Static Program Analysis

Part 2 - type analysis and unification
http://cs.au.dk/~amoeller/spa/

Anders Møller \& Michael I. Schwartzbach
Computer Science, Aarhus University

Type errors

- Reasonable restrictions on operations:
- arithmetic operators apply only to integers
- comparisons apply only to like values
- only integers can be input and output
- conditions must be integers
- only functions can be called
- the * operator only applies to pointers
- field lookup can only be performed on records
- the fields being accessed are guaranteed to be present
- Violations result in runtime errors
- Note: no type annotations in TIP

Type checking

- Can type errors occur during runtime?
- This is interesting, hence instantly undecidable
- Instead, we use conservative approximation
- a program is typable if it satisfies some type constraints
- these are systematically derived from the syntax tree
- if typable, then no runtime errors occur
- but some programs will be unfairly rejected (slack)
- What we shall see next is the essence of the Damas-Hindley-Milner type inference technique, which forms the basis of the type systems of e.g. ML, OCaml, and Haskell

Typability

Fighting slack

- Make the type checker a bit more clever:

- An eternal struggle

Fighting slack

- Make the type checker a bit more clever:

- An eternal struggle
- And a great source of publications

Be careful out there

- The type checker may be unsound:

- Example: covariant arrays in Java
- a deliberate pragmatic choice

Generating and solving constraints

$\llbracket \mathrm{p} \rrbracket=$ inint $\llbracket q \rrbracket=\mathbf{i n t}$【alloc 0】＝ $\mathbf{1}$ int $\llbracket x \rrbracket=\phi$ $\llbracket f \circ \circ \rrbracket=\phi$ $\llbracket f \circ \cap \rrbracket=\phi$
$\llbracket \& n \rrbracket=\mathbf{T i n t}$ ［main】 $=() \rightarrow$ int
solution

Types

- Types describe the possible values:

$$
\begin{aligned}
\text { Type } & \rightarrow \text { int } \\
& \mid \text { T Type } \\
& \mid \text { (Type }, \ldots, \text { Type }) \rightarrow \text { Type } \\
& \mid\{\text { Id : Type }, \ldots, \text { Id }: \text { Type }\}
\end{aligned}
$$

- These describe integers, pointers, functions, and records
- Types are terms generated by this grammar - example: (int, Tint) \rightarrow Tiint

Type constraints

- We generate type constraints from an AST:
- all constraints are equalities
- they can be solved using a unification algorithm
- Type variables:
- for each identifier declaration X we have the variable $\llbracket X \rrbracket$
- for each non-identifier expression E we have the variable $\llbracket E \rrbracket$
- Recall that all identifiers are unique
- The expression E denotes an AST node, not syntax
- (Possible extensions: polymorphism, subtyping, ...)

Generating constraints (1/3)

I:	$\llbracket!\rrbracket=$ int
E_{1} op $E_{2}:$	$\llbracket E_{1} \rrbracket=\llbracket E_{2} \rrbracket=\llbracket E_{1}$ op $E_{2} \rrbracket=$ int
$E_{1}==E_{2}:$	$\llbracket E_{1} \rrbracket=\llbracket E_{2} \rrbracket \wedge \llbracket E_{1}==E_{2} \rrbracket=$ int
input:	\llbracket input $\rrbracket=$ int
X=E:	$\llbracket X \rrbracket=\llbracket E \rrbracket$
output $E:$	$\llbracket E \rrbracket=$ int
if $(E)\{S\}:$	$\llbracket E \rrbracket=$ int
if $(E)\left\{S_{1}\right\}$ else $\left\{S_{2}\right\}:$	$\llbracket E \rrbracket=$ int
while $(E)\{S\}:$	$\llbracket E \rrbracket=$ int

Generating constraints (2/3)

$X\left(X_{1}, \ldots, X_{n}\right)\{\ldots$ return $E ;\}$:

$$
\llbracket X \rrbracket=\left(\llbracket X_{1} \rrbracket, \ldots, \llbracket X_{n} \rrbracket\right) \rightarrow \llbracket E \rrbracket
$$

$E\left(E_{1}, \ldots, E_{n}\right)$:

$$
\llbracket E \rrbracket=\left(\llbracket E_{1} \rrbracket, \ldots, \llbracket E_{n} \rrbracket\right) \rightarrow \llbracket E\left(E_{1}, \ldots, E_{n}\right) \rrbracket
$$

a11oc $E: \quad \llbracket a 11$ oc $E \rrbracket=\uparrow \llbracket E \rrbracket$
\& x :

$$
\llbracket \& X \rrbracket=\uparrow \llbracket X \rrbracket
$$

nu17: $\quad \llbracket$ nu17】 $=\uparrow \alpha \quad$ (each α is a fresh type variable)
*E:

$$
\llbracket E \rrbracket=\uparrow \llbracket * E \rrbracket
$$

${ }^{*} E_{1}=E_{2}: \quad \llbracket E_{1} \rrbracket=\uparrow \llbracket E_{2} \rrbracket$
For each parameter X of the main function: $\quad \llbracket X \rrbracket=$ int
For the return expression E of the main function: $\llbracket E \rrbracket=$ int

Exercise

$$
\begin{aligned}
& \text { main() \{ } \\
& \quad \operatorname{var} x, y, z ; \\
& \quad x=\text { input; } \\
& y=\text { alloc } 8 ; \\
& \text { "y }=x ; \\
& z=* y ; \\
& \text { return } x ;
\end{aligned}
$$

- Generate and solve the constraints
- Then try with $\mathrm{y}=\mathrm{a} 11 \mathrm{oc} 8$ replaced by $\mathrm{y}=42$
- Also try with the Scala implementation (when it's completed)

Generating constraints (3/3)

$$
\begin{aligned}
& \left\{X_{1}: E_{1}, \ldots, X_{n}: E_{n}\right\}: \\
& \left.E . X: \quad \frac{\llbracket\left\{X_{1}: E_{1}, \ldots, X_{n}: E \rrbracket \rrbracket-\left\{X_{1}: \llbracket E_{1} \rrbracket, \ldots, X_{n}: \llbracket E_{n} \rrbracket\right\}\right.}{} \quad \llbracket E \rrbracket, \ldots, X: \Pi E, X \rrbracket, \ldots\right\}
\end{aligned}
$$

This is the idea, but not directly expressible in our language of types

Generating constraints (3/3)

Let $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ be the set of field names that appear in the program
Extend Type $\rightarrow \ldots \mid \diamond$ where \diamond represents absent fields

$$
\begin{aligned}
& \left\{X_{1}: E_{1}, \ldots, X_{n}: E_{n}\right\}: \llbracket\left\{X_{1}: E_{1}, \ldots, X_{n}: E_{n}\right\} \rrbracket=\left\{f_{1}: \gamma_{1}, \ldots, f_{m}: \gamma_{m}\right\} \\
& \quad \text { where } \gamma_{i}=\left\{\begin{array}{l}
\llbracket E_{j} \rrbracket \text { if } f_{i}=X_{j} \text { for some } j \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

E.X:

$$
\llbracket E \rrbracket=\left\{f_{1}: \gamma_{1}, \ldots, f_{m}: \gamma_{m}\right\} \wedge \llbracket E . X \rrbracket \neq \varnothing
$$

where $\gamma_{i}= \begin{cases}\llbracket E . X \rrbracket \text { if } f_{i}=X \\ \alpha_{i} & \text { otherwise }\end{cases}$
(Field write statements? Exercise...)

General terms

Constructor symbols:

- 0-ary: a, b, c
- 1-ary: d, e
- 2-ary: f, g, h
- 3-ary: i, j, k

Ex: int
Ex: \& τ

Ex: $\left(\tau_{1}, \tau_{2}\right) \rightarrow \tau_{3}$

Terms:

- a
- d(a)
- $h(a, g(d(a), b))$

Terms with variables:

- $f(X, b)$
- $h(X, g(Y, Z))$
X, Y, and Z here are type variables, like $\llbracket(* p)-1 \rrbracket$ or $\llbracket p \rrbracket$, not program variables

The unification problem

- An equality between two terms with variables:

$$
k(X, b, Y)=k(f(Y, Z), Z, d(Z))
$$

- A solution (a unifier) is an assignment from variables to terms that makes both sides equal:

$$
\begin{aligned}
& X=f(d(b), b) \\
& Y=d(b) \\
& Z=b
\end{aligned}
$$

Implicit constraint for term equality:
$\mathrm{c}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{k}\right)=\mathrm{c}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{k}{ }^{\prime}\right) \Rightarrow \mathrm{t}_{\mathrm{i}}=\mathrm{t}_{i}^{\prime}$ for all i

Unification errors

- Constructor error:

$$
d(X)=e(X)
$$

- Arity error:

$$
a=a(X)
$$

The linear unification algorithm

- Paterson and Wegman (1978)
- In time O(n):
- finds a most general unifier
- or decides that none exists
- Can be used as a back-end for type checking
- ... but only for finite terms

Recursive data structures

The program

$$
\begin{aligned}
& \text { var } p ; \\
& p=a l l o c \text { null; } \\
& \text { "p = } p ;
\end{aligned}
$$

creates these constraints

$$
\begin{aligned}
& \text { 【nul1】 = } \uparrow \mathrm{t} \\
& \text { 【a11oc nul1』 } \mathbb{\uparrow} \text { โnul1】 } \\
& \llbracket p \rrbracket=\llbracket a 110 c \text { nul1 } \rrbracket \\
& \llbracket p \rrbracket=\uparrow \llbracket p \rrbracket
\end{aligned}
$$

which have this＂recursive solution＂for p ：
$\llbracket \mathrm{p} \rrbracket=\mathrm{t}$ where $\mathrm{t}=\mathrm{T} \mathrm{t}$

Regular terms

- Infinite but (eventually) repeating:
- e(e(e(e(e(e(...))))))
- d(a,d(a,d(a, ...)))
- $f(f(f(f(\ldots), f(\ldots)), f(f(\ldots), f(\ldots))), f(f(f(\ldots), f(\ldots)), f(f(\ldots), f(\ldots))))$
- Only finitely many different subtrees
- A non-regular term:
$-f(a, f(d(a), f(d(d(a)), f(d(d(d(a))), \ldots))))$

Regular unification

- Huet (1976)
- The unification problem for regular terms can be solved in $O(n \cdot A(n))$ using a union-find algorithm
- $A(n)$ is the inverse Ackermann function:
- smallest k such that $n \leq \operatorname{Ack}(k, k)$
- this is never bigger than 5 for any real value of n
- See the TIP implementation...

Union-Find

makeset(x) \{
 x.parent :=x
 x.rank := 0
 \}

find (x) \{
if x.parent !=x
x.parent := find(x.parent)
return x.parent
\}

$$
\begin{aligned}
& \text { union(x, y) \{ } \\
& \text { xr := find }(x) \\
& y r:=\text { find }(\mathrm{y}) \\
& \text { if } \mathrm{xr}=\mathrm{yr} \\
& \quad \text { return } \\
& \text { if xr.rank < yr.rank } \\
& \quad \text { xr.parent := yr } \\
& \text { else } \\
& \text { yr.parent := xr } \\
& \text { if xr.rank = yr.rank } \\
& \quad \text { xr.rank := xr.rank + 1 } \\
& \} \quad
\end{aligned}
$$

Union-Find (simplified)

find (x) \{
if x.parent ! $=x$
x.parent := find(x.parent)
return x.parent

$$
\left.\begin{array}{l}
\text { union }(x, y)\{ \\
x r:=\text { find }(x) \\
y r:=\text { find }(y) \\
\text { if } x r=y r \\
\text { return } \\
\text { xr.parent }:=y r
\end{array}\right\}
$$

Implement 'unify' procedure using union and find to unify terms...

Implementation strategy

- Representation of the different kinds of types (including type variables)
- Map from AST nodes to type variables
- Union-Find
- Traverse AST, generate constraints, unify on the fly
- report type error if unification fails
- when unifying a type variable with e.g. a function type, it is useful to pick the function type as representative
- for outputting solution, assign names to type variables (that are roots), and be careful about recursive types

The complicated function

main() \{
var n;
n = input;
return foo(\&n,foo);
\}
\}
return f;
\}
foo(p, x) \{
var f,q;
if (*p==0) \{

$$
\begin{aligned}
& f=1 ; \\
& \} \text { else }\{ \\
& \text { q = alloc } 0 ; \\
& * q=(* p)-1 ; \\
& f=(* p) *(x(q, x)) ;
\end{aligned}
$$

Generated constraints

	$\begin{aligned} & \llbracket * p==0 \rrbracket=\text { int } \\ & \llbracket f \rrbracket=\llbracket 1 \rrbracket \end{aligned}$
	【0】＝int
$\llbracket \mathrm{foo} \rrbracket=(\llbracket p \rrbracket, \llbracket \mathrm{x} \rrbracket) \rightarrow \llbracket \mathrm{f} \rrbracket$	【q】 【 【alloc 0】
［＊p】＝int	$\llbracket q \rrbracket$＝ $\mathbb{\llbracket}(* p)-1 \rrbracket$
$\llbracket 1 \rrbracket=i n t$	【＊p】＝int
	$\llbracket(* p) *(x(q, x)) \rrbracket=$ int
【alloc 0】＝¢ $\llbracket 0 \rrbracket$	$\llbracket x \rrbracket=(\llbracket q \rrbracket, \llbracket x \rrbracket) \rightarrow \llbracket x(q, x) \rrbracket$
$\llbracket q \rrbracket=\uparrow \llbracket * q \rrbracket$	$\llbracket \mathrm{main} \mathrm{\rrbracket}=() \rightarrow \llbracket \mathrm{foo}(\& n, \mathrm{foo}) \rrbracket$
$\llbracket f \rrbracket=\llbracket(* p) *(x(q, x)) \rrbracket$	$\llbracket \& \mathrm{n} \rrbracket=\uparrow \llbracket \mathrm{n} \rrbracket$
$\llbracket x(q, x) \rrbracket=\mathrm{int}$	$\llbracket * p \rrbracket=\llbracket 0 \rrbracket$
【input】＝int	【foo（\＆n，foo）】＝int
【n】＝【input】	
$\llbracket f \mathrm{oo} \rrbracket=(\llbracket \& n \rrbracket, \llbracket \mathrm{foo} \rrbracket) \rightarrow \llbracket \mathrm{foo}(\& n, f o o) \rrbracket$	
$\llbracket(* p)-1 \rrbracket=$ int	

Solutions

$$
\begin{aligned}
& \llbracket p \rrbracket=\text { innt } \\
& \llbracket q \rrbracket=\text { innt } \\
& \text { 【a1loc 0】= Tint } \\
& \llbracket x \rrbracket=\phi \\
& \text { 【foo】 = } \phi \\
& \llbracket \& n \rrbracket=\uparrow i n t \\
& \llbracket m a i n \rrbracket=() \rightarrow i n t
\end{aligned}
$$

Here，ϕ is the regular type that is the unfolding of

$$
\phi=(\uparrow i n t, \phi) \rightarrow i n t
$$

which can also be written $\phi=\mu \mathrm{t}$ ．（ \uparrow int， t$) \rightarrow \mathrm{int}$ All other variables are assigned int

Infinitely many solutions

The function

$$
\begin{aligned}
& \text { poly(x) \{ } \\
& \text { return *x; } \\
& \}
\end{aligned}
$$

has type $(\uparrow \alpha) \rightarrow \alpha$ for any type α
(which is not expressible in our current type language)

Recursive and polymorphic types

- Extra notation for recursive and polymorphic types:

$$
\begin{aligned}
& \text { Type } \rightarrow \ldots \\
& \mid \text { TypeVar. Type } \\
& \mid \text { TypeVar } \\
& \text { TypeVar } \rightarrow \mathrm{t}|\mathrm{u}| \ldots
\end{aligned}
$$

- A type $\tau \in$ Type is a (finite) term generated by this grammar
- $\mu \alpha$. τ is the (potentially recursive) type τ where occurrences of α represent τ itself
- $\alpha \in$ TypeVar is a type variable (implicitly universally quantified if not bound by an enclosing μ)

Slack - let-polymorphism

```
f(x) {
    return *x;
}
main() {
    return f(alloc 1) + *(f(alloc(alloc 2));
}
```

This never has a type error at runtime - but it is not typable Tint $=\llbracket \mathrm{x} \rrbracket=\uparrow \uparrow i n t$
But we could analyze f before main: $\llbracket \mathrm{f} \rrbracket=(\uparrow \mathrm{t}) \rightarrow \mathrm{t}$ and then "instantiate" that type at each call to f in main

Slack - let-polymorphism

```
polyrec(g,x) {
    var r;
    if (x==0) {
        r=g;
    } else {
        r=polyrec(2,0);
    }
    return r+1;
}
main() {
    return polyrec(nu71,1)
}
```

This never has a type error at runtime - but it is not typable And let-polymorphism doesn't work here because bar is recursive

Slack - flow-insensitivity

```
f() {
    var x;
    x = al1oc 17;
    x = 42;
    return x + 87;
}
```

This never has a type error at runtime - but it is not typable The type analysis is flow insensitive (it ignores the order of statements)

Other programming errors

- Not all errors are type errors:
- dereference of nu 11 pointers
- reading of uninitialized variables
- division by zero
- escaping stack cells
(why not?)

```
baz() {
    var x;
    return &x;
}
main() {
    var p;
    p=baz();
    * p=1;
    return *p;
}
```

- Other kinds of static analysis may catch these

