
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 1 – the TIP language

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/


Questions about programs

• Does the program terminate on all inputs?

• How large can the heap become during execution?

• Can sensitive information leak to non-trusted users?

• Can non-trusted users affect sensitive information?

• Are buffer-overruns possible?

• Data races?

• SQL injections?

• XSS?

• …

2



foo(p,x) {              

var f,q;                

if (*p==0) { f=1; }     

else {                  

q = alloc 10;

*q = (*p)-1;

f=(*p)*(x(q,x));

}

return f;

}

Program points

Invariants:

A property holds at a program point if it holds in any 
such state for any execution with any input

any point in the program
= any value of the PC

3



Questions about program points

• Will the value of x be read in the future?

• Can the pointer p be null?

• Which variables can p point to?

• Is the variable x initialized before it is read?

• What is a lower and upper bound on the value of the 
integer variable x?

• At which program points could x be assigned its
current value?

• Do p and q point to disjoint structures in the heap?

• Can this assert statement fail?
4



Why are the answers interesting?

• Increase efficiency

– resource usage

– compiler optimizations

• Ensure correctness

– verify behavior

– catch bugs early

• Support program understanding

• Enable refactorings

5



Testing?

6

“Program testing can be used to show

the presence of bugs, but never to show

their absence.”                 

[Dijkstra, 1972]

Nevertheless, testing often takes 50% of the development cost



a program analyzer A

a program P
P always

works

correctly

P fails

for some

inputs

Programs that reason about programs

7



SOUNDNESS (don’t miss any errors)

COMPLETENESS (don’t raise false alarms)

TERMINATION (always give an answer)

Requirements to the perfect program analyzer



Rice’s theorem, 1953

9



Rice’s theorem

Any non-trivial property of the behavior of programs 
in a Turing-complete language is undecidable!

10



Reduction to the halting problem

• Can we decide if a variable has a constant value?

• Here, x is constant if and only if the j’th Turing 
machine does not halt on empty input

11

x = 17; if (TM( j)) x = 18;



12

Build e(ST) 
from e(T)

Is the FAIL state 
unreachable in 

the given program 
(for any input)?

Undecidability of program correctness

P ACCEPT

REJECT

yes

no

e(T) e(ST)

M

Simulate T on input e(T) (ignoring input w)
• If simulation reaches ACCEPT, then goto FAIL 
• Otherwise, just terminate

(without reaching FAIL)

w

Does M accept input e(M)?

ST
or loop forever



13

Build e(ST) 
from e(T)

Is the FAIL state 
unreachable in 

the given program 
(for any input)?

Undecidability of program correctness

P ACCEPT

REJECT

yes

no

e(T) e(ST)

M

Simulate T on input e(T) for |w| moves
• If simulation reaches ACCEPT, then goto FAIL 
• Otherwise, just terminate

(without reaching FAIL)

w

Does M accept input e(M)?
(Note: this proof works even if we only consider programs that always terminate!)

ST



Approximation

• Approximate answers may be decidable!

• The approximation must be conservative:

– i.e. only err on “the safe side”

– which direction depends on the client application

• We'll focus on decision problems

• More subtle approximations if not only “yes”/“no”

– e.g. memory usage, pointer targets

14



False positives and false negatives

15



Example approximations

• Decide if a given function is ever called at runtime:

– if “no”, remove the function from the code

– if “yes”, don’t do anything

– the “no” answer must always be correct if given

• Decide if a cast  (A)x will always succeed:

– if “yes”, don’t generate a runtime check

– if “no”, generate code for the cast

– the “yes” answer must always be correct if given

16



Beyond “yes”/“no” problems

• How much memory / time may be used in any 
execution?

• Which variables may be the targets of a pointer 
variable p?

17



The engineering challenge

• A correct but trivial approximation algorithm may just 
give the useless answer every time

• The engineering challenge is to give the useful answer 
often enough to fuel the client application

• ... and to do so within reasonable time and space

• This is the hard (and fun) part of static analysis!

18



Bug finding

gcc –Wall foo.c
lint foo.c

No errors!

19

int main() {

char *p,*q;

p = NULL;

printf("%s",p);

q = (char *)malloc(100);

p = q;

free(q);

*p = 'x';

free(p);

p = (char *)malloc(100);

p = (char *)malloc(100);

q = p;

strcat(p,q);

}

https://en.wikipedia.org/wiki/Lint_(software)

https://en.wikipedia.org/wiki/Lint_(software)


Does anyone use static program analysis?

For optimization:

• every optimizing compiler and modern JIT

For verification or error detection:

•

•

•

•

•

•
20

•

•

•

•



A constraint-based approach

21

mathematical
constraints

solution

constraint
solver

⟦p⟧ = &int
⟦q⟧ = &int
⟦alloc⟧ = &int
⟦x⟧ = 
⟦foo⟧ = 
⟦&n⟧ = &int
⟦main⟧ = ()->int

program to analyze

Conceptually separates the analysis specification 
from algorithmic aspects and implementation details



Challenging features in 
modern programming language

• Higher-order functions

• Mutable records or objects, arrays

• Integer or floating-point computations

• Dynamic dispatching

• Inheritance

• Exceptions

• Reflection

• …

22



The TIP language

• Tiny Imperative Programming language

• Example language used in this course:

– minimal C-style syntax

– cut down as much as possible

– enough features to make static analysis challenging and fun

• Scala implementation available

23



Expressions

• I ∈ Int represents an integer literal

• X ∈ Id represents an identifier (x, y, z,…)

• input expression reads an integer from the input stream

• comparison operators yield 0 (false) or 1 (true)
24

Exp Int

|   Id

|   Exp + Exp |   Exp – Exp |   Exp * Exp |   Exp / Exp

|   Exp > Exp  |   Exp == Exp

|   ( Exp )

|   input



Statements

25

Stm Id = Exp;
|   output Exp;
|   Stm Stm
|

|   if (Exp) { Stm } [else { Stm }]?

|   while (Exp) { Stm }

• In conditions, 0 is false, all other values are true

• The output statement writes an integer value to the 
output stream



Functions
• Functions take any number of arguments and 

return a single value:

• The optional var block declares a collection of 
uninitialized variables

• Function calls are an extra kind of expressions:

26

Fun Id ( Id, ..., Id ) { 

[var Id, ..., Id;]?

Stm
return Exp;

}

Exp ... | Id ( Exp, ..., Exp )



Pointers

(No pointer arithmetic)

27

Exp ... 

| alloc Exp

|  & Id

|  * Exp

|  null

Stm ... |  *Exp = Exp;



Records

28

Exp ... 

| { Id:Exp, …, Id:Exp }

|  Exp.Id

For simplicity, values of record fields cannot themselves be records

Stm ... 

|  Id.Id = Exp;

|  (*Exp).Id = Exp;

Records are passed by value (like structs in C)



Functions as values

• Functions are first-class values

• The name of a function is like a variable that refers to 
that function

• Generalized function calls:

• Function values suffice to illustrate the main challenges
with methods (in object-oriented languages) 
and higher-order functions (in functional languages)

29

Exp ... | Exp( Exp, ..., Exp )



Programs

• A program is a collection of functions

• The function named main initiates execution

– its arguments are taken from the input stream

– its result is placed on the output stream

• We assume that all declared identifiers are unique

30

Prog Fun ... Fun



An iterative factorial function

31

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}



A recursive factorial function

32

rec(n) { 

var f; 

if (n==0) { 

f=1; 

} else { 

f=n*rec(n-1); 

}

return f;

}



An unnecessarily complicated function

33

foo(p,x) {

var f,q;

if (*p==0) { 

f=1; 

} else {

q = alloc 0;

*q = (*p)-1;

f=(*p)*(x(q,x));

}

return f;

}

main() {

var n;

n = input;

return foo(&n,foo);

}



Beyond TIP

Other common language features 
in mainstream languages:

• global variables

• objects

• nested functions

• …

34



Control flow graphs

var f

f=1

n>0

f=f*n

n=n-1

return f

35

ite(n) {
var f;
f = 1;
while (n>0) {

f = f*n;
n = n-1;

}
return f;

}

true

false



Control flow graphs

• A control flow graph (CFG) is a directed graph:

– nodes correspond to program points 
(either immediately before or after statements) 

– edges represent possible flow of control

• A CFG always has

– a single point of entry

– a single point of exit

(think of them as no-op statements)

• Let v be a node in a CFG

– pred(v) is the set of predecessor nodes

– succ(v) is the set of successor nodes

36



CFG construction (1/3)

• For the simple while fragment of TIP, 
CFGs are constructed inductively

• CFGs for simple statements etc.:

X = E output E return E var X

37



CFG construction (2/3)

For a statement sequence S1 S2:

– eliminate the exit node of S1 and the entry node of S2

– glue the statements together

S1 S2

S1

S2

38



CFG construction (3/3)

Similarly for the other control structures:

E

S

E

S1 S2

E

S

39

true false true
falsefalse

true



Normalization

• Sometimes convenient to ensure that 
each CFG node performs only one operation

• Normalization: flatten nested expressions, 
using fresh variables 

40

x = f(y+3)*5;
t1 = y+3;
t2 = f(t1);
x = t2*5;


