⟦f⟧ ⟦n⟧ ⟦j⟧ ⟦j-1⟧ ⟦f(n)⟧

ide ⟦f⟧ ⟦n⟧ ⟦k⟧ ⟦k⟧ ⟦f(n)⟧

⟦input⟧ ⟦x⟧

⟦foo(x,inc)⟧ ⟦y⟧

⟦foo(x,dec)⟧ ⟦y⟧

foo ⟦foo⟧

foo ⟦foo⟧ ⟦x⟧ ⟦n⟧ ⟦inc⟧ ⟦f⟧ ⟦r⟧ ⟦foo(x,inc)⟧

foo ⟦foo⟧ ⟦x⟧ ⟦n⟧ ⟦dec⟧ ⟦f⟧ ⟦r⟧ ⟦foo(x,dec)⟧

main ⟦main⟧

9

(At each call we only consider functions with matching number of parameters)

assuming we do not
use the special rule
for direct calls

Least solution

⟦inc⟧ = {inc}

⟦dec⟧ = {dec}

⟦ide⟧ = {ide}

⟦f⟧ = {inc, dec, ide}

⟦foo⟧ = {foo}

⟦main⟧ = {main}

10

With this information, we can construct the call edges
and return edges in the interprocedural CFG

(the solution is the empty set for the remaining constraint variables)

Agenda

• Control flow analysis for TIP
with first-class functions

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for
object-oriented languages

11

CFA for the lambda calculus

• The pure lambda calculus

• Assume all -bound variables are distinct

• An abstract closure x abstracts the function x.E
in all contexts (values of free variables)

• Goal: for each call site E1E2 determine the possible
functions for E1 from the set {x1, x2, ..., xn}

12

Exp → Id.Exp (function definition)

| Exp1 Exp2 (function application)

| Id (variable reference)

Closure analysis

A flow-insensitive analysis that tracks function values:

• For every AST node, v, we introduce a variable ⟦v⟧
ranging over subsets of abstract closures

• For x.E we have the constraint

x ⟦x.E⟧

• For E1E2 we have the conditional constraint

x ⟦E1⟧ (⟦E2⟧ ⟦x⟧ ⟦E⟧ ⟦E1E2⟧)

for every function x.E

13

Agenda

• Control flow analysis for TIP
with first-class functions

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for
object-oriented languages

14

The cubic framework

• We have a set of tokens T={t1, t2, ..., tk}

• We have a collection of constraint variables V={x1, ..., xn}
ranging over subsets of tokens

• A collection of constraints of these forms:

▪ t x

▪ x y

▪ t x y z

• Compute the unique minimal solution

– this exists since solutions are closed under intersection

• A cubic time algorithm exists!
15

The solver data structure

• Each variable is mapped to a node in a directed graph

• Each node has a bitvector in {0,1}k

– initially set to all 0’s

• Each bit has a list of pairs of variables

– used to model conditional constraints

• The edges model inclusion constraints

• The bitvectors will at all times directly represent the
minimal solution to the constraints seen so far

16

Implementation: SimpleCubicSolver

The solver data structure

• x.sol T: the set of tokens for x (the bitvectors)

• x.succ V: the successors of x (the edges)

• x.cond(t) VV: the conditional constraints for x and t

• W TV: a worklist (initially empty)

17

Adding constraints

• t x

• x y

• t x y z

18

addToken(t, x):
if t ∉ x.sol

add t to x.sol
add (t, x) to W

addEdge(x, y):
if x ≠ y y ∉ x.succ

add y to x.succ
for each t in x.sol

addToken(t, y)

addToken(t, x)
propagate()

addEdge(x, y)
propagate()

if t x.sol
addEdge(y, z)
propagate()

else
add (y, z) to x.cond(t)

propagate():
while W ≠

pick and remove (t, x) from W
for each (y, z) in x.cond(t)

addEdge(y, z)
for each y in x.succ

addToken(t, y)

Time complexity

• O(n) functions and O(n) applications, with program size n

• O(n) singleton constraints, O(n) subset constraints,
O(n2) conditional constraints

• O(n) nodes, O(n2) edges, O(n) bits per node

• addToken takes time O(1)

• addEdge takes amortized time O(n)

• Each pair (t, x) is processed at most once by propagate

• O(n2) calls to addEdge (either immediately or via propagate)

• O(n3) calls to addToken

19

0

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

1

1

0

0

0

0

1

Time complexity

• Adding it all up, the upper bound is O(n3)

• This is known as the cubic time bottleneck:

– occurs in many different scenarios

– but O(n3/log n) is possible…

20

Implementation tricks

• Cycle elimination (collapse nodes if there is a cycle of inclusion constraints)

• Process worklist in topological order

• Interleaving solution propagation and constraint processing

• Shared bit vector representation

• Type filtering

• On-demand processing

• Difference propagation

• Subsumed node compaction

• ...

21

Agenda

• Control flow analysis for TIP
with first-class functions

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for
object-oriented languages

22

Simple CFA for OO (1/3)

• CFA in an object-oriented language:

• Which method implementations may be invoked?

• Full CFA is a possibility...

• But the type information enables simpler solutions

23

x.m(a,b,c)

Simple CFA for OO (2/3)

• Simplest solution:

– select all methods named m with three arguments

• Class Hierarchy Analysis (CHA):

– consider only the part of the class hierarchy rooted
by the declared type of x

24

x
Collection<T> c = ...
c.add(e)

Simple CFA for OO (3/3)

• Rapid Type Analysis (RTA):

– restrict to those classes that are actually used in the program
in new expressions

– start from main, iteratively
find reachable methods

25

x

