Static Program Analysis
Part 11 — abstract interpretation

http://cs.au.dk/~amoeller/spa/

Anders Mgller
Computer Science, Aarhus University

http://cs.au.dk/%7Eamoeller/spa/

Abstract interpretation

Abstract interpretation provides a solid mathematical foundation
for reasoning about static program analyses

e |s my analysis sound? (Does it safely approximate the actual
program behavior?)

e |sit as precise as possible for the currently used analysis lattice?
If not, where can precision losses arise? Which precision losses
can be avoided (without sacrificing soundness)?

Answering such questions requires a precise definition of the
semantics of the programming language, and precise definitions
of the analysis abstractions in terms of the semantics

Agenda

Sign analysis, recap

T

PN

Sign = + - 0 [01] = afy, ([o1], - - ., [oa])
ey [v2] = afur([01]. -, [n])

States = Vars — Sign 5

States™ [vn] = afv, ([v1],- -, [va])

af([[vlﬂa R [[Uﬂ—]]) — (G’fvl([[vlﬂa vy [[U'n]])a R afvn([[vl]]& R [[Uﬂ—]]))

t'lf: States” — StﬂbtflSn Is the analysis representation of the given program

[P] = ifp(af)

Program semantics as constraint systems

ConcreteStates = Vars — Z

{lv} € ConcreteStates

This is called a reachable states collecting semantics

The semantics of expressions

ceval: ConcreteStates x Exp — P(Z)

ceval(p, X) = {p(X))

ceval(p,I) = {I}

ceml(p, input) = Z

ceval(p, By op Ey) = {vy op vs | v1 € ceval(p, E1) A vy € ceval(p, E2)}

ceval (R, E) = U ceval(p, E)
pER

Successors and joins

csucc: ConcreteStates x Nodes — P(Nodes)

csucc(R,v) = U csuce(p,v)
pER

CJOIN (v) =
{p € ConcreteStates | Jw € Nodes: p € {wl|} ANv € csucc(p,w)}

Semantics of statements

{X=E} = {p[X — 2] | p € CJOIN (v) A z € ceval(p,E)}

{fvar Xy, ..., X, [} =
{p[Xlr—:»zl an—r»zn]’peCJOIN(@)/\z1€Z/\---/\anZ}

lentryly = (]}

v} = CJOIN (v)

The resulting constraint system

{v1} = cfo, (o1}, - -, {vnlt)
{v2lt = cfo,({vrly, - - -5 {vnl})

[l = co. (ol .., {oal})

cf : (P(ConcreteStates))” — (P(ConcreteStates))

cf (1. ., xp) = (cfﬁl(ml,...,xn)}...,cfun(:rl, . ,:I?n))

Is the semantic representation of the given program

r = cf ()
{P} = Ufp(cf)

T

Example var z
while!(input) {
X =X + 2,
}
solution 1 solution 2

lentryl; dil)
{lvar xJ} {[x— 2] |z€Z} {[x— 2] |z € Z}
{x = 0 x = 0} x = 0]
{linput]} {x—2][2€{0,2,4,... }} | {[x— 2] | 2 € Z}
{x=x+2} | {[x—=2z2]|ze{2,4,...}} |{lx—2z]|z€Z}
{lexit]} {[x—2]|2€{0,2,4,...}} | {[x—= 2] | 2 € Z}

/

the least solution

Kleene’s fixed point theorem
for complete join morphisms

f L — Lis acomplete join morphism it f(|_| A) — LlaEA f((l) forevery AC L

If f is a complete join morphism:

ifp(f) = | | F1(L)

1 >0

(even when L has infinite height!) |
(Proof: Exercise 11.8)

(P(ConcreteStates))" is a complete lattice (a product of a powerset lattice)

cf is a complete join morphism (Exercise 11.9)

11

Tarski’s fixed-point theorem

In a complete lattice L, every monotone function f: L — L has a

unique least fixed point given by [{z € L | f(z) C z}.

(Proof in Chapter 6)

Cf is monotone (Exercise 11.3)

12

Semantics var ,b,c;
VS. b = 87;
. if (input) {
analysis c=a+b;
} else {
C =a - b;
}

b =87}={la—42,b— 87,c+> 2| | z € Z}
c =a - b} ={la—42,b+— 87,c— —45]}
exitly = {[la > 42,b — 87,c > 129],[a > 42,b — 87,c — —45]|}

[b = 87] =[a+> +, b+ +,c > T]
[c =a-b]=[ar+,br—+c— T]
lexit] = [a+— +,b > +, cr—}T]

13

Agenda

Abstraction functions for sign analysis

a,: P(Z) — Sign
ap: P(ConcreteStates) — States
ac: (P(ConcreteStates))” — States™

1 if Dis empty

+ if D is nonempty and contains only positive integers
aa(D) = ¢ - if D is nonempty and contains only negative integers
0 if D is nonempty and contains only the integer 0

\ T otherwise
forany D € P(Z)

ap(R) = o where 0(X) = a,({p(X) | p € R})
for any R C ConcreteStates and X € Vars

aC(Rl, R ,Rn) = (ab(Rl), R ,Ozb(Rn))
forany Ry,..., R, C ConcreteStates

15

Concretization functions for sigh analysis

Ya: Sign — P(Z)
Y : States — P(ConcreteStates)
Ye: States™ — (P(ConcreteStates))"

4

0 if s =1
{1,2,3,...} if s =+
Ya(s) = ¢ {-1,-2,-3,...} ifs=-
{0} ifs=0
7 ifs=T

\
for any s € Sign

(o) = {p € ConcreteStates | p(X) € va(o(X)) for all X € Vars}
for any o € States

f}[c(gla see agn) — (%(Jl):' . 5%(071))
for any (o4,...,0,) € States"

16

Monotonicity of
abstraction and concretization functions

Concretatization functions are, like abstraction functions, naturally monotone.

(A larger set of concrete values should correspond to a larger abstract state, and conversely)

17

Galois connections

The pair of monotone functions, o and +, is called a Galois connection if

v o «v 1S extensive
a o 7y is reductive

e e
Qe Q¢
(P(ConcreteStates))" States™ (P(ConcreteStates))" States™

all three pairs of abstraction and concretization

functions («a,7.), (a, %), and (ac,) from the _
sign analysis example are Galois connections ~ (Exercise 11.13) 18

Galois connections

For Galois connections, the concretization function uniquely determines the abstraction function
and vice versa:

v(y) =| [{z € L | az) C y}

afr) = I_l{y €Ly |zCv(y)}

(Proof: Exercise 11.20)

19

Galois connections

For this lattice, given the “obvious” concretization function,
IS there an abstraction function such that the concretization function
and the abstraction function form a Galois connection?

how should we define a,({0})? (Exercise 11.22)
20

Representation functions

B: Z — Sign

+ ifd >0
B(d) =< - ifd<0

O ifd=0

aa(D) = | _[{B(d) | d € D}

Agenda

Soundness
a({P]}) E [P]

(P(ConcreteStates))” States™

Soundness
{P} S ~([P])

Ve

n

(P(ConcreteStates))

(Exercise 11.17)

States™

24

Sound abstractions

a,(ceval(R,E)) C eval(ap(R), E)

csucc(R,v) C succ(v) for any R C ConcreteStates

ap(CJOIN (v)) T JOIN (v)
if ap({w]}) C [w] for all w € Nodes

(Exercise 11.31 and Exercise 11.32)

25

Sound abstractions

if v represents an assignment statement X = E :

cfs({vil}, ..., {vnl}t) = {pX — 2] | p€ CJOIN (v) A z € ceval(p,E)}
afy([v1], ..., [vn]) = o[X — eval(o, E)] where 0 = JOIN (v)

ap(cfy(R1,...,Ry)) C afy(ap(R1),....ap(Ry))

(Exercise 11.33)

26

The two constraint systems

of (Qoils - {oad) = (chy (Qoids- - foal)s - - e, (Qords - - o)

f([als - - [on]) = (afo, (Ta] - - TonD)s - - afo, (1], - - Toal))

27

Sound abstractions
ac(cf(Ry,...,R,)) C af (ac(Ry,...,Ry))

0%

TL

(P(ConcreteStates)) States™

28

Sound abstractions

_ af o«

oo cf

of oy C o af

Equivalent, if a and y form a Galois connection
(Proof: Exercise 11.34)

29

The soundness theorem

If L; and L» are complete lattices with a concretization function
~v: Lo — Ly, cf: L1 — Ly and af : Ly — Lo are monotone, and af is

a sound abstraction of c¢f with respect to v, i.e., ¢f oy C 7 o af, then

ifp(cf) E~(ifp(af)).

30

Agenda

Optimal abstractions

af is an optimal abstraction of cf if

af = «aocfor
Ve
(P(ConcreteStates)) " States™

(compare with slide 28)

32

Optimal abstractions in sign analysis?

% is Dptimal :

o

$1782 = (’}’a(e‘r‘l) ":r"a(*‘fﬁ))

eval is not optimal:
J(X) = |

eval(o,x-x) =T

o, (ceval (1 (o), x-x)) = 0

Even if we could make eval optimal, the analysis result is not always optimal:
X = 1nput;
y = X;
Z =X -Y;

Agenda

Completeness

&({[P]}) _ [[P]] (compare with slide 23)

Sound and complete: &({[P]}) = [[P]]

(Intuitively, the analysis result is the most precise possible for the currently used lattice)

Notthesameas {[PJ} = ~Y([P]) (called “exact”)

(Intuitively, the analysis result exactly captures the semantics of the program)

35

Completeness in sign analysis?

* is complete:

aa(D1)*aa(D2) C aa(Dy - D5)

F is not complete

&a(Dl)$ﬂ'a(D2) @ ﬂ‘a(Dl -+ Dg)

Sign analysis is sound and complete for some programs,
but not for all programs

36

Agenda

Collecting semantics
Abstraction and concretization
Soundness

Optimality

Completeness

Trace semantics

37

Limitations of the
reachable states collecting semantics

The reachable states collecting semantics “collects” a set of
concrete states for each program point

ConcreteStates = Vars — 7.

{lv} € ConcreteStates

That is not always sufficient — a trivial example:

main(x) {
return Xx,;
}
For this program, the collecting semantics doesn’t allow us to express properties
such as “in any execution, the return value is the same as the input value”

38

Trace semantics

Traces = (Nodes x ConcreteStates)™

ct,: ConcreteStates — P(ConcreteStates)
ctx=e(p) = {p[X — 2| | z € ceval(p, E)}

ct,(p) = {p} for other kinds of nodes

(P) € P(Traces)

(entry, []) € (P)
- (v,p) € (P) AV € csucc(p,v) A p' € cty(p) = - (v,p)- (v, p") € (P)

39

Example

main(x) {
return Xx;

}

(P) = {(entry,[x — 0]) - (return x,[x +— 0]) - (exit, [x — 0]),
(entry, [x — 1]) - (return x, [x — 1]) - (ezit, [x — 1]),

)

40

Reachable states is an abstraction of traces

the relation between the reachable states collecting semantics
and the trace semantics can be expressed as a Galois connection induced by an
abstraction function

ar: P(Traces) — (P(ConcreteStates))”

defined by
CEJ[(T) — (R], ... ,Rn)

where R; = {p| ----(vs,p) ---- € T} foreachi=1,...,n.

41

Composition of Galois connections

Exercise 11.57: Let a1: L1 — LQ, Y1 Lo — L1, ag: Lo — Lg, and Y2 - L'g —
Lo. Assume both («q,7v1) and (a9, 2) are Galois connections. Prove that
(a2 0 a1, 71 © 72) is then also a Galois connection.

P(Traces) (P(ConcreteStates)) " States™

Exercise 11.58: Prove that the reachable states collecting semantics is sound
with respect to the trace semantics. (Even though the collecting semantics is
not a computable analysis, we can still apply the notion of soundness and the

proof techniques from Section 11.3.)

42

Soundness of reaching definitions analysis

Instrumented trace semantics:

Tracesgp = (Nodes x ConcreteStates x ReachingDefs)”

ReachingDefs = Vars — Nodes

(entry, [],[1) € (P)rp
T (v,p,0) € (Phrp N V' € csucc(p,v) A p' € cly(p) =

7 (v,p,0)- (v, p",8") € (P)gp

5 — §[X — v'] if v’ is an assignment X = E
|0 otherwise

43

Soundness of reaching definitions analysis

Abstraction:

arp: P(Tracesgrp) — (P(Nodes))"

@RD(T) = (Rl Rn)

Ri={w]| - (viyp,8)---- €T where §(X) = w for some p,J, X}

Soundness:

arp((P)rp) C [[P]]RD

44

Soundness proofs for other analyses

Exercise 11.61: Use the approach from Section 11.3 and an appropriate in-
strumented trace semantics to prove that the available expressions analysis
from Section 5.5 is sound. (This is more tricky than Exercise 11.60, because
available expressions analysis is a “must” analysis!)

Exercise 11.62: Use the approach from Section 11.3 and an appropriate in-
strumented trace semantics to prove that the live variables analysis from
Section 5.4 is sound. As part of this, you need to specify an appropriate
collecting semantics that formally captures what it means for a variable to
be live (see the informal definition in Section 5.4). (This is more tricky than
Exercise 11.60, because live variables analysis is a “backward” analysis!)

45

Conclusions

Abstract interpretation provides a solid mathematical foundation for reasoning
about soundness and precision of static program analyses

We need

the static analysis (the analysis lattices and constraint rules)

the language semantics (a suitable collecting semantics)
abstraction/concretization functions that specify the meaning of the
elements in the analysis lattice in terms of the semantic lattice

... and then

if each constituent of the analysis is a sound abstraction of its semantic counterpart,
then the analysis is sound (according to the soundness theorem)

if an abstraction is optimal, then it is as precise as possible (yet sound),

relative to the choice of analysis lattice

if the analysis is sound and complete, then the analysis result is as precise as possible
(yet sound), relative to the choice of analysis lattice

46

	Slide Number 1
	Abstract interpretation
	Agenda
	Sign analysis, recap
	Program semantics as constraint systems
	The semantics of expressions
	Successors and joins
	Semantics of statements
	The resulting constraint system
	Example
	Kleene’s fixed point theorem �for complete join morphisms
	Tarski’s fixed-point theorem
	Semantics �vs. �analysis
	Agenda
	Abstraction functions for sign analysis
	Concretization functions for sign analysis
	Monotonicity of�abstraction and concretization functions
	Galois connections
	Galois connections
	Galois connections
	Representation functions
	Agenda
	Soundness
	Soundness
	Sound abstractions
	Sound abstractions
	The two constraint systems
	Sound abstractions
	Sound abstractions
	The soundness theorem
	Agenda
	Optimal abstractions
	Optimal abstractions in sign analysis?
	Agenda
	Completeness
	Completeness in sign analysis?
	Agenda
	Limitations of the �reachable states collecting semantics
	Trace semantics
	Example
	Reachable states is an abstraction of traces
	Composition of Galois connections
	Soundness of reaching definitions analysis
	Soundness of reaching definitions analysis
	Soundness proofs for other analyses
	Conclusions

