Static Program Analysis Part 5 – widening and narrowing

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University

Interval analysis

- Compute upper and lower bounds for integers
- Possible applications:
 - array bounds checking
 - integer representation
 - ...
- Lattice of intervals:

Intervals = lift({ [I, h] | $I,h \in N \land I \leq h$ })

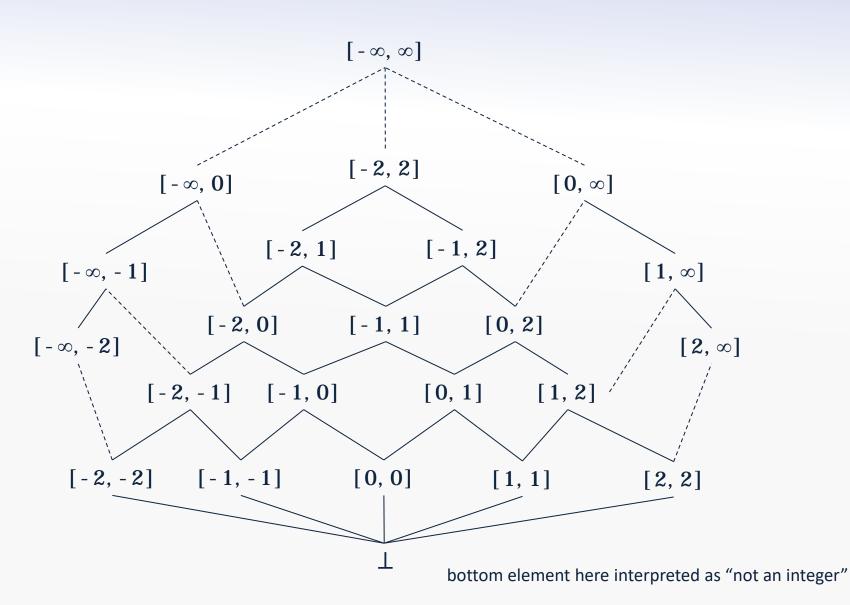
where

$$N = \{-\infty, ..., -2, -1, 0, 1, 2, ..., \infty\}$$

and intervals are ordered by inclusion:

 $\left[\begin{array}{c} \mathsf{I}_1, \ \mathsf{h}_1 \end{array} \right] \sqsubseteq \left[\begin{array}{c} \mathsf{I}_2, \ \mathsf{h}_2 \end{array} \right] \text{ iff } \mathsf{I}_2 \leq \mathsf{I}_1 \land \mathsf{h}_1 \leq \mathsf{h}_2$

The interval lattice



Interval analysis lattice

• The total lattice for a program point is Vars \rightarrow Intervals

that provides bounds for each (integer) variable

- If using the worklist solver that initializes the worklist with only the *entry* node, use the lattice *lift*(*Vars* \rightarrow *Intervals*)
 - bottom value of *lift(Vars* → *Intervals*) represents "unreachable program point"
 - bottom value of Vars → Intervals represents "maybe reachable, but all variables are non-integers"
- This lattice has *infinite height*, since the chain
 [0, 0] ⊑ [0, 1] ⊑ [0, 2] ⊑ [0, 3] ⊑ [0, 4] ...
 occurs in *Intervals*

Interval constraints

• For assignments:

 $[[x = E]] = JOIN(v)[x \rightarrow eval(JOIN(v), E)]$

• For all other nodes:

[[v]] = *JOIN*(v)

where $JOIN(v) = \bigsqcup_{w \in pred(v)} \llbracket w \rrbracket$

Evaluating intervals

- The *eval* function is an *abstract evaluation*:
 - $eval(\sigma, x) = \sigma(x)$
 - $eval(\sigma, intconst) = [intconst, intconst]$
 - $eval(\sigma, E_1 \text{ op } E_2) = \overline{\text{op}}(eval(\sigma, E_1), eval(\sigma, E_2))$
- Abstract operators:

$$- \overline{op}([l_1, h_1], [l_2, h_2]) =$$

not trivial to implement!

 $\left[\begin{array}{cc} min & x \text{ op } y, \\ x \in [l_1, h_1], y \in [l_2, h_2] \end{array} \right] x \in [l_1, h_1], y \in [l_2, h_2]$

Fixed-point problems

- The lattice has infinite height, so the fixed-point algorithm does not work ⁽²⁾
- The sequence of approximants
 fⁱ(⊥) for i = 0, 1, ...

is not guaranteed to converge

- (Exercise: give an example of a program where this happens)
- Restricting to 32 bit integers is not a practical solution
- *Widening* gives a useful solution...

Does the least fixed point exist?

- The lattice has infinite height, so Kleene's fixed-point theorem does not apply ⁽³⁾
- Tarski's fixed-point theorem:

In a complete lattice L, every monotone function f: L \rightarrow L has a unique least fixed point given by lfp(f) = $\prod \{ x \in L \mid f(x) \sqsubseteq x \}$

(Proof?)

Widening

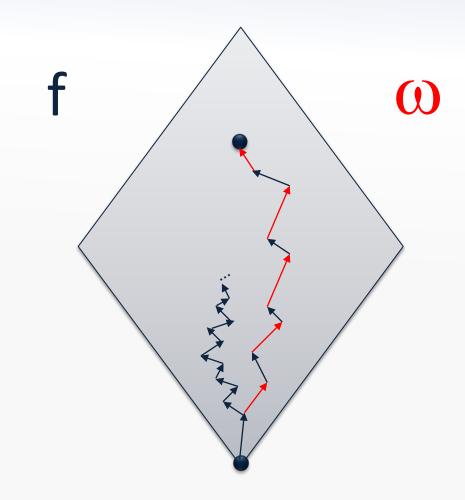
• Introduce a *widening* function $\omega: L \rightarrow L$ so that

 $(\omega \circ f)^{i}(\perp)$ for i = 0, 1, ...

converges on a fixed point that is a safe approximation of each $f^i(\bot)$

- i.e. the function $\boldsymbol{\omega}$ coarsens the information

Turbo charging the iterations



Simple widening for intervals

- The function $\omega: L \to L$ is defined pointwise on $L = (Vars \to Intervals)^n$
- Parameterized with a fixed finite set B

-00

- must contain ∞ and ∞ (to retain the T element)
- typically seeded with all integer constants occurring in the given program

5

117

 ∞

- Idea: Find the nearest enclosing allowed interval
- On single elements from *Intervals* : $\omega([a, b]) = [max\{i \in B | i \leq a\}, min\{i \in B | b \leq i\}]$ $\omega(\bot) = \bot \qquad \qquad \underbrace{[1, 42]}_{\omega([1, 42])}$

-87

Divergence in action

y = 0;x = 7;x = x+1;while (input) { x = 7;x = x+1;y = y+1;}

$$\begin{array}{l} [x \rightarrow \bot, y \rightarrow \bot] \\ [x \rightarrow [8, 8], y \rightarrow [0, 1]] \\ [x \rightarrow [8, 8], y \rightarrow [0, 2]] \\ [x \rightarrow [8, 8], y \rightarrow [0, 2]] \\ ... \end{array}$$

Simple widening in action

y = 0;x = 7;x = x+1;while (input) { x = 7;x = x+1;y = y+1;

$$[x \rightarrow \bot, y \rightarrow \bot]$$

$$[x \rightarrow [7, \infty], y \rightarrow [0, 1]]$$

$$[x \rightarrow [7, \infty], y \rightarrow [0, 7]]$$

$$[x \rightarrow [7, \infty], y \rightarrow [0, \infty]]$$

$$B = \{-\infty, 0, 1, 7, \infty\}$$

Correctness of simple widening

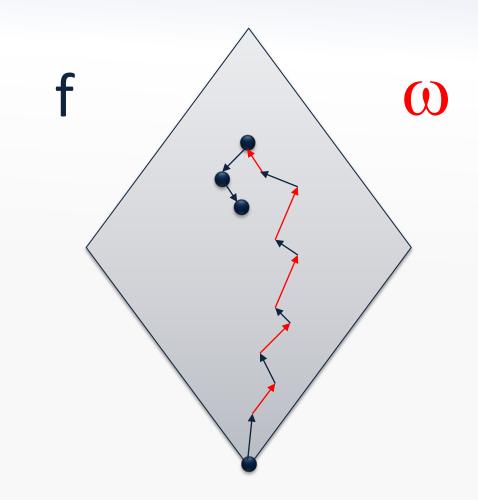
- This form of widening works when:
 - ω is an *extensive* and *monotone* function, and
 - the sub-lattice $\omega(L)$ has *finite height*
- ω∘f is monotone and ω(L) has finite height, so (ω∘f)ⁱ(⊥) for i = 0, 1, ... converges
- Let $f_{\omega} = (\omega \circ f)^k(\bot)$ where $(\omega \circ f)^k(\bot) = (\omega \circ f)^{k+1}(\bot)$
- Ifp(f) ⊑ f_∞ follows from Tarski's fixed-point theorem,
 i.e., f_∞ is a safe approximation of Ifp(f)

Narrowing

- Widening generally shoots over the target
- Narrowing may improve the result by applying f
- We have $f(f_{\omega}) \sqsubseteq f_{\omega}$ so applying f again may improve the result!
- And we also have $lfp(f) \sqsubseteq f(f_{\omega})$ so it remains safe!
- This can be iterated arbitrarily many times

 may diverge, but safe to stop anytime

Backing up



Narrowing in action

y = 0;x = 7;x = x+1;while (input) { x = 7;x = x+1;y = y+1;}

$$[x \rightarrow \bot, y \rightarrow \bot]$$

$$[x \rightarrow [7, \infty], y \rightarrow [0, 1]]$$

$$[x \rightarrow [7, \infty], y \rightarrow [0, 7]]$$

$$[x \rightarrow [7, \infty], y \rightarrow [0, \infty]]$$

...

$$[x \rightarrow [8, 8], y \rightarrow [0, \infty]]$$

 $B = \{-\infty, 0, 1, 7, \infty\}$

Correctness of (repeated) narrowing

 $\mathsf{Claim}:\mathsf{lfp}(\mathsf{f})\sqsubseteq \ldots \sqsubseteq \mathsf{f}^{\mathsf{i}}(\mathsf{f}_{\omega})\sqsubseteq \ldots \sqsubseteq \mathsf{f}(\mathsf{f}_{\omega})\sqsubseteq \mathsf{f}_{\omega}$

- $f(f_{\omega}) \sqsubseteq \omega(f(f_{\omega})) = (\omega \circ f)(f_{\omega}) = f_{\omega}$ since ω is extensive
 - by monotonicity of f and induction we also have, for all i: $f^{i+1}(f_{\omega}) \sqsubseteq f^{i}(f_{\omega}) \sqsubseteq f_{\omega}$
 - i.e. $f^{i+1}(f_{\omega})$ is at least as precise as $f^{i}(f_{\omega})$
- $f(f_{\omega}) \sqsubseteq f_{\omega}$ so $f(f(f_{\omega})) \sqsubseteq f(f_{\omega})$ by monotonicity of f, hence $lfp(f) \sqsubseteq f(f_{\omega})$ by Tarski's fixed-point theorem
 - by induction we also have, for all i:

 $\mathsf{lfp}(\mathsf{f}) \sqsubseteq \mathsf{f}^{\mathsf{i}}(\mathsf{f}_{\omega})$

– i.e. $f^i(f_{\omega})$ is a safe approximation of lfp(f)

Some observations

- The simple notion of widening is a bit naive...
- Widening happens at *every* interval and at *every* node
- There's no need to widen intervals that are not "unstable"
- There's no need to widen if there are no "cycles" in the dataflow

More powerful widening

A widening is a function ∇: L × L →L that is extensive in both arguments and satisfies the following property: for all increasing chains z₀ ⊑ z₁ ⊑ ..., the sequence y₀ = z₀, ..., y_{i+1} = y_i ∇ z_{i+1},... converges (i.e. stabilizes after a finite number of steps)

- Now replace the basic fixed point solver by computing x₀ = ⊥ and x_{i+1} = x_i ∇ f(x_i) until convergence
- Theorem: $x_{k+1} = x_k$ and $Ifp(f) \sqsubseteq x_k$ for some k

(Proof: similar to the correctness proof for simple widening)

More powerful widening for interval analysis

Extrapolates unstable bounds to B:

For the small example program, we get the same result as with simple widening plus narrowing (but now without using narrowing)

Yet another improvement

- Divergence (e.g. in the interval analysis without widening) can only appear in presence of recursive dataflow constraint
- Sufficient to "break the cycles", perform widening only at, for example, loop heads in the CFG

Choosing the set B

• Defining the widening function based on constants occurring in the given program may not work well

```
f(x) { // "McCarthy's 91 function"
    var r;
    if (x > 100) {
        r = x - 10;
    } else {
        r = f(f(x + 11));
    }
    return r;
}
```

https://en.wikipedia.org/wiki/McCarthy_91_function

(This example requires interprocedural and control-sensitive analysis)