Static Program Analysis
Part 7 — interprocedural analysis

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael I. Schwartzbach
Computer Science, Aarhus University

http://cs.au.dk/~amoeller/spa/

Interprocedural analysis

Analyzing the body of a single function:

— intraprocedural analysis

Analyzing the whole program with function calls:
— interprocedural analysis

For now, we consider TIP without functions as
first-class values (so we only have direct calls)

A naive approach:

— analyze each function in isolation

— be maximally pessimistic about results of function calls
— rarely sufficient precision...

CFG for whole programs

The idea:
e construct a CFG for each function

* then glue them together to reflect function calls
and returns

We need to take care of:
e parameter passing
 return values

e values of local variables across calls
(including recursive functions, so not enough to
assume unique variable names)

A simplifying assumption

e Assume that all function calls are of the form

X = F(E;, ., E);

* This can always be obtained by normalization

Interprocedural CFGs (1/3)

Split each original call node

l

X = f(E,, .., E)
into two nodes: l
4 i = F(Ey, . E)
|
Tu-s X = i
7
a special edge that l

connects the call node
with its after-call node

<~

K

the “call node”

the “after-call node”

Interprocedural CFGs (2/3)

Change each return node

l

return E

Into an assighment:

l

result = E

(where resul t is a fresh variable)

Interprocedural CFGs (3/3)

Add call edges and return edges:

function f(by, .., b,)
function g(a;, .., a,)
Re i = f(E,, .., E)
‘L /
T~ i

N=E

Constraints

* For call/entry nodes:

— be careful to model evaluation of all the actual parameters
before binding them to the formal parameter names
(otherwise, it may fail for recursive functions)

* For after-call/exit nodes:
— like an assignment: X=result

— but also restore local variables from before the call
using the call™~after-call edge

 The details depend on the specific analysis...

Example: interprocedural sign analysis

e Recall the intraprocedural sign analysis...
e |Lattice for abstract values:

-
I
sign= + - 0
~.

1

e Lattice for abstract states:
Vars — Sign

Example: interprocedural sign analysis

* Constraint for entry node v of function f(b4, ..., b,):
[v] = U L[b;—eval([w],E7), ..., b,—>eval([w],E,)]

wepred(v
R where E."is i’th argument at w

with call node v’:
[v] = [V][[IX—>[w](result)]

where wepred(v) ~
v
Aty e

. ¢
(Recall: no global variables, no heap, P e /

and no higher-order functions) \ result =

10

1)

2)

Alternative formulations

[vI = t.(Ll [w])

wepred(v)

Vwesucc(v): t,([v]) E [w] V@

— recall "solving inequations”
— may require fewer join operations /i\

if there are many CFG edges W, ... W,
— more suitable for interprocedural flow

11

The worklist algorithm
(original version)

X; = L1L; ... X, = 1
W= {vy, ..., V,}
while (wWzg) {

v; = W.removeNext()

y = fi(X¢, ..., X,)
1T (y=x;) o
for (v; e dep(v;)) {
W.add(v;)
}
X; =Y
}

¥

12

The worklist algorithm
(alternative version)

X; = L; ... X, =1 v@
W= {vy, ..., V,}

while (W22) { VAN

V; = W.removeNext() Wi ... Wy
y = t;(x;)
ropagate(y,v;
for (v; e dep(v;)) { P szgx. U(yy) 4
propagate(y,v;) i f (zi&x-) g
} Wl add(v;)

1

Implementation: worklistFixpointPropagationSolver

J

13

Agenda

* |nterprocedural analysis

* Context-sensitive
interprocedural analysis

14

Motivating example
What is the sign of the return value of g°?

f(z) {
return z+*42;

}

g0 {

var X,Y,

x = £(0);

y = T(87);
return X + Yy;

}

Our current analysis says “T”

15

Interprocedurally invalid paths

16

Function cloning
(alternatively, function inlining)

Clone functions such that each function has
only one callee

Can avoid interprocedurally invalid paths ©
For high nesting depths, gives exponential blow-up ©®
Doesn’t work on (mutually) recursive functions ®

Use heuristics to determine when to apply
(trade-off between CFG size and precision)

17

Example, with cloning

What is the sign of the return value of g°?

f1(z1) {
return z1%42;

}

f2(z2) {
return z2%42;

}

gO {

var X,y:

x = f1(0);

y = f2(87);
return x + y;

}

18

Context sensitive analysis

* Function cloning provides a kind of context sensitivity
(also called polyvariant analysis)

* Instead of physically copying the function CFGs,
do it logically
e Replace the lattice for abstract states, States, by

Contexts — lift(States)

where Contexts is a set of call contexts
— the contexts are abstractions of the state at function entry
— Contexts must be finite to ensure finite height of the lattice

— the bottom element of lift(States) represents
“unreachable” contexts

* Different strategies for choosing the set Contexts...

19

Constraints for CFG nodes that do not
involve function calls and returns

Easily adjusted to the new lattice Contexts — lift(States)
Example if v is an assignment node x = E in sign analysis:
[v] =JOIN(v)[x = eval(JOIN(v),E)]

becomes _
| slxe eval(s,E)] if s =JOIN(v,c) € States
[v]le)= unreachable if JOIN(v,c) = unreachable
and JOIN(v) = LI [w] \
wepred(v)

becomes JOIN(v,c) = Ll [w](c)

wepred(v)

20

One-level cloning

Let c,,...,c, be the call nodes in the program
Define Contexts={c,,...,c,} U {€}

— each call node now defines its own “call context”
(using € to represent the call context at the main function)
— the context is then like the return address of the top-most
stack frame in the call stack
Same effect as one-level cloning, but without actually
copying the function CFGs

Usually straightforward to generalize the constraints
for a context insensitive analysis to this lattice

(Example: context-sensitive sign analysis — later...)

21

The call string approach

* lLetc,,...,c, bethe call nodes in the program

* Define Contexts as the set of strings over {c,...,C,.}
of length <k

— such a string represents the top-most k call locations
on the call stack

— the empty string € again represents the initial call context
at the main function

* For k=1 this amounts to one-level cloning

Implementation: Cal1stringSignAnalysis

22

Example:
interprocedural sign analysis with call strings (k=1)

Lattice for abstract states: Contexts — lift(Vars — Sign)
where Contexts={g, C,, C,}

f(2) {

var tl,t2;

el = 2¥6¢

£2 = t1%7: [- unreachable,

return t2; - cle 1[z~0, t1-0, t2~0],
¥ c2 b L[ze+, tle+, t2-+]]

x = f(0); // cl

y = t(87); // c2 |
What is an example program
that requires k=2
to avoid loss of precision?

Context sensitivity with call strings
function entry nodes, for k=1

Constraint for entry node v of function f(b, ..., b,):

(if not ‘main’)

[vl(c)= LI Sw

wepred(v) A
c=w A

c’€ Contexts

only consider
the call node w
that matches
the context c

E unreachable
S —
w

1L[b;—eval([w](c’),E7),

if [w](c’) = unreachable

cee) bn—>eval(|IW]](C’),E:1V)] otherwise

24

Context sensitivity with call strings
after-call nodes, for k=1

uuuuu

with call node v’ and exit node wepred(v):

_ | unreachable if [v’](c) = unreachable V [w](v’) = unreachable

V) =7 v (o) x> [w] (v') (resuTt)] B ———
..... v /
': () w |/

The functional approach

The call string approach considers control flow
— but why distinguish between two different call sites if
their abstract states are the same?
The functional approach instead considers data

In the most general form, choose
Contexts = States
(requires States to be finite)
Each element of the lattice States — lift(States)
is now a map m that provides an element m(x) from
States (or “unreachable”) for each possible x
where x describes the state at function entry

26

Example:
interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts — lift(Vars — Sign)
where Contexts = Vars — Sign

f(z) {

var tl,t2;

tl = z¥6;

t2 = 1475 [L[z~0] > L[z-0, 10, t20],

return t2; L[zm+] B L[ze+, tle+, T2+,
1 all other contexts = unreachable]
x = F(0);

y = £(87);

27

Another example:
interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts — lift(Vars — Sign)
where Contexts = Vars — Sign

f(z) {
var tl,t2;
tl = z¥0;
t2 = tl1%7/;
return t2 ;« — [J.[Zl—)O] - 1[z~0, t1-0, t2~-0],
} L[zm+] » L[z-+, tle+, 24,
ga) { all other contexts ~ unreachable]
return f(a);
}
x = g(0);
y = 9(87); ;

The functional approach

The lattice element for a function exit node is thus a
function summary that maps abstract function input to
abstract function output

This can be exploited at call nodes!
When entering a function with abstract state x:

— consider the function summary s for that function

— if s(x) already has been computed, use that to model the entire
function body, then proceed directly to the after-call node

Avoids the problem with interprocedurally invalid paths!
...but may be expensive if States is large

Implementation: FunctionalSignAnalysis o

Example:
interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts — lift(Vars — Sign)
where Contexts = Vars — Sign

f(2) {
var tl1,t2: The abstract state at the exit of T
tl = z*6; can be used as a function summary
t2 = tl1%7;

_ [J_[ZI—>O] - 1[z~0, t1~0, t2-0, result~0],
return t2; ge—""_ L[z—+4] > L[ze+, tle+, t20+, resul to+],

¥
all other contexts = unreachable]
x = £(0);
y = £(87);
7 = 1:(42) - At this call, we can reuse the already computed

exit abstract state of T for the context L[z++]

30

Context sensitivity with the

functional approach
function entry nodes

Constraint for entry node v of function f(b, ..., b,):
(if not ‘main’)

’ function f(by, .., b,)
[vl(c) = L Sw .
wepred(v) A
only consider I:> C= S\% N\ By \ivf(E ¢ =

the call node w p Jog™
if the abstract state ¢ € Contexts S~ olxon l

from that node by
matches the context c

where s¢ is defined as before

31

Context sensitivity with the

functional approach
after-call nodes

with call node v’ and exit node wepred(v):

(c) = unreachable if [v’](c) = unreachable V [w](s,.) = unreachable
[vite) = [V () X—>[[w] (s)(result)] otherwise
function f(by, .., b,)
. /
— 1= f()

Choosing the right
context sensitivity strategy

* The call string approach is expensive for k>1

— solution: choose k adaptively for each call site

* The functional approach is expensive if States is large

— solution: only consider selected parts of the abstract state as
context, for example abstract information about the
function parameter values (called parameter sensitivity),
or, in object-oriented languages, abstract information about
the receiver object ‘this’ (called object sensitivity or
type sensitivity)

33

