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Type errors
• Reasonable restrictions on operations:

– arithmetic operators apply only to integers

– comparisons apply only to like values

– only integers can be input and output

– conditions must be integers

– only functions can be called

– the * operator only applies to pointers

– field lookup can only be performed on records

– the fields being accessed are guaranteed to be present

• Violations result in runtime errors

• Note: no type annotations in TIP
2



Type checking

• Can type errors occur during runtime?

• This is interesting, hence instantly undecidable

• Instead, we use conservative approximation

– a program is typable if it satisfies some type constraints

– these are systematically derived from the syntax tree

– if typable, then no runtime errors occur

– but some programs will be unfairly rejected (slack)

• What we shall see next is the essence of the 
Damas–Hindley–Milner type inference technique, 
which forms the basis of the type systems of e.g. ML, OCaml, and Haskell
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Typability

typableno type errors

slack
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Fighting slack

• Make the type checker a bit more clever:

• An eternal struggle
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Fighting slack

• Make the type checker a bit more clever:

• An eternal struggle

• And a great source of publications
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Be careful out there

• The type checker may be unsound:

• Example: covariant arrays in Java

– a deliberate pragmatic choice
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Generating and solving constraints

AST

constraints

solution

solver
(unification)
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⟦p⟧ = ⬆int
⟦q⟧ = ⬆int
⟦alloc 0⟧ = ⬆int
⟦x⟧ = 
⟦foo⟧ = 
⟦&n⟧ = ⬆int
⟦main⟧ = ()→int



Types

• Types describe the possible values:

• These describe integers, pointers, functions, 
and records

• Types are terms generated by this grammar

– example:   (int,⬆int ) → ⬆⬆int
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Type  int

| ⬆️ Type

|  (Type, ..., Type ) → Type

|  { Id: Type, ..., Id: Type }



Type constraints

• We generate type constraints from an AST:

– all constraints are equalities

– they can be solved using a unification algorithm

• Type variables:

– for each identifier declaration X we have the variable ⟦X⟧

– for each non-identifier expression E we have the variable ⟦E⟧

• Recall that all identifiers are unique

• The expression E denotes an AST node, not syntax

• (Possible extensions: polymorphism, subtyping, …)
10



Generating constraints (1/3)
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I: ⟦I⟧ = int

E1 op E2: ⟦E1⟧ = ⟦E2⟧ = ⟦E1 op E2⟧ = int

E1 == E2: ⟦E1⟧ = ⟦E2⟧  ⟦E1==E2⟧ = int

input: ⟦input⟧ = int

X = E: ⟦X⟧ = ⟦E⟧

output E: ⟦E⟧ = int

if (E) {S}: ⟦E⟧ = int

if (E) {S1} else {S2}: ⟦E⟧ = int

while (E) {S}: ⟦E⟧ = int



Generating constraints (2/3)
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X(X1,...,Xn){ ... return E; }:

⟦X⟧ = (⟦X1⟧, ..., ⟦Xn⟧) → ⟦E⟧

E(E1, ..., En):

⟦E⟧ = (⟦E1⟧, ..., ⟦En⟧) → ⟦E(E1, ..., En)⟧

alloc E: ⟦alloc E⟧ = ⬆⟦E⟧

&X: ⟦&X⟧ = ⬆⟦X⟧

null: ⟦null⟧ = ⬆

*E: ⟦E⟧ = ⬆⟦*E⟧

*E1 = E2: ⟦E1⟧ = ⬆⟦E2⟧

(each  is a fresh type variable)

For each parameter X of the main function: ⟦X⟧ = int
For the return expression E of the main function:  ⟦E⟧ = int



Exercise

• Generate and solve the constraints

• Then try with y = alloc 8 replaced by y = 42

• Also try with the Scala implementation (when it’s completed) 13

main() {

var x, y, z;

x = input;

y = alloc 8;

*y = x;

z = *y;

return x;

}



Generating constraints (3/3)
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{X1:E1, ..., Xn:En}:
⟦{X1:E1, ..., Xn:En}⟧ = { X1:⟦E1⟧, ..., Xn:⟦En⟧ }

E.X: ⟦E⟧ = { ..., X:⟦E.X⟧, ... }

This is the idea, but not directly expressible in our language of types



Generating constraints (3/3)
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{X1:E1, ..., Xn:En}:  ⟦{X1:E1, ..., Xn:En}⟧ = { f1:γ1, ..., fm:γm }

where γi =

E.X: ⟦E⟧= { f1:γ1, ..., fm:γm }  ∧ ⟦E.X⟧≠⋄

where γi =

Let {f1, f2, …, fm} be the set of field names that appear in 
the program

Extend  Type ... |⋄   where ⋄ represents absent fields 

⟦Ej⟧ if fi = Xj for some j

⋄ otherwise 

⟦E.X⟧ if fi = X

αi otherwise 

(Field write statements? Exercise...)



General terms

Constructor symbols:

• 0-ary: a, b, c

• 1-ary: d, e

• 2-ary: f, g, h

• 3-ary: i, j, k

Terms:

• a

• d(a)

• h(a,g(d(a),b))

Terms with variables:

• f(X,b)

• h(X,g(Y,Z))
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Ex: int

Ex: &

Ex: (1, 2)→ 3

X, Y, and Z here are type variables, 
like ⟦(*p)-1⟧ or ⟦p⟧,

not program variables



The unification problem

• An equality between two terms with variables:

k(X,b,Y) = k(f(Y,Z),Z,d(Z))

• A solution (a unifier) is an assignment from variables 
to terms that makes both sides equal:

X = f(d(b),b)

Y = d(b)

Z = b
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Implicit constraint for term equality:
c(t1,…,tk) = c(t1’,…,tk’)  ti = ti’ for all i



Unification errors

• Constructor error:

d(X) = e(X)

• Arity error:

a = a(X)
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The linear unification algorithm

• Paterson and Wegman (1978)

• In time O(n):

– finds a most general unifier

– or decides that none exists

• Can be used as a back-end for type checking

• ... but only for finite terms
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Recursive data structures

The program

creates these constraints

which have this “recursive solution” for p:

⟦p⟧ = t where t = ⬆t
20

var p;

p = alloc null;

*p = p;

⟦null⟧ = ⬆t

⟦alloc null⟧ = ⬆⟦null⟧

⟦p⟧ = ⟦alloc null⟧

⟦p⟧ = ⬆⟦p⟧



Regular terms

• Infinite but (eventually) repeating:

– e(e(e(e(e(e(...))))))

– d(a,d(a,d(a, ...)))

– f(f(f(f(...),f(...)),f(f(...),f(...))),f(f(f(...),f(...)),f(f(...),f(...))))

• Only finitely many different subtrees

• A non-regular term:

– f(a,f(d(a),f(d(d(a)),f(d(d(d(a))),...))))
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Regular unification

• Huet (1976)

• The unification problem for regular terms 
can be solved in O(n⋅ A(n)) 
using a union-find algorithm

• A(n) is the inverse Ackermann function:

– smallest k such that n  Ack(k,k)

– this is never bigger than 5 for any real value of n

• See the TIP implementation... 
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Union-Find
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makeset(x) {

x.parent := x

x.rank := 0

}

find(x) {

if x.parent != x

x.parent := find(x.parent)

return x.parent

}

union(x, y) {

xr := find(x)

yr := find(y)

if xr = yr

return

if xr.rank < yr.rank

xr.parent := yr

else 

yr.parent := xr

if xr.rank = yr.rank

xr.rank := xr.rank + 1

}



Union-Find (simplified)
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makeset(x) {

x.parent := x

}

find(x) {

if x.parent != x

x.parent := find(x.parent)

return x.parent

}

union(x, y) {

xr := find(x)

yr := find(y)

if xr = yr

return

xr.parent := yr

}

Implement ‘unify’ procedure using 
union and find to unify terms…



Implementation strategy

• Representation of the different kinds of types 
(including type variables)

• Map from AST nodes to type variables

• Union-Find

• Traverse AST, generate constraints, unify on the fly

– report type error if unification fails

– when unifying a type variable with e.g. a function type, 
it is useful to pick the function type as representative

– for outputting solution, assign names to type variables 
(that are roots), and be careful about recursive types

25



The complicated function
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foo(p,x) {

var f,q;

if (*p==0) { 

f=1; 

} else {

q = alloc 0;

*q = (*p)-1;

f=(*p)*(x(q,x));

}

return f;

}

main() {

var n;

n = input;

return foo(&n,foo);

}



Generated constraints
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⟦foo⟧ = (⟦p⟧,⟦x⟧)→⟦f⟧

⟦*p⟧ = int

⟦1⟧ = int

⟦p⟧ = ⬆⟦*p⟧

⟦alloc 0⟧ = ⬆⟦0⟧

⟦q⟧ = ⬆⟦*q⟧

⟦f⟧ = ⟦(*p)*(x(q,x))⟧

⟦x(q,x)⟧ = int

⟦input⟧ = int

⟦n⟧ = ⟦input⟧

⟦foo⟧ =(⟦&n⟧,⟦foo⟧)→⟦foo(&n,foo)⟧

⟦(*p)-1⟧ = int

⟦*p==0⟧ = int

⟦f⟧ = ⟦1⟧

⟦0⟧ = int

⟦q⟧ = ⟦alloc 0⟧

⟦q⟧ = ⬆⟦(*p)-1⟧

⟦*p⟧ = int

⟦(*p)*(x(q,x))⟧ = int

⟦x⟧ = (⟦q⟧,⟦x⟧)→⟦x(q,x)⟧

⟦main⟧ = ()→⟦foo(&n,foo)⟧

⟦&n⟧ = ⬆⟦n⟧

⟦*p⟧ = ⟦0⟧

⟦foo(&n,foo)⟧ = int



Solutions

Here,  is the regular type that is the unfolding of

 = (⬆int,)→int

which can also be written  = μ t.(⬆int, t)→int

All other variables are assigned int
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⟦p⟧ = ⬆int

⟦q⟧ = ⬆int

⟦alloc 0⟧ = ⬆int

⟦x⟧ = 

⟦foo⟧ = 

⟦&n⟧ = ⬆int

⟦main⟧ = ()→int



Infinitely many solutions

The function

has type (⬆)→ for any type 

(which is not expressible in our current type language)
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poly(x) {

return *x;

}



Recursive and polymorphic types
• Extra notation for recursive and polymorphic types:

• A type  ∈ Type is a (finite) term generated by 
this grammar

• μ α.  is the (potentially recursive) type  where 
occurrences of α represent  itself

• α ∈ TypeVar is a type variable (implicitly universally 
quantified if not bound by an enclosing μ) 30

Type  …

|  μ TypeVar. Type

| TypeVar

TypeVar  t | u | ...

(not very useful unless we also add 
polymorphic expansion at calls, 
but that makes complexity exponential, 
or even undecidable…)



Slack – let-polymorphism

This never has a type error at runtime – but it is not typable

⬆int = ⟦x⟧ = ⬆⬆int

But we could analyze f before main:   ⟦f⟧ = (⬆t)→ t

and then “instantiate” that type at each call to f in main
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f(x) {

return *x;

}

main() {

return f(alloc 1) + *(f(alloc(alloc 2));

}



Slack – let-polymorphism

This never has a type error at runtime – but it is not typable

And let-polymorphism doesn’t work here because bar is recursive
32

polyrec(g,x) {

var r;

if (x==0) {

r=g; 

} else { 

r=polyrec(2,0);

}

return r+1;

}

main() {

return polyrec(null,1)

}



Slack – flow-insensitivity

This never has a type error at runtime – but it is not typable

The type analysis is flow insensitive (it ignores the order of statements)
33

f() {

var x;

x = alloc 17;

x = 42;

return x + 87;

}



Other programming errors

• Not all errors are type errors:

– dereference of null pointers

– reading of uninitialized variables

– division by zero

– escaping stack cells

(why not?)

• Other kinds of static analysis may catch these
34

baz()  {
var x;
return &x;

}

main() {
var p;
p=baz(); 
*p=1;
return *p;

}


