
Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University

Static Program Analysis
Part 4 – flow sensitive analyses

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/%7Eamoeller/spa/


Agenda

2

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Constant propagation optimization

3

var x,y,z;

x = 27;

y = input;

z = 54+y;

if (0) { y=z-3; } else { y=12; }

output y;

var x,y,z;
x = 27;
y = input,
z = 2*x+y;
if (x<0) { y=z-3; } else { y=12; }
output y;

var y;

y = input;

output 12;



Constant propagation analysis

• Determine variables with a constant value
• Flat lattice:

⊤

-1 0 1 2 3-2-3

4

⊥



Constraints for constant propagation

• Essentially as for the Sign analysis…

• Abstract operator for addition:
⊥ if n=⊥ ∨ m=⊥

+(n,m) =      ⊤ else if n=⊤ ∨ m=⊤
n+m otherwise

5



Agenda

6

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Liveness analysis

• A variable is live at a program point if its current value
may be read in the remaining execution

• This is clearly undecidable, but the property can be
conservatively approximated

• The analysis must only answer “dead”
if the variable is really dead
– no need to store the values of dead variables

7



A lattice for liveness

A powerset lattice of program variables

L = (P({x,y,z}), ⊆)

{x,y,z}

{x,y}

{x}

{x,z}{y,z}

{y} {z}

∅

the trivial answer

8

var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;



The control flow graph

z = x-4

x = input x > 1 y = x/2 y > 3 x = x-y

var x,y,z

z > 0 x = x/2

z = z-1

output x

9



Setting up

• For every CFG node, v, we have a variable ⟦v⟧:
– the set of program variables that are live 

at the program point before v

• Since the analysis is conservative, the computed sets 
may be too large

• Auxiliary definition:

JOIN(v) =  ∪⟦w⟧
w∈succ(v)

v

w1 w2

wk

10



• For the exit node:
⟦exit⟧ = ∅

• For conditions and output:
⟦ if (E) ⟧ = ⟦ output E ⟧ = JOIN(v) ∪ vars(E)

• For assignments:
⟦ x = E ⟧ = JOIN(v) \ {x} ∪ vars(E)

• For variable declarations:
⟦ var x1, ..., xn ⟧ = JOIN(v) \ {x1, ..., xn}

• For all other nodes:
⟦v⟧ = JOIN(v)

vars(E) = variables occurring in E

right-hand sides are monotone
since JOIN is monotone, and …

11

Liveness constraints 



Generated constraints

12

⟦var x,y,z⟧ = ⟦x=input⟧ \ {x,y,z}
⟦x=input⟧ = ⟦x>1⟧ \ {x}
⟦x>1⟧ = (⟦y=x/2⟧ ∪ ⟦output x⟧) ∪ {x}
⟦y=x/2⟧ = (⟦y>3⟧ \ {y}) ∪ {x}
⟦y>3⟧ = ⟦x=x-y⟧ ∪ ⟦z=x-4⟧ ∪ {y}
⟦x=x-y⟧ = (⟦z=x-4⟧ \ {x}) ∪ {x,y}
⟦z=x-4⟧ = (⟦z>0⟧ \ {z}) ∪ {x}
⟦z>0⟧ = ⟦x=x/2⟧ ∪ ⟦z=z-1⟧ ∪ {z}
⟦x=x/2⟧ = (⟦z=z-1⟧ \ {x}) ∪ {x}
⟦z=z-1⟧ = (⟦x>1⟧ \ {z}) ∪ {z}
⟦output x⟧ = ⟦exit⟧ ∪ {x}
⟦exit⟧ = ∅



Least solution

Many non-trivial answers!

13

⟦entry⟧ = ∅
⟦var x,y,z⟧ = ∅
⟦x=input⟧ = ∅
⟦x>1⟧ = {x}
⟦y=x/2⟧ = {x}
⟦y>3⟧ = {x,y}
⟦x=x-y⟧ = {x,y}
⟦z=x-4⟧ = {x}

⟦z>0⟧ = {x,z}
⟦x=x/2⟧ = {x,z}
⟦z=z-1⟧ = {x,z}
⟦output x⟧ = {x}
⟦exit⟧ = ∅



Optimizations

• Variables y and z are never simultaneously live
⇒ they can share the same variable location

• The value assigned in z=z-1 is never read
⇒ the assignment can be skipped

• better register allocation 
• a few clock cycles saved

14

var x,yz;

x = input;

while (x>1) {

yz = x/2;

if (yz>3) x = x-yz;

yz = x-4;

if (yz>0) x = x/2;

}

output x;



Time complexity
(for the naive algorithm)

• With n CFG nodes and k variables:
– the lattice Ln has height k⋅n
– so there are at most k⋅n iterations

• Subsets of Vars (the variables in the program)
can be represented as bitvectors:
– each element has size k
– each ∪, \, = operation takes time O(k)

• Each iteration uses O(n) bitvector operations:
– so each iteration takes time O(k⋅n)

• Total time complexity: O(k2n2)

• Exercise: what is the complexity for the worklist algorithm?
15



Agenda

16

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Available expressions analysis

• A (nontrivial) expression is available at a program 
point if its current value has already been computed
earlier in the execution

• The approximation generally includes too few
expressions
– the analysis can only report “available” if the expression

is definitely available
– no need to re-compute available expressions

(e.g. common subexpression elimination)

17



A lattice for available expressions

A reverse powerset lattice of nontrivial expressions

L = (P({a+b, a*b, y>a+b, a+1}), ⊇)

18

var x,y,z,a,b;

z = a+b;

y = a*b;

while (y > a+b) {

a = a+1;

x = a+b;

}



Reverse powerset lattice

{a+b, y>a+b}

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

{a+b, a*b}

{a+b, a*b, y>a+b, a+1}

{a+b, a+1} {a*b, y>a+b} {a*b, a+1} {y>a+b, a+1}

{a+b} {a*b} {y>a+b} {a+1}

∅

the trivial answer

19



The control flow graph

var x,y,z,a,b

z=a+b

y=a*b

y>a+b

a=a+1

x=a+b

20



Setting up

• For every CFG node, v, we have a variable ⟦v⟧:
– the set of expressions that are available

at the program point after v

• Since the analysis is conservative, the computed sets 
may be too small

• Auxiliary definition:

JOIN(v) =  ∩⟦w⟧
w∈pred(v) v

w1

w2

wk

21



Auxiliary functions

• The function S↓x removes all expressions
that contain the variable x from the set S

• The function exps(E) is defined as:
– exps(intconst) = ∅
– exps(x) = ∅
– exps(input) = ∅
– exps(E1 op E2) = {E1 op E2} ∪ exps(E1) ∪ exps(E2) 

but don’t include expressions containing input

22



Availability constraints

• For the entry node:
⟦entry⟧ = ∅

• For conditions and output:
⟦ if (E) ⟧ = ⟦ output E ⟧ = JOIN(v) ∪ exps(E)

• For assignments:
⟦ x = E ⟧ = (JOIN(v) ∪ exps(E))↓x

• For any other node v:
⟦v⟧ = JOIN(v)

23



Generated constraints

24

⟦entry⟧ = ∅
⟦var x,y,z,a,b⟧ = ⟦entry⟧
⟦z=a+b⟧ = exps(a+b)↓z
⟦y=a*b⟧ = (⟦z=a+b⟧ ∪ exps(a*b))↓y
⟦y>a+b⟧ = (⟦y=a*b⟧ ∩ ⟦x=a+b⟧) ∪ exps(y>a+b)
⟦a=a+1⟧ = (⟦y>a+b⟧ ∪ exps(a+1))↓a
⟦x=a+b⟧ = (⟦a=a+1⟧ ∪ exps(a+b))↓x
⟦exit⟧ = ⟦y>a+b⟧



Least solution

Again, many nontrivial answers!

25

⟦entry⟧ = ∅
⟦var x,y,z,a,b⟧ = ∅
⟦z=a+b⟧ = {a+b}
⟦y=a*b⟧ = {a+b, a*b}
⟦y>a+b⟧ = {a+b, y>a+b}
⟦a=a+1⟧ = ∅
⟦x=a+b⟧ = {a+b}
⟦exit⟧ = {a+b}



Optimizations

• We notice that a+b is available before the loop
• The program can be optimized (slightly):

26

var x,y,x,a,b,aplusb;

aplusb = a+b;

z = aplusb;

y = a*b;

while (y > aplusb) {

a = a+1;

aplusb = a+b;

x = aplusb;

}



Agenda

27

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Very busy expressions analysis

• A (nontrivial) expression is very busy if it will definitely
be evaluated before its value changes

• The approximation generally includes too few
expressions
– the answer “very busy” must be the true one
– very busy expressions may be pre-computed

(e.g. loop hoisting)

• Same lattice as for available expressions

28



An example program

The analysis shows that a*b is very busy
right before the while loop

29

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x > 0) {

output a*b-x;

x = x-1;

}

output a*b;



Code hoisting

30

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x > 0) {

output a*b-x;

x = x-1;

}

output a*b;

var x,a,b,atimesb;

x = input;

a = x-1;

b = x-2;

atimesb = a*b;

while (x > 0) {

output atimesb-x;

x = x-1;

}

output atimesb;



Setting up

• For every CFG node, v, we have a variable ⟦v⟧:
– the set of expressions that are very busy

at the program point before v

• Since the analysis is conservative, the computed sets 
may be too small

• Auxiliary definition:

JOIN(v) =  ∩⟦w⟧
w∈succ(v)

v

w1 w2

wk

31



Very busy constraints

• For the exit node:
⟦exit⟧ = ∅

• For conditions and output:
⟦ if (E) ⟧ = ⟦ output E ⟧ = JOIN(v) ∪ exps(E)

• For assignments:
⟦ x = E ⟧ = JOIN(v)↓x ∪ exps(E)

• For all other nodes:
⟦v⟧ = JOIN(v)

32

same ↓ operator as for available expressions analysis



Agenda

33

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Reaching definitions analysis

• The reaching definitions for a program point are 
those assignments that may define the current 
values of variables

• The conservative approximation may include too 
many possible assignments

34



A lattice for reaching definitions

The powerset lattice of assignments
L = (P({x=input, y=x/2, x=x-y, z=x-4, x=x/2, z=z-1}),⊆)

35

var x,y,z;

x = input;

while (x > 1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;



Reaching definitions constraints

• For assignments:
⟦ x = E ⟧ = JOIN(v)↓x ∪ { x = E }

• For all other nodes:
⟦v⟧ = JOIN(v)

• Auxiliary definition:

JOIN(v) =   ∪⟦w⟧

• The function S↓x removes assignments to x 
from the set S

w∈pred(v)

v

w1

w2

wk

36



Def-use graph

Reaching definitions define the def-use graph:
– like a CFG but with edges from def to use nodes
– basis for dead code elimination and code motion

x>1

x=input

y=x/2

y>3

x=x-y

z=x-4

z>0 x=x/2

z=z-1

output x

37



Forward vs. backward

• A forward analysis:
– computes information about the past behavior
– examples:  available expressions, reaching definitions

• A backward analysis:
– computes information about the future behavior
– examples:  liveness, very busy expressions

38



May vs. must

• A may analysis:
– describes information that is possibly true
– an over-approximation
– examples: liveness, reaching definitions

• A must analysis:
– describes information that is definitely true
– an under-approximation
– examples: available expressions, very busy expressions

39



Classifying analyses

forward backward

may

example:  reaching definitions

⟦v⟧ describes state after v

JOIN(v) =   ⨆⟦w⟧ =  ∪⟦w⟧

example:  liveness

⟦v⟧ describes state before v

JOIN(v) =  ⨆⟦w⟧ =   ∪⟦w⟧

must

example:  available expressions

⟦v⟧ describes state after v

JOIN(v) =   ⨆⟦w⟧ =    ∩⟦w⟧

example:  very busy expressions

⟦v⟧ describes state before v

JOIN(v) =   ⨆⟦w⟧ =  ∩⟦w⟧

w∈succ(v)

w∈pred(v)

w∈pred(v)

w∈succ(v)

w∈succ(v)w∈pred(v)

w∈pred(v) w∈succ(v)

40



Agenda

41

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Initialized variables analysis

• Compute for each program point those variables 
that have definitely been initialized in the past

• (Called definite assignment analysis in Java and C#)
• ⇒ forward must analysis
• Reverse powerset lattice of all variables 

JOIN(v) =   ∩⟦w⟧

• For assignments: ⟦ x = E ⟧ = JOIN(v) ∪ {x}
• For all others: ⟦v⟧ = JOIN(v)

w∈pred(v)

42


	Slide Number 1
	Agenda
	Constant propagation optimization
	Constant propagation analysis
	Constraints for constant propagation
	Agenda
	Liveness analysis
	A lattice for liveness
	The control flow graph
	Setting up
	Slide Number 11
	Generated constraints
	Least solution
	Optimizations
	Time complexity �(for the naive algorithm)
	Agenda
	Available expressions analysis
	A lattice for available expressions
	Reverse powerset lattice
	The control flow graph
	Setting up
	Auxiliary functions
	Availability constraints
	Generated constraints
	Least solution
	Optimizations
	Agenda
	Very busy expressions analysis
	An example program
	Code hoisting
	Setting up
	Very busy constraints
	Agenda
	Reaching definitions analysis
	A lattice for reaching definitions
	Reaching definitions constraints
	Def-use graph
	Forward vs. backward
	May vs. must
	Classifying analyses
	Agenda
	Initialized variables analysis

