Static Program Analysis Part 7 – interprocedural analysis

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University

Interprocedural analysis

- Analyzing the body of a single function:
 - intraprocedural analysis
- Analyzing the whole program with function calls:
 - interprocedural analysis
- For now, we consider TIP without functions as first-class values (so we only have direct calls)
- A naive approach:
 - analyze each function in isolation
 - be maximally pessimistic about results of function calls
 - rarely sufficient precision...

CFG for whole programs

The idea:

- construct a CFG for each function
- then glue them together to reflect function calls and returns

We need to take care of:

- parameter passing
- return values
- values of local variables across calls (including recursive functions, so not enough to assume unique variable names)

A simplifying assumption

Assume that all function calls are of the form

$$X = f(E_1, ..., E_n);$$

This can always be obtained by normalization

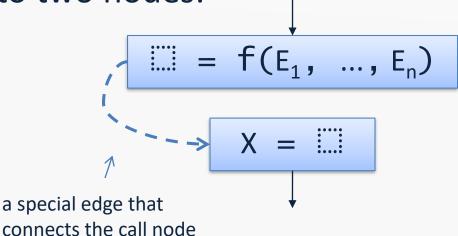
Interprocedural CFGs (1/3)

Split each original call node

$$X = f(E_1, ..., E_n)$$

into two nodes:

with its after-call node

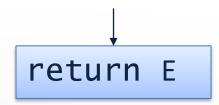


the "call node"

__ the "after-call node"

Interprocedural CFGs (2/3)

Change each return node

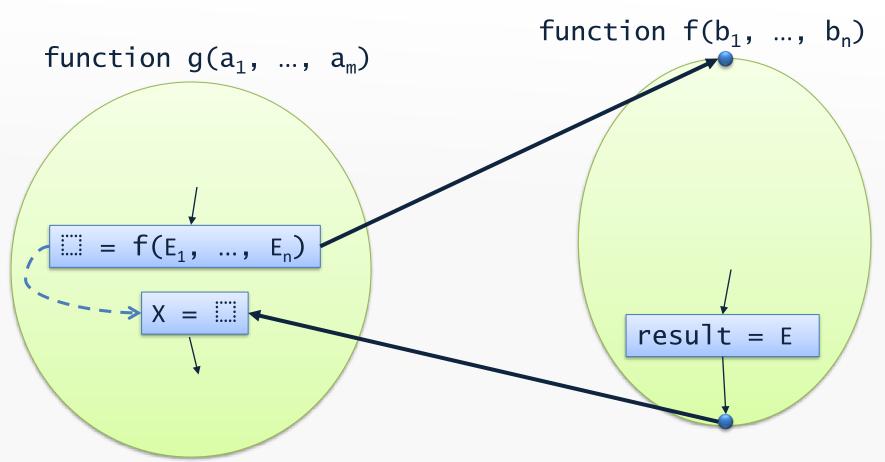


into an assignment:

(where result is a fresh variable)

Interprocedural CFGs (3/3)

Add call edges and return edges:



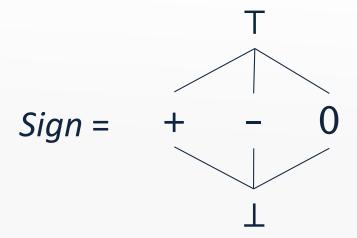
Constraints

- For call/entry nodes:
 - be careful to model evaluation of all the actual parameters before binding them to the formal parameter names (otherwise, it may fail for recursive functions)

- For after-call/exit nodes:
 - like an assignment: X = result
 - but also restore local variables from before the call using the call after-call edge
- The details depend on the specific analysis...

Example: interprocedural sign analysis

- Recall the intraprocedural sign analysis...
- Lattice for abstract values:



Lattice for abstract states:

$$Vars \rightarrow Sign$$

Example: interprocedural sign analysis

• Constraint for entry node v of function $f(b_1, ..., b_n)$:

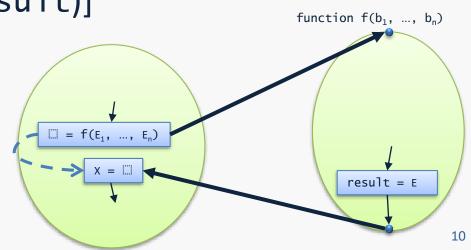
$$\llbracket v \rrbracket = \coprod \coprod [b_1 \rightarrow eval(\llbracket w \rrbracket, E_1^w), ..., b_n \rightarrow eval(\llbracket w \rrbracket, E_n^w)]$$

$$w \in pred(v)$$
where E_i^w is i'th argument at w

Constraint for after-call node v labeled X = ::::,
 with call node v':

 $[v] = [v'][X \rightarrow [w](result)]$ where $w \in pred(v)$

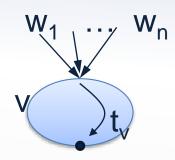
(Recall: no global variables, no heap, and no higher-order functions)



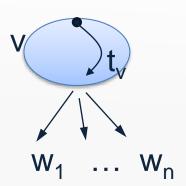
Alternative formulations

1)
$$\llbracket v \rrbracket = t_v(\bigsqcup \llbracket w \rrbracket)$$

 $w \in pred(v)$



- 2) $\forall w \in succ(v): t_v(\llbracket v \rrbracket) \sqsubseteq \llbracket w \rrbracket$
 - recall "solving inequations"
 - may require fewer join operations if there are many CFG edges
 - more suitable for *inter*procedural flow

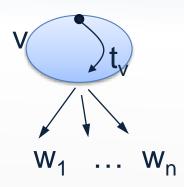


The worklist algorithm (original version)

```
X_1 = \bot; ... X_n = \bot
W = \{V_1, \dots, V_n\}
while (W \neq \emptyset) {
  V_i = W.removeNext()
  y = f_i(x_1, \ldots, x_n)
  if (y\neq x_i) {
     for (v_i \in dep(v_i)) {
        W.add(v_i)
     x_i = y
```

The worklist algorithm (alternative version)

```
X_1 = \bot; ... X_n = \bot
W = \{V_1, \ldots, V_n\}
while (W \neq \emptyset) {
  V_i = W.removeNext()
   y = t_i(x_i)
   for (v_i \in dep(v_i)) {
      propagate(y, v<sub>i</sub>)
```



```
propagate(y, v_j) {
z = x_j \sqcup y
if (z \neq x_j) {
x_j = z
W \cdot add(v_i)
```

Implementation: WorklistFixpointPropagationSolver

Agenda

- Interprocedural analysis
- Context-sensitive interprocedural analysis

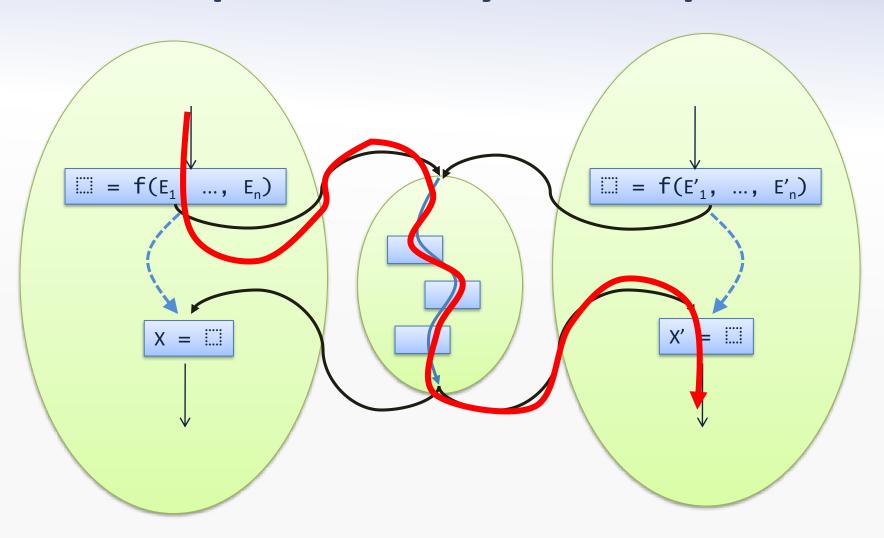
Motivating example

What is the sign of the return value of g?

```
f(z) {
  return z*42;
g() {
  var x,y;
  x = f(0);
  y = f(87);
  return x + y;
```

Our current analysis says "T"

Interprocedurally invalid paths



Function cloning (alternatively, function inlining)

- Clone functions such that each function has only one callee
- Can avoid interprocedurally invalid paths ©
- For high nesting depths, gives exponential blow-up
- Doesn't work on (mutually) recursive functions

 Use heuristics to determine when to apply (trade-off between CFG size and precision)

Example, with cloning

What is the sign of the return value of g?

```
f1(z1) {
  return z1*42;
f2(z2) {
  return z2*42;
g() {
 var x,y;
  x = f1(0);
  y = f2(87);
  return x + y;
```

Context sensitive analysis

- Function cloning provides a kind of context sensitivity (also called polyvariant analysis)
- Instead of physically copying the function CFGs, do it *logically*
- Replace the lattice for abstract states, States, by

Contexts → lift(States)

where Contexts is a set of call contexts

- the contexts are abstractions of the state at function entry
- Contexts must be finite to ensure finite height of the lattice
- the bottom element of lift(States) represents "unreachable" contexts
- Different strategies for choosing the set Contexts...

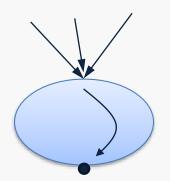
Constraints for CFG nodes that do not involve function calls and returns

Easily adjusted to the new lattice Contexts \rightarrow lift(States) Example if v is an assignment node x = E in sign analysis: $[v] = JOIN(v)[x \mapsto eval(JOIN(v), E)]$ becomes

becomes
$$[v](c) = \begin{cases} s[x \mapsto eval(s,E)] & \text{if } s = JOIN(v,c) \in States \\ \text{unreachable} & \text{if } JOIN(v,c) = \text{unreachable} \end{cases}$$

and
$$JOIN(v) = \bigsqcup_{w \in pred(v)} \llbracket w \rrbracket$$

becomes $JOIN(v,c) = \bigsqcup_{w \in pred(v)} \llbracket w \rrbracket (c)$



One-level cloning

- Let c₁,...,c_n be the call nodes in the program
- Define Contexts= $\{c_1,...,c_n\} \cup \{\epsilon\}$
 - each call node now defines its own "call context"
 (using ε to represent the call context at the main function)
 - the context is then like the return address of the top-most stack frame in the call stack
- Same effect as one-level cloning, but without actually copying the function CFGs
- Usually straightforward to generalize the constraints for a context insensitive analysis to this lattice
- (Example: context-sensitive sign analysis later...)

The call string approach

- Let c₁,...,c_n be the call nodes in the program
- Define Contexts as the set of strings over {c₁,...,c_n}
 of length ≤k
 - such a string represents the top-most k call locations on the call stack
 - the empty string ϵ again represents the initial call context at the main function
- For k=1 this amounts to one-level cloning

Implementation: CallStringSignAnalysis

Example:

interprocedural sign analysis with call strings (k=1)

Lattice for abstract states: Contexts \rightarrow lift(Vars \rightarrow Sign) where Contexts= $\{\varepsilon, C_1, C_2\}$

```
f(z) {
 var t1, t2;
  t1 = z*6;
  t2 = t1*7;
  return t2;
x = f(0); // c1
y = f(87); // c2
```

```
[\varepsilon \mapsto unreachable,
 c1 \mapsto \bot[z\mapsto 0, t1\mapsto 0, t2\mapsto 0],
 c2 \mapsto \bot[z\mapsto +, t1\mapsto +, t2\mapsto +]
```

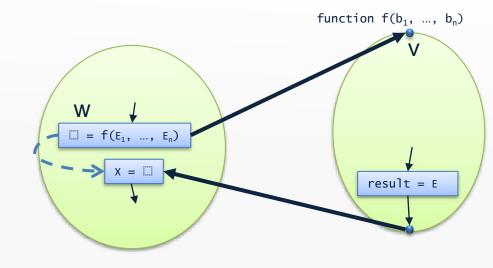
What is an example program that requires **k=2** to avoid loss of precision?

Context sensitivity with call strings function entry nodes, for k=1

Constraint for entry node v of function $f(b_1, ..., b_n)$: (if not 'main')

$$[\![v]\!](c) = \bigsqcup \qquad s_w^{c'}$$

$$w \in pred(v) \land$$
only consider
$$c = w \land$$
the call node w
that matches
the context c

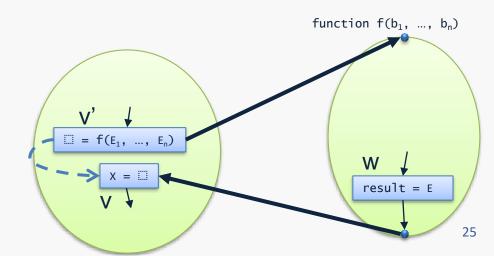


$$s_{w}^{c'} = \begin{cases} unreachable & if [[w]](c') = unreachable \\ \bot[b_{1} \rightarrow eval([[w]](c'), E_{1}^{w}), ..., b_{n} \rightarrow eval([[w]](c'), E_{n}^{w})] & otherwise \end{cases}$$

Context sensitivity with call strings after-call nodes, for k=1

Constraint for after-call node v labeled $X = \ldots$, with call node v' and exit node $w \in \text{pred}(v)$:

$$\llbracket v \rrbracket(c) = \begin{cases} \text{unreachable} & \text{if } \llbracket v' \rrbracket(c) = \text{unreachable } V \llbracket w \rrbracket(v') = \text{unreachable} \\ \llbracket v' \rrbracket(c)[X \rightarrow \llbracket w \rrbracket(v')(\text{result})] & \text{otherwise} \end{cases}$$



The functional approach

- The call string approach considers control flow
 - but why distinguish between two different call sites if their abstract states are the same?
- The functional approach instead considers data
- In the most general form, choose
 Contexts = States
 (requires States to be finite)
- Each element of the lattice States → lift(States)
 is now a map m that provides an element m(x) from
 States (or "unreachable") for each possible x
 where x describes the state at function entry

Example:

interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts \rightarrow lift(Vars \rightarrow Sign) where Contexts = Vars \rightarrow Sign

```
f(z) {
  var t1, t2;
  t1 = z*6;
  t2 = t1*7;
  return t2;
x = f(0);
y = f(87);
```

Another example:

interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts \rightarrow lift(Vars \rightarrow Sign) where Contexts = Vars \rightarrow Sign

```
f(z) {
 var t1, t2;
  t1 = z*6;
  t2 = t1*7;
  return t2;
g(a) {
  return f(a);
x = g(0);
y = q(87);
```

The functional approach

- The lattice element for a function exit node is thus a function summary that maps abstract function input to abstract function output
- This can be exploited at call nodes!
- When entering a function with abstract state x:
 - consider the function summary s for that function
 - if s(x) already has been computed, use that to model the entire function body, then proceed directly to the after-call node
- Avoids the problem with interprocedurally invalid paths!
- ...but may be expensive if States is large

Example:

interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts \rightarrow lift(Vars \rightarrow Sign) where Contexts = Vars \rightarrow Sign

```
f(z) {
  var t1, t2;
  t1 = z*6;
  t2 = t1*7;
  return t2;
}
x = f(0);
y = f(87);
z = f(42);
```

The abstract state at the exit of f can be used as a function summary

```
 \begin{bmatrix} \bot[z\mapsto 0] \mapsto \bot[z\mapsto 0, \ t1\mapsto 0, \ t2\mapsto 0, \ result\mapsto 0], \\ \bot[z\mapsto +] \mapsto \bot[z\mapsto +, \ t1\mapsto +, \ t2\mapsto +, \ result\mapsto +], \\ all \ other \ contexts \mapsto unreachable \end{bmatrix}
```

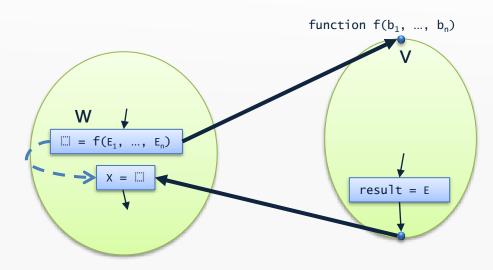
At this call, we can reuse the already computed exit abstract state of f for the context $\bot[z\mapsto +]$

Context sensitivity with the functional approach function entry nodes

Constraint for entry node v of function $f(b_1, ..., b_n)$: (if not 'main')

$$[\![v]\!](c) = \bigsqcup \qquad s_w^{c'}$$

$$w \in pred(v) \land$$
only consider
$$c = s_w^{c'} \land$$
the call node w
if the abstract state
from that node
matches the context c

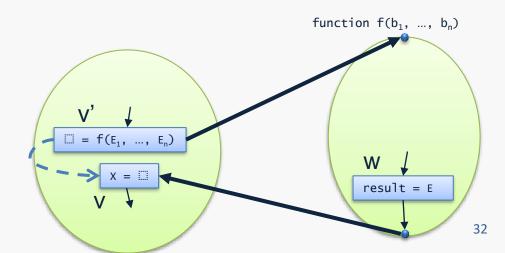


where s_w is defined as before

Context sensitivity with the functional approach after-call nodes

Constraint for after-call node v labeled $X = \square$, with call node v' and exit node $w \in pred(v)$:

$$\llbracket v \rrbracket(c) = \begin{cases} \text{unreachable} & \text{if } \llbracket v' \rrbracket(c) = \text{unreachable } V \llbracket w \rrbracket(s_{v'}^c) = \text{unreachable} \\ \llbracket v' \rrbracket(c) [X \rightarrow \llbracket w \rrbracket(s_{v'}^c) (\text{result})] & \text{otherwise} \end{cases}$$



Choosing the right context sensitivity strategy

- The call string approach is expensive for k>1
 - solution: choose k adaptively for each call site
- The functional approach is expensive if States is large
 - solution: only consider selected parts of the abstract state as context, for example abstract information about the function parameter values (called *parameter sensitivity*), or, in object-oriented languages, abstract information about the receiver object 'this' (called *object sensitivity* or type sensitivity)