Static Program Analysis
 Part 5 - widening and narrowing

http://cs.au.dk/~amoeller/spa/

Anders Møller \& Michael I. Schwartzbach
Computer Science, Aarhus University

Interval analysis

- Compute upper and lower bounds for integers
- Possible applications:
- array bounds checking
- integer representation
- Lattice of intervals:

$$
\text { Intervals }=\operatorname{lift}(\{[\mathrm{I}, \mathrm{~h}] \quad \mid \mathrm{I}, \mathrm{~h} \in \mathrm{~N} \wedge \mathrm{I} \leq \mathrm{h}\})
$$

where

$$
N=\{-\infty, \ldots,-2,-1,0,1,2, \ldots, \infty\}
$$

and intervals are ordered by inclusion:

$$
\left[\mathrm{I}_{1}, \mathrm{~h}_{1}\right] \sqsubseteq\left[\mathrm{I}_{2}, \mathrm{~h}_{2}\right] \text { iff } \mathrm{I}_{2} \leq \mathrm{I}_{1} \wedge \mathrm{~h}_{1} \leq \mathrm{h}_{2}
$$

The interval lattice

Interval analysis lattice

- The total lattice for a program point is

Vars \rightarrow Intervals
that provides bounds for each (integer) variable

- If using the worklist solver that initializes the worklist with only the entry node, use the lattice lift(Vars \rightarrow Intervals)
- bottom value of lift(Vars \rightarrow Intervals) represents "unreachable program point"
- bottom value of Vars \rightarrow Intervals represents "maybe reachable, but all variables are non-integers"
- This lattice has infinite height, since the chain

$$
[0,0] \sqsubseteq[0,1] \sqsubseteq[0,2] \subseteq[0,3] \sqsubseteq[0,4] \ldots
$$ occurs in Intervals

Interval constraints

- For assignments:

$$
\llbracket x=E \rrbracket=\operatorname{JOIN}(\mathrm{v})[x \rightarrow e \mathrm{eva} /(\operatorname{JOIN}(\mathrm{v}), E)]
$$

- For all other nodes:

$$
\llbracket \mathrm{v} \rrbracket=\operatorname{JOIN}(\mathrm{v})
$$

where $\operatorname{JOIN}(\mathrm{v})=\bigsqcup \llbracket \mathrm{w} \rrbracket$
$\mathrm{w} \in \operatorname{pred}(\mathrm{v})$

Evaluating intervals

- The eval function is an abstract evaluation:
- eval($\sigma, x)=\sigma(x)$
- eval(σ, intconst) $=$ [intconst, intconst]
- eval(σ, E_{1} op $\left.E_{2}\right)=\overline{\mathrm{Op}}\left(\right.$ eval $\left(\sigma, E_{1}\right)$, eval $\left.\left(\sigma, E_{2}\right)\right)$
- Abstract operators:
$-\overline{\mathrm{op}}\left(\left[\mathrm{I}_{1}, \mathrm{~h}_{1}\right],\left[\mathrm{I}_{2}, \mathrm{~h}_{2}\right]\right)=$

$$
\left[\min _{x \in\left[1, h_{1}\right], y \in\left[2_{2}, h_{2}\right]} x \text { op } y, \max _{x \in\left[1_{1}, h_{1}\right], y \in\left[2_{2}, h_{2}\right]} \operatorname{xop}_{y}\right]
$$

Fixed-point problems

- The lattice has infinite height, so the fixed-point algorithm does not work $: \%$
- The sequence of approximants

$$
\mathrm{f}^{\prime}(\perp) \text { for } \mathrm{i}=0,1, \ldots
$$

is not guaranteed to converge

- (Exercise: give an example of a program where this happens)
- Restricting to 32 bit integers is not a practical solution
- Widening gives a useful solution...

Does the least fixed point exist?

- The lattice has infinite height, so Kleene's fixed-point theorem does not apply $\cdot:$
- Tarski's fixed-point theorem:

In a complete lattice L, every monotone function
$\mathrm{f}: \mathrm{L} \rightarrow \mathrm{L}$ has a unique least fixed point given by

$$
\operatorname{Ifp}(f)=\Pi\{x \in L \mid f(x) \sqsubseteq x\}
$$

Widening

- Introduce a widening function $\omega: \mathrm{L} \rightarrow \mathrm{L}$ so that

$$
(\omega \circ f)^{i}(\perp) \text { for } i=0,1, \ldots
$$

converges on a fixed point that is a safe approximation of each $\mathrm{f}^{\prime}(\perp)$

- i.e. the function ω coarsens the information

Turbo charging the iterations

Simple widening for intervals

- The function $\omega: L \rightarrow L$ is defined pointwise on

$$
\mathrm{L}=(\text { Vars } \rightarrow \text { Intervals })^{\mathrm{n}}
$$

- Parameterized with a fixed finite set B
- must contain - ∞ and ∞ (to retain the T element)
- typically seeded with all integer constants occurring in the given program
- Idea: Find the nearest enclosing allowed interval
- On single elements from Intervals :

$$
\begin{aligned}
& \omega([\mathrm{a}, \mathrm{~b}])=[\max \{\mathrm{i} \in B \mid \mathrm{i} \leq \mathrm{a}\}, \min \{\mathrm{i} \in B \mid \mathrm{b} \leq \mathrm{i}\}] \\
& \omega(\perp)=\perp
\end{aligned}
$$

Divergence in action

$$
\begin{aligned}
& y=0 ; \\
& x=7 ; \\
& x=x+1 ;
\end{aligned}
$$

while (i nput) \{

$$
\begin{aligned}
& x=7 ; \\
& x=x+1 ; \\
& y=y+1 ;
\end{aligned}
$$

\}

$$
\begin{aligned}
& {[x \rightarrow \perp, y \rightarrow \perp]} \\
& {[x \rightarrow[8,8], y \rightarrow[0,1]]} \\
& {[x \rightarrow[8,8], y \rightarrow[0,2]]} \\
& {[x \rightarrow[8,8], y \rightarrow[0,3]]}
\end{aligned}
$$

Simple widening in action

$$
\begin{aligned}
& y=0 ; \\
& x=7 ; \\
& x=x+1 ;
\end{aligned}
$$

while (input) \{

$$
\begin{aligned}
& {[\mathrm{x} \rightarrow \perp, \mathrm{y} \rightarrow \perp]} \\
& {[\mathrm{x} \rightarrow[7, \infty], \mathrm{y} \rightarrow[0,1]]} \\
& {[\mathrm{x} \rightarrow[7, \infty], \mathrm{y} \rightarrow[0,7]]} \\
& {[\mathrm{x} \rightarrow[7, \infty], \mathrm{y} \rightarrow[0, \infty]]}
\end{aligned}
$$

$$
\begin{aligned}
& x=7 \\
& x=x+1 \\
& y=y+1
\end{aligned}
$$

\}

$$
B=\{-\infty, 0,1,7, \infty\}
$$

Correctness of simple widening

- This form of widening works when:
$-\omega$ is an extensive and monotone function, and
- the sub-lattice $\omega(\mathrm{L})$ has finite height
- $\omega \circ$ is monotone and $\omega(\mathrm{L})$ has finite height, so $(\omega \circ f)^{i}(\perp)$ for $i=0,1, \ldots$ converges
- Let $f_{\omega}=(\omega \circ f)^{k}(\perp)$ where $(\omega \circ f)^{k}(\perp)=(\omega \circ f)^{k+1}(\perp)$
- Ifp(f) $\subseteq \mathrm{f}_{\omega}$ follows from Tarski's fixed-point theorem, i.e., f_{ω} is a safe approximation of Ifp(f)

Narrowing

- Widening generally shoots over the target
- Narrowing may improve the result by applying f
- We have $f\left(f_{\omega}\right) \subseteq f_{\omega}$ so applying f again may improve the result!
- And we also have $\operatorname{lfp}(\mathrm{f}) \subseteq \mathrm{f}\left(\mathrm{f}_{\omega}\right)$ so it remains safe!
- This can be iterated arbitrarily many times
- may diverge, but safe to stop anytime

Backing up

Narrowing in action

$$
\begin{aligned}
& y=0 ; \\
& x=7 ; \\
& x=x+1 ;
\end{aligned}
$$

while (input) \{

$$
\begin{aligned}
& x=7 ; \\
& x=x+1 ; \\
& y=y+1 ;
\end{aligned}
$$

\}

$$
\begin{aligned}
& {[x \rightarrow \perp, y \rightarrow \perp]} \\
& {[x \rightarrow[7, \infty], y \rightarrow[0,1]]} \\
& {[x \rightarrow[7, \infty], y \rightarrow[0,7]]} \\
& {[x \rightarrow[7, \infty], y \rightarrow[0, \infty]]} \\
& \ldots \\
& {[x \rightarrow[8,8], y \rightarrow[0, \infty]]} \\
& \quad B=\{-\infty, 0,1,7, \infty\}
\end{aligned}
$$

Correctness of (repeated) narrowing

Claim: $\operatorname{lfp}(f) \sqsubseteq \ldots \sqsubseteq f\left(f_{\omega}\right) \subseteq \ldots \sqsubseteq f\left(f_{\omega}\right) \subseteq f_{\omega}$

- $f\left(f_{\omega}\right) \sqsubseteq \omega\left(f\left(f_{\omega}\right)\right)=(\omega \circ f)\left(f_{\omega}\right)=f_{\omega}$ since ω is extensive
- by monotonicity of f and induction we also have, for all i:

$$
f^{f+1}\left(f_{\omega}\right) \sqsubseteq f^{\prime}\left(f_{\omega}\right) \subseteq f_{\omega}
$$

- i.e. $\mathrm{f}^{i+1}\left(\mathrm{f}_{\omega}\right)$ is at least as precise as $\mathrm{f}^{f}\left(\mathrm{f}_{\omega}\right)$
- $f\left(f_{\omega}\right) \subseteq f_{\omega} \operatorname{sof}\left(f\left(f_{\omega}\right)\right) \subseteq f\left(f_{\omega}\right)$ by monotonicity of f, hence Ifp(f) $\subseteq f\left(f_{\omega}\right)$ by Tarski's fixed-point theorem
- by induction we also have, for all i:

$$
\operatorname{lfp}(f) \subseteq f^{\prime}\left(f_{\omega}\right)
$$

- i.e. $\mathrm{f}^{\mathrm{l}}\left(\mathrm{f}_{\omega}\right)$ is a safe approximation of Ifp(f)

Some observations

- The simple notion of widening is a bit naive...
- Widening happens at every interval and at every node
- There’s no need to widen intervals that are not "unstable"
- There's no need to widen if there are no "cycles" in the dataflow

More powerful widening

- A widening is a function $\nabla: \mathrm{L} \times \mathrm{L} \rightarrow \mathrm{L}$ that is extensive in both arguments and satisfies the following property:
for all increasing chains $\mathrm{z}_{0} \subseteq \mathrm{z}_{1} \subseteq \ldots$,
the sequence $y_{0}=z_{0}, \ldots, y_{i+1}=y_{i} \nabla z_{i+1}, \ldots$ converges
(i.e. stabilizes after a finite number of steps)
- Now replace the basic fixed point solver by computing $x_{0}=\perp$ and $x_{i+1}=x_{i} \nabla f\left(x_{i}\right)$ until convergence
- Theorem: $x_{k+1}=x_{k}$ and lfp(f) $\subseteq x_{k}$ for some k

More powerful widening for interval analysis

Extrapolates unstable bounds to B :

$$
\begin{aligned}
& \perp \nabla \mathrm{y}=\mathrm{y} \\
& \mathrm{x} \nabla \perp=\mathrm{x} \\
& {\left[\mathrm{a}_{1}, \mathrm{~b}_{1}\right] \nabla\left[\mathrm{a}_{2}, \mathrm{~b}_{2}\right]=} \\
& \quad\left[\text { if } \mathrm{a}_{1} \leq \mathrm{a}_{2} \text { then } \mathrm{a}_{1} \text { else } \max \left\{\mathrm{i} \in B \mid \mathrm{i} \leq \mathrm{a}_{2}\right\},\right. \\
& \left.\quad \text { if } \mathrm{b}_{2} \leq \mathrm{b}_{1} \text { then } \mathrm{b}_{1} \text { else } \min \left\{i \in B \mid \mathrm{b}_{2} \leq \mathrm{i}\right\}\right]
\end{aligned}
$$

The ∇ operator on L is then defined pointwise down to individual intervals

For the small example program, we get the same result as with simple widening plus narrowing (but now without using narrowing)

Yet another improvement

- Divergence (e.g. in the interval analysis without widening) can only appear in presence of recursive dataflow constraint
- Sufficient to "break the cycles", perform widening only at, for example, loop heads in the CFG

Choosing the set B

- Defining the widening function based on constants occurring in the given program may not work well

```
f(x) { // "McCarthy's 91 function"
    var r;
    if (x > 100) {
        r = x - 10;
    } el se {
        r = f(f(x + 11));
    }
    return r;
}
https://en.wikipedia.org/wiki/McCarthy_91_function
```

- (This example requires interprocedural and control-sensitive analysis)

