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Agenda
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• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Constant propagation optimization
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var x,y,z;

x = 27;

y = input;

z = 54+y;

if (0) { y=z-3; } else { y=12; }

output y;

var x,y,z;
x = 27;
y = input,
z = 2*x+y;
if (x<0) { y=z-3; } else { y=12; }
output y;

var y;

y = input;

output 12;



Constant propagation analysis

• Determine variables with a constant value
• Flat lattice:

⊤

-1 0 1 2 3-2-3
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⊥



Constraints for constant propagation

• Essentially as for the Sign analysis…

• Abstract operator for addition:
⊥ if n=⊥ ∨ m=⊥

+(n,m) =      ⊤ else if n=⊤ ∨ m=⊤
n+m otherwise
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• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Liveness analysis

• A variable is live at a program point if its current value
may be read in the remaining execution

• This is clearly undecidable, but the property can be
conservatively approximated

• The analysis must only answer “dead”
if the variable is really dead
– no need to store the values of dead variables
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A lattice for liveness

A powerset lattice of program variables

L = (P({x,y,z}), ⊆)

{x,y,z}

{x,y}

{x}

{x,z}{y,z}

{y} {z}

∅

the trivial answer
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var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;



The control flow graph

z = x-4

x = input x > 1 y = x/2 y > 3 x = x-y

var x,y,z

z > 0 x = x/2

z = z-1

output x

9



Setting up

• For every CFG node, v, we have a variable ⟦v⟧:
– the set of program variables that are live 

at the program point before v

• Since the analysis is conservative, the computed sets 
may be too large

• Auxiliary definition:

JOIN(v) =  ∪⟦w⟧
w∈succ(v)

v

w1 w2

wk
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• For the exit node:
⟦exit⟧ = ∅

• For conditions and output:
⟦ if (E) ⟧ = ⟦ output E ⟧ = JOIN(v) ∪ vars(E)

• For assignments:
⟦ x = E ⟧ = JOIN(v) \ {x} ∪ vars(E)

• For variable declarations:
⟦ var x1, ..., xn ⟧ = JOIN(v) \ {x1, ..., xn}

• For all other nodes:
⟦v⟧ = JOIN(v)

vars(E) = variables occurring in E

right-hand sides are monotone
since JOIN is monotone, and …
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Liveness constraints 



Generated constraints
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⟦var x,y,z⟧ = ⟦x=input⟧ \ {x,y,z}
⟦x=input⟧ = ⟦x>1⟧ \ {x}
⟦x>1⟧ = (⟦y=x/2⟧ ∪ ⟦output x⟧) ∪ {x}
⟦y=x/2⟧ = (⟦y>3⟧ \ {y}) ∪ {x}
⟦y>3⟧ = ⟦x=x-y⟧ ∪ ⟦z=x-4⟧ ∪ {y}
⟦x=x-y⟧ = (⟦z=x-4⟧ \ {x}) ∪ {x,y}
⟦z=x-4⟧ = (⟦z>0⟧ \ {z}) ∪ {x}
⟦z>0⟧ = ⟦x=x/2⟧ ∪ ⟦z=z-1⟧ ∪ {z}
⟦x=x/2⟧ = (⟦z=z-1⟧ \ {x}) ∪ {x}
⟦z=z-1⟧ = (⟦x>1⟧ \ {z}) ∪ {z}
⟦output x⟧ = ⟦exit⟧ ∪ {x}
⟦exit⟧ = ∅



Least solution

Many non-trivial answers!
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⟦entry⟧ = ∅
⟦var x,y,z⟧ = ∅
⟦x=input⟧ = ∅
⟦x>1⟧ = {x}
⟦y=x/2⟧ = {x}
⟦y>3⟧ = {x,y}
⟦x=x-y⟧ = {x,y}
⟦z=x-4⟧ = {x}

⟦z>0⟧ = {x,z}
⟦x=x/2⟧ = {x,z}
⟦z=z-1⟧ = {x,z}
⟦output x⟧ = {x}
⟦exit⟧ = ∅



Optimizations

• Variables y and z are never simultaneously live
⇒ they can share the same variable location

• The value assigned in z=z-1 is never read
⇒ the assignment can be skipped

• better register allocation 
• a few clock cycles saved
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var x,yz;

x = input;

while (x>1) {

yz = x/2;

if (yz>3) x = x-yz;

yz = x-4;

if (yz>0) x = x/2;

}

output x;



Time complexity
(for the naive algorithm)

• With n CFG nodes and k variables:
– the lattice Ln has height k⋅n
– so there are at most k⋅n iterations

• Subsets of Vars (the variables in the program)
can be represented as bitvectors:
– each element has size k
– each ∪, \, = operation takes time O(k)

• Each iteration uses O(n) bitvector operations:
– so each iteration takes time O(k⋅n)

• Total time complexity: O(k2n2)

• Exercise: what is the complexity for the worklist algorithm?
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• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Available expressions analysis

• A (nontrivial) expression is available at a program 
point if its current value has already been computed
earlier in the execution

• The approximation generally includes too few
expressions
– the analysis can only report “available” if the expression

is definitely available
– no need to re-compute available expressions

(e.g. common subexpression elimination)
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A lattice for available expressions

A reverse powerset lattice of nontrivial expressions

L = (P({a+b, a*b, y>a+b, a+1}), ⊇)
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var x,y,z,a,b;

z = a+b;

y = a*b;

while (y > a+b) {

a = a+1;

x = a+b;

}



Reverse powerset lattice

{a+b, y>a+b}

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

{a+b, a*b}

{a+b, a*b, y>a+b, a+1}

{a+b, a+1} {a*b, y>a+b} {a*b, a+1} {y>a+b, a+1}

{a+b} {a*b} {y>a+b} {a+1}

∅

the trivial answer
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The control flow graph

var x,y,z,a,b

z=a+b

y=a*b

y>a+b

a=a+1

x=a+b
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Setting up

• For every CFG node, v, we have a variable ⟦v⟧:
– the set of expressions that are available

at the program point after v

• Since the analysis is conservative, the computed sets 
may be too small

• Auxiliary definition:

JOIN(v) =  ∩⟦w⟧
w∈pred(v) v

w1

w2

wk
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Auxiliary functions

• The function S↓x removes all expressions
that contain the variable x from the set S

• The function exps(E) is defined as:
– exps(intconst) = ∅
– exps(x) = ∅
– exps(input) = ∅
– exps(E1 op E2) = {E1 op E2} ∪ exps(E1) ∪ exps(E2) 

but don’t include expressions containing input
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Availability constraints

• For the entry node:
⟦entry⟧ = ∅

• For conditions and output:
⟦ if (E) ⟧ = ⟦ output E ⟧ = JOIN(v) ∪ exps(E)

• For assignments:
⟦ x = E ⟧ = (JOIN(v) ∪ exps(E))↓x

• For any other node v:
⟦v⟧ = JOIN(v)
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Generated constraints
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⟦entry⟧ = ∅
⟦var x,y,z,a,b⟧ = ⟦entry⟧
⟦z=a+b⟧ = exps(a+b)↓z
⟦y=a*b⟧ = (⟦z=a+b⟧ ∪ exps(a*b))↓y
⟦y>a+b⟧ = (⟦y=a*b⟧ ∩ ⟦x=a+b⟧) ∪ exps(y>a+b)
⟦a=a+1⟧ = (⟦y>a+b⟧ ∪ exps(a+1))↓a
⟦x=a+b⟧ = (⟦a=a+1⟧ ∪ exps(a+b))↓x
⟦exit⟧ = ⟦y>a+b⟧



Least solution

Again, many nontrivial answers!
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⟦entry⟧ = ∅
⟦var x,y,z,a,b⟧ = ∅
⟦z=a+b⟧ = {a+b}
⟦y=a*b⟧ = {a+b, a*b}
⟦y>a+b⟧ = {a+b, y>a+b}
⟦a=a+1⟧ = ∅
⟦x=a+b⟧ = {a+b}
⟦exit⟧ = {a+b}



Optimizations

• We notice that a+b is available before the loop
• The program can be optimized (slightly):
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var x,y,x,a,b,aplusb;

aplusb = a+b;

z = aplusb;

y = a*b;

while (y > aplusb) {

a = a+1;

aplusb = a+b;

x = aplusb;

}
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• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Very busy expressions analysis

• A (nontrivial) expression is very busy if it will definitely
be evaluated before its value changes

• The approximation generally includes too few
expressions
– the answer “very busy” must be the true one
– very busy expressions may be pre-computed

(e.g. loop hoisting)

• Same lattice as for available expressions
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An example program

The analysis shows that a*b is very busy
right before the while loop
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var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x > 0) {

output a*b-x;

x = x-1;

}

output a*b;



Code hoisting

30

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x > 0) {

output a*b-x;

x = x-1;

}

output a*b;

var x,a,b,atimesb;

x = input;

a = x-1;

b = x-2;

atimesb = a*b;

while (x > 0) {

output atimesb-x;

x = x-1;

}

output atimesb;



Setting up

• For every CFG node, v, we have a variable ⟦v⟧:
– the set of expressions that are very busy

at the program point before v

• Since the analysis is conservative, the computed sets 
may be too small

• Auxiliary definition:

JOIN(v) =  ∩⟦w⟧
w∈succ(v)

v

w1 w2

wk
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Very busy constraints

• For the exit node:
⟦exit⟧ = ∅

• For conditions and output:
⟦ if (E) ⟧ = ⟦ output E ⟧ = JOIN(v) ∪ exps(E)

• For assignments:
⟦ x = E ⟧ = JOIN(v)↓x ∪ exps(E)

• For all other nodes:
⟦v⟧ = JOIN(v)
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same ↓ operator as for available expressions analysis
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• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Reaching definitions analysis

• The reaching definitions for a program point are 
those assignments that may define the current 
values of variables

• The conservative approximation may include too 
many possible assignments
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A lattice for reaching definitions

The powerset lattice of assignments
L = (P({x=input, y=x/2, x=x-y, z=x-4, x=x/2, z=z-1}),⊆)
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var x,y,z;

x = input;

while (x > 1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;



Reaching definitions constraints

• For assignments:
⟦ x = E ⟧ = JOIN(v)↓x ∪ { x = E }

• For all other nodes:
⟦v⟧ = JOIN(v)

• Auxiliary definition:

JOIN(v) =   ∪⟦w⟧

• The function S↓x removes assignments to x 
from the set S

w∈pred(v)

v

w1

w2

wk
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Def-use graph

Reaching definitions define the def-use graph:
– like a CFG but with edges from def to use nodes
– basis for dead code elimination and code motion

x>1

x=input

y=x/2

y>3

x=x-y

z=x-4

z>0 x=x/2

z=z-1

output x
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Forward vs. backward

• A forward analysis:
– computes information about the past behavior
– examples:  available expressions, reaching definitions

• A backward analysis:
– computes information about the future behavior
– examples:  liveness, very busy expressions
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May vs. must

• A may analysis:
– describes information that is possibly true
– an over-approximation
– examples: liveness, reaching definitions

• A must analysis:
– describes information that is definitely true
– an under-approximation
– examples: available expressions, very busy expressions
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Classifying analyses

forward backward

may

example:  reaching definitions

⟦v⟧ describes state after v

JOIN(v) =   ⨆⟦w⟧ =  ∪⟦w⟧

example:  liveness

⟦v⟧ describes state before v

JOIN(v) =  ⨆⟦w⟧ =   ∪⟦w⟧

must

example:  available expressions

⟦v⟧ describes state after v

JOIN(v) =   ⨆⟦w⟧ =    ∩⟦w⟧

example:  very busy expressions

⟦v⟧ describes state before v

JOIN(v) =   ⨆⟦w⟧ =  ∩⟦w⟧

w∈succ(v)

w∈pred(v)

w∈pred(v)

w∈succ(v)

w∈succ(v)w∈pred(v)

w∈pred(v) w∈succ(v)
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• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis



Initialized variables analysis

• Compute for each program point those variables 
that have definitely been initialized in the past

• (Called definite assignment analysis in Java and C#)
• ⇒ forward must analysis
• Reverse powerset lattice of all variables 

JOIN(v) =   ∩⟦w⟧

• For assignments: ⟦ x = E ⟧ = JOIN(v) ∪ {x}
• For all others: ⟦v⟧ = JOIN(v)

w∈pred(v)
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