
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 2 – type analysis and unification

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Type errors
• Reasonable restrictions on operations:

– arithmetic operators apply only to integers

– comparisons apply only to like values

– only integers can be input and output

– conditions must be integers

– only functions can be called

– the * operator only applies to pointers

– field lookup can only be performed on records

– the fields being accessed are guaranteed to be present

• Violations result in runtime errors

• Note: no type annotations in TIP
2

Type checking

• Can type errors occur during runtime?

• This is interesting, hence instantly undecidable

• Instead, we use conservative approximation

– a program is typable if it satisfies some type constraints

– these are systematically derived from the syntax tree

– if typable, then no runtime errors occur

– but some programs will be unfairly rejected (slack)

• What we shall see next is the essence of the
Damas–Hindley–Milner type inference technique,
which forms the basis of the type systems of e.g. ML, OCaml, and Haskell

3

Typability

typableno type errors

slack

4

Fighting slack

• Make the type checker a bit more clever:

• An eternal struggle

5

Fighting slack

• Make the type checker a bit more clever:

• An eternal struggle

• And a great source of publications

6

Be careful out there

• The type checker may be unsound:

• Example: covariant arrays in Java

– a deliberate pragmatic choice

7

Generating and solving constraints

AST

constraints

solution

solver
(unification)

8

⟦p⟧ = ⬆int
⟦q⟧ = ⬆int
⟦alloc 0⟧ = ⬆int
⟦x⟧ =
⟦foo⟧ =
⟦&n⟧ = ⬆int
⟦main⟧ = ()→int

Types

• Types describe the possible values:

• These describe integers, pointers, functions,
and records

• Types are terms generated by this grammar

– example: (int,⬆int) → ⬆⬆int
9

Type int

| ⬆️ Type

| (Type, ..., Type) → Type

| { Id: Type, ..., Id: Type }

Type constraints

• We generate type constraints from an AST:

– all constraints are equalities

– they can be solved using a unification algorithm

• Type variables:

– for each identifier declaration X we have the variable ⟦X⟧

– for each non-identifier expression E we have the variable ⟦E⟧

• Recall that all identifiers are unique

• The expression E denotes an AST node, not syntax

• (Possible extensions: polymorphism, subtyping, …)
10

Generating constraints (1/3)

11

I: ⟦I⟧ = int

E1 op E2: ⟦E1⟧ = ⟦E2⟧ = ⟦E1 op E2⟧ = int

E1 == E2: ⟦E1⟧ = ⟦E2⟧ ⟦E1==E2⟧ = int

input: ⟦input⟧ = int

X = E: ⟦X⟧ = ⟦E⟧

output E: ⟦E⟧ = int

if (E) {S}: ⟦E⟧ = int

if (E) {S1} else {S2}: ⟦E⟧ = int

while (E) {S}: ⟦E⟧ = int

Generating constraints (2/3)

12

X(X1,...,Xn){ ... return E; }:

⟦X⟧ = (⟦X1⟧, ..., ⟦Xn⟧) → ⟦E⟧

E(E1, ..., En):

⟦E⟧ = (⟦E1⟧, ..., ⟦En⟧) → ⟦E(E1, ..., En)⟧

alloc E: ⟦alloc E⟧ = ⬆⟦E⟧

&X: ⟦&X⟧ = ⬆⟦X⟧

null: ⟦null⟧ = ⬆

*E: ⟦E⟧ = ⬆⟦*E⟧

*E1 = E2: ⟦E1⟧ = ⬆⟦E2⟧

(each is a fresh type variable)

For each parameter X of the main function: ⟦X⟧ = int
For the return expression E of the main function: ⟦E⟧ = int

Exercise

• Generate and solve the constraints

• Then try with y = alloc 8 replaced by y = 42

• Also try with the Scala implementation (when it’s completed) 13

main() {

var x, y, z;

x = input;

y = alloc 8;

*y = x;

z = *y;

return x;

}

Generating constraints (3/3)

14

{X1:E1, ..., Xn:En}:
⟦{X1:E1, ..., Xn:En}⟧ = { X1:⟦E1⟧, ..., Xn:⟦En⟧ }

E.X: ⟦E⟧ = { ..., X:⟦E.X⟧, ... }

This is the idea, but not directly expressible in our language of types

Generating constraints (3/3)

15

{X1:E1, ..., Xn:En}: ⟦{X1:E1, ..., Xn:En}⟧ = { f1:γ1, ..., fm:γm }

where γi =

E.X: ⟦E⟧= { f1:γ1, ..., fm:γm } ∧ ⟦E.X⟧≠⋄

where γi =

Let {f1, f2, …, fm} be the set of field names that appear in
the program

Extend Type ... |⋄ where ⋄ represents absent fields

⟦Ej⟧ if fi = Xj for some j

⋄ otherwise

⟦E.X⟧ if fi = X

αi otherwise

(Field write statements? Exercise...)

General terms

Constructor symbols:

• 0-ary: a, b, c

• 1-ary: d, e

• 2-ary: f, g, h

• 3-ary: i, j, k

Terms:

• a

• d(a)

• h(a,g(d(a),b))

Terms with variables:

• f(X,b)

• h(X,g(Y,Z))

16

Ex: int

Ex: &

Ex: (1, 2)→ 3

X, Y, and Z here are type variables,
like ⟦(*p)-1⟧ or ⟦p⟧,

not program variables

The unification problem

• An equality between two terms with variables:

k(X,b,Y) = k(f(Y,Z),Z,d(Z))

• A solution (a unifier) is an assignment from variables
to terms that makes both sides equal:

X = f(d(b),b)

Y = d(b)

Z = b

17

Implicit constraint for term equality:
c(t1,…,tk) = c(t1’,…,tk’) ti = ti’ for all i

Unification errors

• Constructor error:

d(X) = e(X)

• Arity error:

a = a(X)

18

The linear unification algorithm

• Paterson and Wegman (1978)

• In time O(n):

– finds a most general unifier

– or decides that none exists

• Can be used as a back-end for type checking

• ... but only for finite terms

19

Recursive data structures

The program

creates these constraints

which have this “recursive solution” for p:

⟦p⟧ = t where t = ⬆t
20

var p;

p = alloc null;

*p = p;

⟦null⟧ = ⬆t

⟦alloc null⟧ = ⬆⟦null⟧

⟦p⟧ = ⟦alloc null⟧

⟦p⟧ = ⬆⟦p⟧

Regular terms

• Infinite but (eventually) repeating:

– e(e(e(e(e(e(...))))))

– d(a,d(a,d(a, ...)))

– f(f(f(f(...),f(...)),f(f(...),f(...))),f(f(f(...),f(...)),f(f(...),f(...))))

• Only finitely many different subtrees

• A non-regular term:

– f(a,f(d(a),f(d(d(a)),f(d(d(d(a))),...))))

21

Regular unification

• Huet (1976)

• The unification problem for regular terms
can be solved in O(n⋅ A(n))
using a union-find algorithm

• A(n) is the inverse Ackermann function:

– smallest k such that n Ack(k,k)

– this is never bigger than 5 for any real value of n

• See the TIP implementation...

22

Union-Find

23

makeset(x) {

x.parent := x

x.rank := 0

}

find(x) {

if x.parent != x

x.parent := find(x.parent)

return x.parent

}

union(x, y) {

xr := find(x)

yr := find(y)

if xr = yr

return

if xr.rank < yr.rank

xr.parent := yr

else

yr.parent := xr

if xr.rank = yr.rank

xr.rank := xr.rank + 1

}

Union-Find (simplified)

24

makeset(x) {

x.parent := x

}

find(x) {

if x.parent != x

x.parent := find(x.parent)

return x.parent

}

union(x, y) {

xr := find(x)

yr := find(y)

if xr = yr

return

xr.parent := yr

}

Implement ‘unify’ procedure using
union and find to unify terms…

Implementation strategy

• Representation of the different kinds of types
(including type variables)

• Map from AST nodes to type variables

• Union-Find

• Traverse AST, generate constraints, unify on the fly

– report type error if unification fails

– when unifying a type variable with e.g. a function type,
it is useful to pick the function type as representative

– for outputting solution, assign names to type variables
(that are roots), and be careful about recursive types

25

The complicated function

26

foo(p,x) {

var f,q;

if (*p==0) {

f=1;

} else {

q = alloc 0;

*q = (*p)-1;

f=(*p)*(x(q,x));

}

return f;

}

main() {

var n;

n = input;

return foo(&n,foo);

}

Generated constraints

27

⟦foo⟧ = (⟦p⟧,⟦x⟧)→⟦f⟧

⟦*p⟧ = int

⟦1⟧ = int

⟦p⟧ = ⬆⟦*p⟧

⟦alloc 0⟧ = ⬆⟦0⟧

⟦q⟧ = ⬆⟦*q⟧

⟦f⟧ = ⟦(*p)*(x(q,x))⟧

⟦x(q,x)⟧ = int

⟦input⟧ = int

⟦n⟧ = ⟦input⟧

⟦foo⟧ =(⟦&n⟧,⟦foo⟧)→⟦foo(&n,foo)⟧

⟦(*p)-1⟧ = int

⟦*p==0⟧ = int

⟦f⟧ = ⟦1⟧

⟦0⟧ = int

⟦q⟧ = ⟦alloc 0⟧

⟦q⟧ = ⬆⟦(*p)-1⟧

⟦*p⟧ = int

⟦(*p)*(x(q,x))⟧ = int

⟦x⟧ = (⟦q⟧,⟦x⟧)→⟦x(q,x)⟧

⟦main⟧ = ()→⟦foo(&n,foo)⟧

⟦&n⟧ = ⬆⟦n⟧

⟦*p⟧ = ⟦0⟧

⟦foo(&n,foo)⟧ = int

Solutions

Here, is the regular type that is the unfolding of

 = (⬆int,)→int

which can also be written = μ t.(⬆int, t)→int

All other variables are assigned int
28

⟦p⟧ = ⬆int

⟦q⟧ = ⬆int

⟦alloc 0⟧ = ⬆int

⟦x⟧ =

⟦foo⟧ =

⟦&n⟧ = ⬆int

⟦main⟧ = ()→int

Infinitely many solutions

The function

has type (⬆)→ for any type

(which is not expressible in our current type language)

29

poly(x) {

return *x;

}

Recursive and polymorphic types
• Extra notation for recursive and polymorphic types:

• A type ∈ Type is a (finite) term generated by
this grammar

• μ α. is the (potentially recursive) type where
occurrences of α represent itself

• α ∈ TypeVar is a type variable (implicitly universally
quantified if not bound by an enclosing μ) 30

Type …

| μ TypeVar. Type

| TypeVar

TypeVar t | u | ...

(not very useful unless we also add
polymorphic expansion at calls,
but that makes complexity exponential,
or even undecidable…)

Slack – let-polymorphism

This never has a type error at runtime – but it is not typable

⬆int = ⟦x⟧ = ⬆⬆int

But we could analyze f before main: ⟦f⟧ = (⬆t)→ t

and then “instantiate” that type at each call to f in main
31

f(x) {

return *x;

}

main() {

return f(alloc 1) + *(f(alloc(alloc 2));

}

Slack – let-polymorphism

This never has a type error at runtime – but it is not typable

And let-polymorphism doesn’t work here because bar is recursive
32

polyrec(g,x) {

var r;

if (x==0) {

r=g;

} else {

r=polyrec(2,0);

}

return r+1;

}

main() {

return polyrec(null,1)

}

Slack – flow-insensitivity

This never has a type error at runtime – but it is not typable

The type analysis is flow insensitive (it ignores the order of statements)
33

f() {

var x;

x = alloc 17;

x = 42;

return x + 87;

}

Other programming errors

• Not all errors are type errors:

– dereference of null pointers

– reading of uninitialized variables

– division by zero

– escaping stack cells

(why not?)

• Other kinds of static analysis may catch these
34

baz() {
var x;
return &x;

}

main() {
var p;
p=baz();
*p=1;
return *p;

}

