
Dual Syntax for XML Languages

Claus Brabrand, Anders Møller?, and Michael I. Schwartzbach

BRICS??, University of Aarhus, Denmark
{brabrand,amoeller,mis}@brics.dk

Abstract. XML is successful as a machine processable data interchange
format, but it is often too verbose for human use. For this reason, many
XML languages permit an alternative more legible non-XML syntax.
XSLT stylesheets are often used to convert from the XML syntax to the
alternative syntax; however, such transformations are not reversible since
no general tool exists to automatically parse the alternative syntax back
into XML.
We present XSugar, which makes it possible to manage dual syntax for
XML languages. An XSugar specification is built around a context-free
grammar that unifies the two syntaxes of a language. Given such a spec-
ification, the XSugar tool can translate from alternative syntax to XML
and vice versa. Moreover, the tool statically checks that the transfor-
mations are reversible and that all XML documents generated from the
alternative syntax are valid according to a given XML schema.

1 Introduction

XML has proven successful as a machine processable data interchange format.
There exist numerous APIs for processing XML data in general purpose pro-
gramming languages and also many specialized XML processing languages, such
as XSLT and XQuery. Realizing the benefits of using XML, an increasing number
of new languages, ranging from loosely structured document-oriented languages
to purely data-oriented ones, use an XML syntax. The XML format, however,
is verbose and not always ideal for human use. Yet, in many of these new lan-
guages, documents are intended to be read and written directly by humans. For
this reason, many languages have two syntaxes—an XML syntax intended for
machine processing and interchange, and an alternative non-XML syntax for
human use. This necessitates automated translation in one or both directions.

As a representative example, consider the language RELAX NG [8]. It is a
schema language for XML, but we are not interested in the semantics of RE-
LAX NG documents here, only in their syntax. The original language definition
specifies an XML syntax, and a later separate specification provides a compact
non-XML syntax [7]. A main goal of providing the non-XML syntax is to max-
imize readability. As an example (taken from the RELAX NG documentation),

? Supported by the Carlsberg Foundation contract number 04-0080.
?? Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.

consider the following tiny RELAX NG document written using the XML syn-
tax:

<element name="addressBook"

xmlns="http://relaxng.org/ns/structure/1.0">

<zeroOrMore>

<element name="card">

<element name="name">

<text/>

</element>

<element name="email">

<text/>

</element>

</element>

</zeroOrMore>

</element>

In the non-XML syntax, this document looks as follows:

element addressBook {

element card {

element name { text },

element email { text }

}*

}

The former can be manipulated by standard XML tools, whereas the latter is
more friendly towards human beings. The XML syntax may be formalized by an
XML schema language, such as DTD (or RELAX NG itself). The main structure
of the non-XML syntax may be formalized using, for example, EBNF.

With the two syntaxes in place, we need to be able to transform documents
between them. For RELAX NG, there are numerous implementations of such
converters. Converting from the XML syntax to the non-XML syntax, a common
approach is to use an XSLT stylesheet. In the other direction, there are no
obvious choices, so typically, one resorts to programming the conversion in a
general purpose programming language, for example Java or Python.

This raises a number of problems: The translations in the two directions are
made as two entirely different programs, often even using two different program-
ming languages. This requires lots of tedious programming. Also, it makes main-
tenance difficult in case the syntax evolves. Since the programming languages
being used are typically Turing complete (even XSLT is so), it is generally diffi-
cult to reason about their correctness. Specifically,

– there is no guarantee that the translations are reversible in the sense that
translating a document in one direction and then back again will result in
the original document (modulo whitespace or similar irrelevant details); and

– there is no guarantee that the translation into the XML syntax always pro-
duces documents that are valid according to a schema description.

2

These problems are not specific to the RELAX NG example. Similar situa-
tions occur for many other languages, however, RELAX NG is among the more
complicated ones.

To attack these problems, we first make an interesting observation: Consider-
ing the grammars for the two syntaxes (one given by an XML schema, the other
by an EBNF grammar), they commonly have a similar overall structure. The
variations mainly occur at the level of individual grammar productions where
the two syntaxes may vary in the order of production constituents, choices of lit-
erals, and whitespace and other ignorable parts. Notably, there are typically no
drastic reorganizations when converting one way or the other. In the remainder
of this paper, we exploit this in the design of XSugar, a system for managing
dual syntax of XML languages.

1.1 Contributions

Our contributions are the following:

– We describe the XSugar language and show how it can be used for concisely
specifying two-way translations between XML and non-XML syntax.

– We identify conditions for reversibility and outline an approach for conser-
vatively checking these conditions.

– Based on previous results on static analysis of XML transformations [5, 6,
12], we show that it is possible to statically guarantee validity of output for
the translation to XML.

– Using a prototype implementation, we evaluate the approach on a number of
real-world examples: RELAX NG, XFlat [17], BibTeXML [11], and XSugar
itself.

We imagine various possible usage scenarios of XSugar: Non-XML languages
can easily be given an alternative XML syntax for enhancing data interchange;
XML-based languages may be given a more human readable non-XML syntax;
and, as in the case of RELAX NG, for languages where both syntaxes already
exist, XSugar may be used to concisely specify the relation between the two.

1.2 Related Work

Several other projects and technologies are aimed at providing alternative syntax
for XML languages. While they have overlapping goals with XSugar, none of
them simultaneously consider general two-way translations and static guarantees
of validity.

XSLT is often used for translating XML documents into other representa-
tions; however, stylesheets are not reversible, so these representations cannot in
general be parsed back into XML.

The Presenting XML project [16] provides a domain-specific language for
programming transformations between XML and flat files. However, translations
are not reversible and, thus, two separate specifications must be maintained for

3

a given dual syntax. The XFlat project [17] has largely the same approach as
XSugar, as it allows translations between flat file formats and XML, specified
by a single XFlat schema. However, it is restricted to files consisting of se-
quences of records, rather than general context-free syntax. Section 5.1 contains
a more detailed comparison. The PADS project [10] translates data into other
representations, including XML. It is focused on streams of data items, which
are described using a sophisticated calculus that include dependent types and
computations—thus going beyond context-free parsing. PADS also differs from
XSugar in that its translations are not automatically reversible. The paper [15]
presents a framework for programming reversible translations between two XML
languages, but does not consider the case of parsing or generating alternative
syntax.

Several projects, such as [9, 2, 13], suggest an alternative syntax for XML
itself, independently of any particular XML language. Such work is only super-
ficially similar to our work, since this alternative syntax is fixed while our is
different for each application domain. Program inversion [1] attacks reversibility
in a general context, but does not provide a solution to our particular problem.

2 The XSugar Language

We describe the XSugar language by a small example and then explain how to
translate between XML- and non-XML syntax based on an XSugar specification.

2.1 Example: Student Information

Assume that we have an XML representation of student information as described
by the following DTD:

<!ELEMENT students (student*)>

<!ELEMENT student (name,email)>

<!ATTLIST student sid CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>

All elements belong to the namespace http://studentsRus.org/. Additionally,
the values of name, email, and sid are required to satisfy some extra syntactic
requirements, which we describe later. A valid document is the following:

<students xmlns="http://studentsRus.org/">

<student sid="19701234">

<name>John Doe</name>

<email>john_doe@notmail.org</email>

</student>

<student sid="19785678">

<name>Jane Dow</name>

<email>dow@bmail.org</email>

</student>

</students>

4

There is also an alternative non-XML syntax for this document:

John Doe (john_doe@notmail.org) 19701234

Jane Dow (dow@bmail.org) 19785678

That is, each student corresponds to one line. The name is written first, then
the email address in parentheses, and finally the ID. Notice that the ordering of
the constituents differs from the XML version.

With XSugar, we can concisely specify the connection between the two syn-
taxes:

xmlns = "http://studentsRus.org/" ;

Alpha = [a-zA-Z_] ;

Name = <Alpha>+(" "<Alpha>+)* ;

Email = <Alpha>+"@"<Alpha>+("."<Alpha>+)+ ;

Id = [0-9]{8} ;

NL = "\r"*"\n" ;

file : [persons p] = <students>[persons p]</students> ;

persons : [person p] [NL] [persons more] = _ [person p] _ [persons more] ;

: = _ ;

person : [Name name] _ ([Email email]) _ [Id id] =

<student sid=[Id id]> _

<name>[Name name]</name> _

<email>[Email email]</email> _

</student> ;

The first line declares the namespace associated with the empty prefix. The next
five lines define some regular expressions, which are used for describing syntactic
tokens. For example, Name matches one or more blocks of Alpha characters,
separated by space characters. The remaining lines define grammar productions,
each having the form

nonterminal : α = β ;

(If the nonterminal is omitted, the one from the preceding production is as-
sumed.) The α part is generally a sequence of items of the form [T name]

or [T], where T is either a nonterminal or a regular expression name, and
of literals such as (and) above. Additionally, the special character _ is used
for describing whitespace, which we return to later. The β part consists of an
XML template, which is a fragment of well-formed XML that may contain items
in place of attribute values (as sid=[Id id] in the example) and in element
content (as [Email email], for example). Also the nonterminal or regular ex-
pression name associated with a given item name must be the same in α and β.
We use the convention that regular expression names start with a capital letter,
and nonterminals start with a lower case letter. Special characters (such as =

and ;) can be escaped with a backslash notation or Unicode escapes as in Java.
XML character references can also be used in XML templates.

5

persons
p

John Doe

john_doe@notmail.org

19701234

person
p

persons

personsperson

Jane Dow

dow@bmail.org

19785678
name

email
id

more
email

more

file

 4

 4

 2

 1

2

 3
name id p

Fig. 1. UST for the student information document.

Notice that if we ignore the β part in every production and the name part
in every item, an XSugar specification S is essentially an ordinary BNF-like
context-free grammar Sα (where the first occurring nonterminal is the start
nonterminal). This grammar specifies the non-XML syntax of the language.
Conversely, we obtain a grammar Sβ for the XML syntax by ignoring the α

parts. Notice that literals and unnamed items correspond to information that
has no counterpart in the opposite grammar. For both grammars, we require all
nonterminals to be productive. For later use, we assume that the productions in
S are implicitly indexed in order of occurrence.

As an extension of the notion of grammars presented above, we also allow
unordered productions: In a production where the delimiter :& appears in place
of :, the α part is unordered, meaning that it matches any permutation of the
constituents. We show a use of unordered productions in Section 5.4.

2.2 Transforming via Unifying Syntax Trees

An XSugar specification S additionally defines a translation from the non-XML
syntax to the XML syntax and vice versa. This translation goes via a unifying

syntax tree (UST), which abstracts away the ordering of the constituents of
each grammar production and also ignores parts corresponding to literals and
unnamed items. More precisely, a UST is an unordered labeled tree of nodes
where each node is either a terminal node or a nonterminal node. A terminal
node is a leaf that is labeled with a string. A nonterminal node is labeled with
a nonterminal, each edge to a child node is labeled with an item name, and
every node has at most one outgoing edge with a given item name. Moreover,
every nonterminal node is labeled with an index, which we will need later. As an
example, the UST corresponding to the example student information document
is shown in Figure 1.

Assume that we want to transform a text x from the non-XML syntax to the
XML syntax. This is done in two steps: (1) we first parse the text x according
to Sα, yielding a UST u; (2) we then unparse u relative to Sβ yielding the
resulting XML document. The other direction—translating from XML syntax
to non-XML syntax—is symmetric. The processes of parsing and unparsing with
USTs are described in the following.

6

Parsing Given a text x and a grammar Si (where i is either α or β, depending on
which direction we are translating), we construct the UST u as follows. First, we
run an ordinary context-free-grammar parser on x and Si, yielding an ordinary
parse tree t. (If Si is ambiguous, t is chosen arbitrarily among the possibilities;
we discuss ambiguity further in Section 3.) From this parse tree, we construct
the UST u as follows:

– Every parse tree node corresponding to a named regular expression item in
Si becomes a terminal node labeled with the corresponding string.

– Every parse tree node corresponding to a named nonterminal item in Si

becomes a nonterminal node. Its label is the nonterminal, and its index is
the index of the associated grammar production of the parse tree node. For
each named item in the production, a child edge with that name is made to
the UST node of the corresponding child node in the parse tree.

Note that all parse tree nodes corresponding to literals or unnamed items are
ignored in the construction.

The whitespace marker _ is implicitly defined as an abbreviation of the un-
named regular expression item [OPT_WHITESPACE]where OPT_WHITESPACE is the
regular expression [\t\r\n]* (that is, strings of whitespace characters). Simi-
larly, __ refers to WHITESPACE, which represents nonempty strings of whitespace.

In case x is an XML document and i = β, we initially normalize both x

and Sβ in a process that resembles XML canonicalization [3]: (1) whitespace
inside tags (but outside attribute values) is reduced to a minimum; (2) the
attributes in each start tag are sorted lexicographically and attribute values are
enclosed by double quotes; (3) the short form of empty elements is expanded (for
instance, <p/> becomes <p></p>); (4) character encoding is set to UTF-8; (5)
character and entity references are expanded where possible; (6) XML comments,
XML declarations, and DOCTYPEs are removed; and (7) in every start tag,
all namespace declarations that are used in the tag are inserted explicitly, and
prefixes are renamed to coincide with those chosen in S.

Unparsing Given a UST u and an XSugar specification S where u has been
generated from either Sα or Sβ , we construct an ordinary parse tree t as a
concretization of u relative to Si as follows, starting at the root of u:

– A terminal node in u becomes a parse tree leaf node labeled with the same
string.

– A nonterminal node with index k becomes a parse tree node labeled with
the same nonterminal. For each component in the production with index
k in Si in order, a corresponding subtree is constructed depending on the
component kind:

– for a named item, the subtree is constructed recursively from the child
UST node with that name;

– for an unnamed regular expression item, the subtree is a leaf node labeled
with an arbitrary string matching the regular expression (for example, a
shortest one);

7

UST

parsing unparsing

parsing

concretization

abstractionconcretization

abstraction

parse tree parse tree XMLtext
unparsing

Fig. 2. The transformation process.

– for an unnamed nonterminal item, the subtree is chosen as an arbitrary
parse tree derivable from the corresponding nonterminal in Si; and

– for a literal, the subtree is a leaf node labeled with the literal string.

Notice that unnamed items are handled by picking arbitrary representatives.
This makes sense since such items describe information that only occurs in one
of the two syntaxes.

Once we have the parse tree t, the resulting text x is simply the concatenation
of the text in the leaves. One technical issue remains: We escape and unescape
special XML characters to ensure that, for example, the character < in non-XML
corresponds to < in XML.

Figure 2 shows the complete transformation process with parsing, abstrac-
tion, concretization, and unparsing.

3 Reversibility

Having two syntaxes for a document poses a problem in that one would like to
maintain a document in only one of the two syntaxes. However, since the two
syntaxes are to represent the same logical information, the ideal solution would
be to be able to move freely between them without loss of information. This
imposes some static demands on XSugar specifications.

In order to achieve this goal, a specification needs to be reversible meaning
that a roundtrip to the other syntactic alternative and back should yield the
exact same document, modulo XML normalization. In practice, however, this
is too strong a property to work with due to ignorable information, such as
whitespace and comments, and unordered productions. For that reason, it is
convenient to work with a weaker reversibility property that takes such things
into account.

The notion of ignorable information is precisely what is captured by the
unnamed items in an XSugar specification, which in this way explicitly anno-
tates certain information as ignorable. Such information is not to be recorded
and injected into the other syntactic alternative; as explained above the parser
discards such information and the unparser in turn invents representatives. Sim-
ilarly, when unparsing an unordered production, the order is chosen as the one
provided in the XSugar specification.

Since the transformations are conducted in the same way for both syntaxes,
we only need to be able to check that (1) parsing/unparsing to and from ordinary
parse trees is bijective modulo ignorable information and unordered productions
and (2) abstraction/concretization to and from USTs is bijective modulo ignor-
able information.

8

The parsing/unparsing check is equivalent to deciding whether a context-free
grammar is ambiguous modulo ignorable constituents, which is of course unde-
cidable. However, we deal with this issue by relying on a static analysis based
on regular approximations of context-free grammars [4]. The analysis conserva-
tively approximates the decision problem in that if it says that a grammar is
unambiguous then this is indeed the case, but for certain grammars, the analy-
sis will be unable to give a definitive answer. This is reminiscent of the LR(k)
and LALR(k) ambiguity checks in Yacc/Bison, but with built-in support for
ignorable constituents and unordered productions. Unambiguity is, aside from
reversibility issues, a desirable property for a grammar, so that there can be no
misunderstandings as to how a string is interpreted by a parser.

As for the second check, recall that all UST tree nodes are annotated with
their production indices and all edges to subtrees are labeled with item names.
This means that we simply have to check that all named items are used exactly
once on the other side, so that no non-ignorable information is ever thrown away
by the abstraction.

4 Static Validation

Consider the typical situation where an XML language, described by some
schema formalism, has been given an alternative syntax. An obvious valida-

tion check is that the translations of alternative documents will always result in
valid XML documents.

XSugar performs a static analysis that conservatively approximates this
check. When the analysis reports success, it is guaranteed that syntactically
correct input always results in valid output.

The dual validation check only makes sense if the alternative syntax is already
described by a different context-free grammar. As shown in Section 5.2, this is
the case for RELAX NG, where the original grammar must be rewritten to
allow the XSugar translation. However, the inclusion test between context-free
grammars is of course undecidable, and we are not aware of useful approximation
algorithms.

We may also consider coverage checks, which for the XML to non-XML
direction means that every XML document described by the external schema
can be parsed by the XSugar grammar. This is an interesting problem that
at present is left for future work. The dual coverage check is just the opposite
inclusion check between the two context-free grammars. Note that it will often be
the case that the alternative syntax is simply defined by the XSugar specification.
In that situation, both the non-XML to XML coverage checks and the XML to
non-XML validation checks become trivial.

Our static analysis is based on previous results [5, 6, 12], where the concept
of summary graph is used to model sets of XML documents. We have an al-
gorithm that is able statically to check that every document described by a
summary graph is valid according to a DSD2 schema [14]. Through embeddings,
this technique also works for DTD and XML Schema.

9

[][]

<students>
 []
</sudents>

<student sid=[]>
 <name>[]</name>
 <email>[]</email>
</student>

[0−9]{8}

<Alpha>+(" "<Alpha>+)*

<Alpha>+"@"<Alpha>+("."<Alpha>+)+

Fig. 3. Summary graph for the student information example.

From an XSugar specification, it is simple to extract a summary graph that
describes all XML documents that can be generated by the β productions: Each
right-hand side becomes a summary graph node, items become gaps, and the
edges reflect the possible derivations of nonterminal and terminal items. For the
student information example, the resulting summary graph looks as shown in
Figure 3. The static validation is then performed by checking this summary graph
against the given XML schema [6]. This is further exemplified in Section 5.3.

5 Evaluation

We have implemented a fully functional prototype of the XSugar tool, which
is available for download from http://www.brics.dk/xsugar/. The underlying
parser is a variation of Earley’s algorithm that builds a UST directly without
the intermediate ordinary parse tree, has explicit support for regular expres-
sion items, and allows the unordered productions explained in Section 2.1. The
tool also performs the static validation described in Section 4, by means of the
summary graph validator component from the JWIG project [6].

In the following, we present a range of examples showing how XSugar may
be used for concrete XML languages. Each example highlights certain features
of the XSugar tool. The complete source of the these XSugar specifications are
available at the URL mentioned above, along with examples of input and output
documents.

5.1 XFlat

The XFlat system [17] allows translations between flat file formats and XML,
specified by a single XFlat schema. As an example, the translation between these
two formats

123456789,"Doe, John",100000.00

444556666,"Average, Joe",53000.00

<employees>

<employee>

10

<ssn>123456789</ssn><name>Doe, John</name><salary>100000.00</salary>

</employee>

<employee>

<ssn>444556666</ssn><name>Average, Joe</name><salary>53000.00</salary>

</employee>

</employees>

is specified by the following XFlat schema:

<XFlat Name="employees_schema" Description="Schema for CSV flat file">

<SequenceDef Name="employees" Description="employees flat file">

<RecordDef Name="employee" FieldSep="," RecSep="\N" MaxOccur="0">

<FieldDef Name="ssn" NullAllowed="No"

MinFieldLength="9" MaxFieldLength="11"

DataType="Integer" MinValue="0" QuotedValue="Yes"/>

<FieldDef Name="name" NullAllowed="No" QuotedValue="Yes"/>

<FieldDef Name="salary" NullAllowed="No"

DataType="Float" MinValue="0" QuotedValue="Yes"/>

</RecordDef>

</SequenceDef>

</XFlat>

Each such schema may systematically be translated into an equivalent XSugar
description, which for the above example looks as follows:

SSN = [0-9]{9,11} ;

Name1 = [^",]* ;

Name2 = [^"]* ;

Salary = [0-9]+("."[0-9]+)? ;

file : [employees es] = <employees> _ [employees es] _ </employees> ;

employees : [employee e] [employees es] = [employee e] _ [employees es] ;

: = ;

employee : [SSN x] , [name y] , [Salary z] \n =

<employee> _

<ssn> _ [SSN x] _ </ssn> _

<name> _ [name y] _ </name> _

<salary> _ [Salary z] _ </salary> _

</employee> ;

name : [Name1 y] = [Name1 y] ;

: \" [Name2 y] \" = [Name2 y] ;

The XSugar version differs from the XFlat version in one respect. The XFlat
translation from XML to flat file format is ambiguous, since quotes around fields
are optional, unless the field value contains a comma. In our version, quotes are
only added when they are necessary.

11

In other respects, the XSugar tool is more general. First, it may handle
context-free syntax. Second, even in the niche of flat files, it may perform more
general translations. For example, an XSugar translator could parse up the first
and last names and swap their order within the field, which is not possible using
XFlat.

5.2 RELAX NG

As mentioned in the introduction, the RELAX NG schema language allows an
alternative syntax, which may be captured by an XSugar specification. The α-
grammar is relatively close to the one given in the RELAX NG specification, but
some massaging was required to accommodate the local translations that XSugar
supports. For example, the official EBNF for the compact syntax contains the
following productions:

pattern ::= ...

| pattern ("," pattern)+

| pattern ("&" pattern)+

| pattern ("|" pattern)+

| pattern "?"

| pattern "*"

| pattern "+"

In the translation, maximal non-empty sequences of patterns separated by ,

must be enclosed by <group> tags, those separated by & by <interleave> tags,
and those separated by | by <choice> tags. Furthermore, the three operators
must satisfy an operator precedence hierarchy. This translation is only possible
in XSugar, if the grammar is made more explicit in the following manner:

pattern ::= cpattern

cpattern ::= gpattern "|" crestpattern

| gpattern

crestpattern ::= gpattern "|" crestpattern

| gpattern

gpattern ::= ipattern "," grestpattern

| ipattern

grestpattern ::= ipattern "," grestpattern

| ipattern

ipattern ::= upattern "&" irestpattern

| upattern

irestpattern ::= upattern "&" irestpattern

| upattern

upattern ::= bpattern

| bpattern "?"

| bpattern "*"

| bpattern "+"

bpattern ::= ...

Here, the operator precedences are expressed in the usual manner by introducing
extra nonterminals, and the grammar is further unfolded to allow us to distin-
guish between the first and the rest of maximal sequences. These techniques

12

may in general be necessary, but this particular example requires by far the
most complex unfoldings that we have yet encountered.

On the RELAX NG site, the translation from compact to ordinary syntax
is defined by an XSLT stylesheet of 894 lines. The inverse translation is defined
by a Python script of 1,478 lines. In all, that implementation stacks up to 2,372
lines of code, while the XSugar description is only 123 lines (a factor of 1:19). On
top of this succinctness, the XSugar solution is easier to maintain and delivers
all the safety guarantees discussed in Sections 3 and 4.

5.3 BibTeXML

The BibTeXML project [11] provides an XML-syntax for the popular BibTeX
bibliography format. The XML format is quite complex and is described in 400
lines of DTD notation. This dual syntax is also a larger example of an XSugar
specification, totaling 750 lines.

The example is noticeable in two respects. First, it involves some fairly de-
tailed parsing and translation. For example, a list of authors may be separated
by the word and, and first and last names may be written either directly or in
reverse order separated by commas. In the translation to XML, each author must
be enclosed by a separate author element and the names must be normalized.
This is obtained by the following dual syntax:

PART = ([^",{}&<>~ \n\t]+) & ~([Aa][Nn][Dd]) ;

AND = [Aa][Nn][Dd] ;

authors : [name n] = <bibxml:author> _ [name n] _ </bibxml:author> ;

: [name n] [AND] [authors as] =

<bibxml:author> _ [name n] _ </bibxml:author> _ [authors as] ;

name : [parts ps] = [parts ps] ;

: [parts last] _ , _ [parts first] = [parts first] __ [parts last] ;

parts : [PART p] = [PART p] ;

: { [PART p] } = [PART p] ;

: "~" = ;

: \n = " " ;

: [PART p] [parts ps] = [PART p] [parts ps] ;

: _ = ;

Second, a BibTeX file allows an arbitrary mix of fields, whereas the XML ver-
sion requires (for some reason) a specific order. This is a situation where the
unordered productions are useful:

ARTICLE = [Aa][Rr][Tt][Ii][Cc][Ll][Ee] ;

ID = [^ \n\t]+ ;

article : @[ARTICLE] _ { _ [ID id] _ , _ [articlefields fs] _ } =

<bibxml:entry id=[ID id]>

13

<bibxml:article> _

[articlefields fs] _

</bibxml:article> _

</bibxml:entry> ;

articlefields :& [author author] [title title] [journal journal]

[year year] [volume volume] ... =

[author author] _ [title title] _ [journal journal] _

[year year] _ [volume volume] _ ... _ ;

Note that only the non-XML production is unordered in this case.
In both these situations, the BibTeX format is more liberal than the Bib-

TeXML format. Thus, the translation from BibTeXML to BibTeX will automat-
ically choose a normalized representation.

Static validation of the generated XML documents is for this substantial
example performed in 6 seconds (on a standard PC). The analysis discovered 4
true errors in the definition of the BiBTeX translation (despite our best efforts
at defining it correctly), which were subsequently corrected. No false errors were
reported.

5.4 XSugar

The final example applies XSugar to itself, by providing an XML syntax inspired
by XSLT. Apart from the amusement of self-application, this example demon-
strates the use of another feature. The production for the dual syntax for literal
XML elements looks as follows:

element : "<" _ [qname q] _ [attributes as] _ ">"

_ [xml x] _

"</" _ [qname q] _ ">" =

<xsg:element name=[qname q]> _

[attributes as] _ [xml x] _

</xsg:element> ;

We extend the XSugar language by allowing the identifier q to appear twice in the
rule for the non-XML syntax. When translating from XML to non-XML syntax,
the corresponding string is copied to the two locations, and in the other direction
the parser checks that the two USTs generate the same output (and picks either
one of them). This ability to match subterms for equality during parsing of
course means that we go beyond context-free languages, while maintaining the
functionality and guarantees of the XSugar tool. Yet, it is straightforward to
incorporate this extension in the implementation.

6 Conclusion

We have presented the XSugar system, which allows specification of languages
with dual syntax—one of which is XML-based—and provides translations in

14

both directions. Moreover, we have presented techniques for statically checking
reversibility of an XSugar specification and validity of the output in the direction
that generates XML. Finally, we have conducted a number of experiments by
applying the system to various existing languages with dual syntax. Of course,
XSugar does not support all imaginable transformations; however, all dual syn-
taxes that we have encountered fit into our model. We conclude that XSugar
provides sufficient expressiveness and useful static guarantees, and at the same
time allows concise specifications making it a practically useful system.

References

1. Sergei Abramov and Robert Glück. Principles of inverse computation and the
universal resolving algorithm. In The essence of computation: complexity, analysis,

transformation, pages 269–295. Springer-Verlag, 2002.
2. Nitesh Ambastha and Tahir Hashmi. Xqueeze, 2005.

http://xqueeze.sourceforge.net/.
3. John Boyer. Canonical XML Version 1.0, March 2001. W3C Recommendation.

http://www.w3.org/TR/xml-c14n.
4. Claus Brabrand and Anders Møller. Analyzing ambiguity of context-free gram-

mars, 2005. In preparation.
5. Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static validation of

dynamically generated HTML. In Proc. ACM SIGPLAN-SIGSOFT Workshop on

Program Analysis for Software Tools and Engineering, PASTE ’01, pages 221–231,
June 2001.

6. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extending
Java for high-level Web service construction. ACM Transactions on Programming

Languages and Systems, 25(6):814–875, November 2003.
7. James Clark. RELAX NG compact syntax, November 2002. OASIS.

http://relaxng.org/compact.html.
8. James Clark and Makoto Murata. RELAX NG specification, December 2001.

OASIS. http://www.oasis-open.org/committees/relax-ng/.
9. Clear Methods, Inc. ConciseXML, 2005. http://www.concisexml.org/.

10. Kathleen Fisher et al. PADS: Processing Arbitrary Data Streams, 2005.
http://www.padsproj.org/.

11. Vidar Bronken Gundersen and Zeger W. Hendrikse. BibTeXML, 2005.
http://bibtexml.sourceforge.net/.

12. Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. Static analysis
of XML transformations in Java. IEEE Transactions on Software Engineering,
30(3):181–192, March 2004.

13. Sean McGrath. XML processing with Python. Prentice Hall, 2000.
14. Anders Møller. Document Structure Description 2.0, December 2002. BRICS,

Department of Computer Science, University of Aarhus, Notes Series NS-02-7.
Available from http://www.brics.dk/DSD/.

15. Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. Bidirectionalising HaXML,
2005.

16. Daniel Parker. Presenting XML, 2005. http://presentingxml.sourceforge.net/.
17. Unidex Inc. XFlat, 2005. http://www.unidex.com/xflat.htm.

15

