
The Design Space of Type Checkers for

XML Transformation Languages

Anders Møller? and Michael I. Schwartzbach

BRICS??, University of Aarhus
{amoeller,mis}@brics.dk

Abstract. We survey work on statically type checking XML transfor-
mations, covering a wide range of notations and ambitions. The concept
of type may vary from idealizations of DTD to full-blown XML Schema
or even more expressive formalisms. The notion of transformation may
vary from clean and simple transductions to domain-specific languages
or integration of XML in general-purpose programming languages. Type
annotations can be either explicit or implicit, and type checking ranges
from exact decidability to pragmatic approximations.
We characterize and evaluate existing tools in this design space, including
a recent result of the authors providing practical type checking of full
unannotated XSLT 1.0 stylesheets given general DTDs that describe the
input and output languages.

1 Introduction

XML is an established format for structured data, where each document is es-
sentially an ordered labeled tree [8]. An XML language is a subset of such trees,
typically described by formalisms known collectively as schemas. Given a schema
S, we use L(S) to denote the set of XML trees that it describes. Several different
schema formalisms have been proposed: the original DTD mechanism that is part
of the XML specification [8], more expressive schemas such as XML Schema [39],
RELAX NG [13], or DSD2 [33], and various tree automata formalisms [21, 14].

Many different languages have been devised for specifying transformations
of XML data, covering a wide range of programming paradigms. Several such
languages have type systems that aim to statically catch runtime errors that
may occur during transformations, but not all consider the overall problem of
type checking the global effect: given a transformation T , an input schema Sin

and an output schema Sout , decide at compile time if

∀X ∈ L(Sin ) : T (X) ∈ L(Sout )

The input and output language may of course be the same. Notice that schemas
here act as types in the programming language. Also, we use the notion of type
checking in a general sense that also covers techniques based on dataflow analysis.

? Supported by the Carlsberg Foundation contract number ANS-1507/20.
?? Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.



In this paper we describe the design space of XML transformation languages
and their type checkers, and survey a representative collection of examples:
XDuce [21], Xact [27], XJ [17], XOBE [24], JDOM [23], JAXB [37], HaXml [42],
Cω [31, 4], tree transducers [32, 30], and XQuery [5]. Furthermore, we present a
preliminary report on a novel point in the design space: a flow-based type checker
for the full XSLT 1.0 language [34].

XML transformations are motivated by different usage scenarios: queries on
XML databases generate results that are again XML data; XML documents are
presented in XHTML or XSL-FO versions; translations are performed between
different dialects of XML languages; and views or summaries of XML publica-
tions are automatically extracted. A major contributing factor to the success of
XML is the ability to unify such diverse tasks in a single framework. While the
various languages we survey certainly have different sweet spots, it is reasonable
to expect that they should each support most of the above scenarios.

2 Aspects of XML Transformation Languages

Languages for programming XML transformations may be characterized in many
different ways. A major distinction, which is actually relevant for any kind of
application domain, is between domain-specific languages (DSLs) and general
purpose languages (GPLs) [41].

A GPL is an ordinary programming language, like Java or C++. One ap-
proach for obtaining integration of XML is using a library that allows con-
struction and deconstruction of XML values and provides support for parsing
and unparsing. Another approach is data binding, which represents XML data
through native types of the programming language, often guided by schemas and
manually specified mappings. Since XML documents are ordinary data values in
the language, there is no special syntax or analysis of XML manipulations.

A DSL is a specially designed language that supports domain-specific values
and operations. A DSL may be either stand-alone or embedded.

A stand-alone DSL is designed and implemented from scratch with its own
tailor-made compiler or interpreter. This allows the highest degree of exploita-
tion of domain-specific knowledge for both syntax, analysis, and implementation.
Stand-alone DSLs have two obvious downsides: First, it is expensive to imple-
ment a language from scratch (though there is much active research in lowering
the cost) and it is difficult to provide as complete an infrastructure as, say, the
Java language libraries. Second, potential users have a steep learning curve, even
though DSLs are often designed to resemble other known languages. For XML
transformations, a stand-alone DSL will have some kind of XML trees as native
values.

An embedded DSL is based on a GPL with a framework for XML pro-
gramming. The domain-specific parts consist of specialized syntax and analysis.
The domain-specific syntax, typically for XML constants and navigation in XML
data, may be provided through a preprocessor that desugars the DSL syntax into
GPL syntax. At runtime, the DSL operations are then handled by a GPL library.

2



The domain-specific program analysis may be performed at the DSL source code
level, on the desugared code, or it may exploit a GPL analysis. Compared to
a stand-alone DSL, having the foundation of a GPL makes it easier to interact
with other systems, for example, communicate on the Web or access data bases
through the use of preexisting libraries. It also makes it simpler to integrate
non-XML computations into the XML processing, for example, complex string
manipulations or construction of XML data from non-XML data or vice versa.

The distinction between these categories can be blurry: a GPL may be ex-
tended with XML-like features to allow better data binding, or a DSL for XML
processing may be extended to become a GPL. We shall call these approaches
XML-centric GPLs.

Another distinguishing aspect of an XML transformation language is its ex-

pressiveness. All GPLs are clearly Turing complete, but some embedded DSLs
are designed to express only a limited class of transformations. The benefit of a
restricted language is twofold: First, if only certain transformations are required,
then a specialized syntax makes their programming easier. Second, a restricted
language may be subjected to more precise analysis.

It is important to distinguish between two different kinds of Turing com-
pleteness: the ability to perform arbitrary computations on representations of
XML trees vs. the ability to perform arbitrary computations on some encoding
of the integers. Some stand-alone DSLs are only Turing complete in the latter
sense. Also, an embedded DSL may be Turing incomplete in the XML sense,
even though the underlying GPL is Turing complete in the traditional sense.
A common example is a language where element names and attribute names
cannot be generally computed but only chosen among constants that appear in
the program. However, such a restriction might not be a limitation in practice
since schemas written in existing schema languages can only define fixed sets of
such names anyway.

A well-known aspect of any language is its paradigm. For the purpose of
this paper, we shall merely distinguish roughly between imperative languages,
which have explicit mutable state, and declarative languages, which are without
side-effects and often have implicit control flow. The most widely used GPLs are
imperative, but most stand-alone DSLs are declarative.

The languages we consider apply an abundance of different models of XML

data. Some treat XML as mutable tree structures, whereas others view them
as being immutable. Of course, this aspect is closely related to the language
paradigm. Mutability is natural in an imperative language; however, immutabil-
ity has many advantages, in particular with respect to type checking, and can be
beneficial even in languages where data is generally mutable. In approaches that
involve data binding for GPLs, XML data is represented using the underlying
data model, in object-oriented languages by mapping schema types into classes
and XML data into objects.

These different models may involve varying mechanisms for constructing
XML data and for navigating through or deconstructing the data. One approach
is to perform direct tree manipulation where construction and navigation is on

3



the level of individual XML tree nodes, perhaps with a term language for con-
structing tree fragments from constants and dynamically evaluated expressions.
Deconstruction and navigation might also be based on pattern matching or on
XPath expressions. Another variant is to model XML data as templates, which
are tree structures with gaps that can be substituted with other values.

Finally, the quality of the implementation of a language may obviously
vary. We will distinguish between three levels: First, an industrial strength im-
plementation scales to real-life applications and has a robust infrastructure of
support and documentation. Second, a prototype is provided by a research group,
has been shown to work on moderately sized examples, and is only sporadically
supported. Finally, theoryware is an implementation whose feasibility has been
established in a research paper but for which little practical experience exists.
Note that many prominent software tools have taken the full trip from theory-
ware over prototype to industrial strength.

3 Aspects of XML Type Checking

Independently of the above aspects, the type checking capabilities of an XML
transformation language may be characterized.

First of all, an XML transformation language may of course be entirely
unchecked, which means that all errors will be observed during runtime. For
the other languages, we will distinguish between internal and external type
checking.

Internal type checks aim at eliminating runtime errors during execution. For a
GPL framework, this property is mainly inherited from the underlying language,
and XML operations throwing their own kinds of exceptions are generally beyond
the scope of the type system. For an embedded DSL, the type system of the
underlying language will perform its own checks, while a separate analysis may
perform additional checks of XML operations. One example of this is to verify
that when the program navigates to, say, a given attribute of an element, then
such an attribute is guaranteed to exist according to the schema. For a stand-
alone DSL, a domain-specific type checker is often integrated into the compiler.

External type checks aim at validating the overall behavior of the XML trans-
formation: that an XML tree belonging to the language of an input schema is
always transformed into an XML tree belonging to the language of an output
schema. For a GPL framework, this will require a global program analysis of
the underlying language. This is often also true for an embedded DSL, but the
restrictions imposed by the domain-specific syntax may make this task consid-
erably simpler. For a stand-alone DSL, the external type check may also require
a program analysis, but often it will be possible to express external type checks
in terms of internal type checks if the schemas can be mapped to the domain-
specific types.

The types of the XML data must be specified in some type formalism. A
simple choice is DTD or the closely related formalism of local tree grammars [35].
A more ambitious choice is to use general regular (unranked) tree languages,

4



corresponding to bottom-up tree automata [36]. Another approach is to use the
full XML Schema language or other advanced schema languages used in real-
life development projects. Finally, for GPL frameworks and embedded DSLs,
the types will be characterized as native if they are effectively those of the
underlying language. Approaches that rely on schema languages such as DTD
or XML Schema most often tacitly ignore uniqueness and reference constraints
(that is, ID/IDREF in DTD and key/keyref/unique in XML Schema), since
these aspects of validity seem exceedingly hard to capture by type systems or
dataflow analysis, and also usually are regarded as secondary features compared
to the structural aspects of schemas.

Some type checkers use type annotations, which are part of the language
syntax and explicitly state the expected or required types of variables and expres-
sions. Annotations may be mandatory, meaning that certain language constructs
must be given explicit types. Some languages require annotation of every XML
variable, whereas others have a more light use of annotations, for example at
input and output only. Heavy use of type annotations has both pros and cons.
Type annotations may make the task of the type checker easier since less in-
ference is needed. Also, one may argue that explicit types make the code more
comprehensible since its intention is made more clear. On the other hand, the
types being involved in XML processing can be quite complicated and writing
explicit types might be viewed as an annoying extra burden on the programmer.
Also, explicit types may incur a rigid type checker where type correctness must
be obeyed at every program point. The consequences might be that XML trees
can only be built strictly bottom-up, and that sequences of updates that grad-
ually convert data from one type to another are not possible to type check. We
discuss these issues further in the next section.

For Turing complete languages, type checking is an undecidable problem. For
internal type checks, the decision problem is to determine the absence of certain
runtime errors. For external type checks, the decision problem is to determine
if the input language is transformed into the output language. Thus, type sys-
tems must approximate the answers to these problems. We will characterize the
precision of both the internal and the external type checking capabilities ac-
cording to the levels of guarantees being provided: The typical solution is to
devise a static type checking algorithm that conservatively (that is, soundly but
not completely) decides if the desired properties hold. Thus, any type checker
will unfairly reject some programs, which is a common experience of most pro-
grammers. Another solution is to apply a pragmatic type checker which attempts
to catch as many errors as possible, but which may generate both false positives
and false negatives (in other words, it is neither sound nor complete). Note that
even conservative internal type checkers usually ignore certain kinds of runtime
errors, the classical examples being division by zero and null pointer derefer-
ences. Also, approaches belonging to the pragmatic category can be sound if
certain unchecked assumptions are adhered to. Of course, for non-Turing com-
plete languages, it might also be feasible to guarantee exact answers.

5



The theoretical complexity of the type checking algorithm is also a relevant
aspect. However, the asymptotic complexity of an algorithm is not always a
true measure of its experienced running time (for example, ML type inference is
exponential but runs smoothly in practice). A related aspect is the modularity

of the type checking. A highly modular approach is more likely to scale to large
programs. Some algorithms analyze each operation individually; if each operation
type checks, then the entire program type checks. Others involve whole-program
type inference or dataflow analysis using fixed-point iteration. Naturally, this
aspect depends on the use of type annotations described above: high modularity
is correlated with heavy use of annotations.

Finally, as for the transformation implementation, we will characterize the
type checking implementation; for some languages, the transformation im-
plementation is much more developed than the type checker. The availability

of implementations is also interesting, where we distinguish between open source,
free binary distributions, commercial products, and implementations that seem
unavailable.

4 Points in the Design Space

The above discussions allow us to provide a succinct profile of a given XML
transformation language and its type checker. For each language, we look into
the following aspects (however, some are not applicable to all examples):

Language type: Is the language a GPL library, a data-binding framework, a
stand-alone DSL, an embedded DSL, or an XML-centric GPL? In case of a
stand-alone DSL, is it imperative or declarative? Is it Turing complete?

Model for XML data: Is XML data mutable or immutable? How is XML
data constructed and deconstructed?

Type formalism: Which formalism is used as types?
Annotations: How much does the approach depend on explicit types in the

programs?
Precision: Is the type system exact, conservative, or pragmatic? Which guar-

antees are given when a program type checks? This aspect is relevant for
both internal and external type checks. For conservative systems, is the pre-
cision acceptable in practice or are too many semantically correct programs
rejected by the type checker?

Complexity: What is the theoretical complexity of the type checking process
(if known)? Of course, this aspect must be evaluated together with the mod-
ularity aspect. Also, observed behavior in practice may appear very different.

Modularity: What is the granularity of the type checking? This ranges from
individual operations to whole-program analyses.

Implementation quality and availability: What is the quality of implemen-
tations of the transformation language and of the type checker? Is their
source code available?

Additionally, we will try to relate each language with the most closely related
ones to investigate the similarities and essential differences.

6



4.1 XDuce

XDuce was the first programming language with type checking of XML opera-
tions using schemas as types [21]. It is a simplistic language that has provided
the foundation for later languages, in particular Xtatic and CDuce, which we
briefly mention below, and has also influenced the design of XQuery (see Sec-
tion 4.10) and the popular schema language RELAX NG [13].

Language type: XDuce is a declarative stand-alone DSL. It can also be char-
acterized as a first-order pure functional language. Its intention has been to
investigate type-safe integration of XML into programming languages, not
to be a full fledged programming language. The original description of the
language did not include attributes, but this has been amended in a later
version [19]. It is Turing complete, with the exception that it cannot compute
element names and attribute names dynamically.

Model for XML data: Since the language is pure, XML data is obviously
treated as immutable trees. Construction of values is expressed as tree terms.
Navigation and deconstruction is based on a mechanism of regular expression
pattern matching [20] – a combination of regular expressions and ML-style
pattern matching that is closely connected with the type system.

Type formalism: The type system of XDuce is based on the notion of regular
expression types, which corresponds to the class of regular tree languages.
The most essential part of the type system is the subtyping relation, which
is defined by inclusion of the values represented by the types (this is also
called structural subtyping).

Annotations: XDuce requires explicit type annotations for both function argu-
ments and return values; however it provides local type inference for pattern
matching operations, which means that many pattern variables do not need
annotations.

Precision: The type checker of XDuce is conservative: a program that passes
type checking is guaranteed to transform valid input into valid output. Re-
garding internal checking, various properties of pattern matching operations
are checked: exhaustiveness (that at least one clause always matches), ir-
redundancy (every clause can match some value), and unambiguity (that
unique bindings are always obtained). Since the type formalism is decidable
there exist programs that are semantically correct but where appropriate
type annotations are not expressible, but such problematic programs have
not been described in the XDuce papers.

Complexity: Since subtyping is based on automata language inclusion, the
complexity of type checking—including the local type inference and the
checks of pattern matching operations—is exponential time complete. Nev-
ertheless, the algorithm being used appears efficient in practice [22].

Modularity: Since no global type inference or fixed-point iteration is involved,
the approach is highly modular.

Implementation quality and availability: An open source prototype is avail-
able. This implementation focuses on type checking and analysis of patterns,
not on runtime efficiency.

7



A key to the success of XDuce is the clean mathematical foundation of regular
expression types. However, a number of issues remain. First, the current de-
sign does not handle unordered content models although these are common in
real-life schemas. Second, the regular expression pattern matching mechanism
can in some situations be too low-level, for example, for navigating deep down
XML tree structures, processing data iteratively, or performing almost-identity
transformations. Ongoing work aims to provide higher-level pattern matching
primitives [18]. Third, devising an efficient runtime model for the language is
challenging; for example, pattern matching may involve exponential time or
space algorithms [29].

Other issues are being addressed in descendants of XDuce: Xtatic [15] aims
to integrate the main ideas from XDuce into C] (and can hence be catego-
rized as an embedded DSL). As a part of making the technologies available in a
mainstream language, efficient runtime representation of the XML data is also
considered [16]. The CDuce language [3] goes another direction by extending
XDuce towards being an XML-centric functional GPL by adding features, such
as higher-order functions and variations of pattern matching primitives. Addi-
tionally, parametric polymorphism is being considered.

4.2 XACT

Xact [27, 26] has roots in the language JWIG, which is a Java-based language
for development of interactive Web services [10, 7]. JWIG contains a template-
based mechanism for dynamic construction of HTML/XHTML pages and in-
cludes a static program analysis that checks for validity of the pages; in Xact

this mechanism has been generalized to full XML transformations.

Language type: Xact is an embedded DSL, with Java as host language. As
XDuce, it is Turing complete but cannot compute element names and at-
tribute names dynamically.

Model for XML data: This language uses a variant of immutable trees called
templates, which are XML tree fragments with named gaps appearing in
element contents or attributes. Values can be filled into these gaps in any
order and at any time, and conversely, subtrees can be replaced by gaps
in order to remove or replace data. Constant templates are written in an
XML syntax. The main operations are the following: plug constructs a new
value by inserting XML templates or strings into the gaps of the given name;
select takes an XPath expression as argument and returns an array of the
selected subtrees; gapify also takes an XPath expression as argument but
in contrast to select it replaces the addressed subtrees by gaps of a given
name; setAttribute inserts or replaces attributes selected using XPath;
and setContent similarly replaces element content. In addition, there are
methods for importing and exporting XML values to other formats, such as
strings, streams, or JDOM documents. Note that a major difference to the
XDuce family of languages is that Xact relies on XPath for navigation in
XML trees.

8



Type formalism: The static guarantees in Xact are obtained through the
use of a dataflow analysis that exploits a formalism called summary graphs,
which approximatively tracks the operations on templates in the program.
DTD is used for input and output types; however, the analyzer does permit
the stronger schema language DSD2 [33] for the output types. The asym-
metry arises since the input type must be translated into a summary graph,
while the final check of the output type uses a separate algorithm that tests
inclusion of summary graphs into DSD2 schemas. It is theoretically possible
to map also a DSD2 schema into a summary graph accepting the same lan-
guage (ignoring as usual uniqueness and pointer constraints), but this has
not been implemented yet.

Annotations: Being based on dataflow analysis, the annotation overhead is
much lighter than in most other techniques. Types, that is, references to
DTDs, are specified only at input and at designated analysis points (typically
at output).

Precision: The analysis is conservative, that is, a program that passes the
analysis cannot produce invalid XML at runtime. The analyzer also per-
forms some internal checks: that plug operations never fail (by attempting
to plug templates into attribute gaps), and that XPath expressions used in
the other XML operations can potentially select nonempty node sets. The
main practical limitations of the analysis precision are caused by the facts
that the current implementation employs a monovariant and path-insensitive
analysis and that all field variables are treated flow insensitively (to ensure
soundness).

Complexity: The analysis has polynomial complexity.

Modularity: The approach has poor modularity since it performs fixed-point
iteration over the entire program. Nevertheless, it appears reasonably effi-
cient in practice [27].

Implementation quality and availability: An open source prototype is avail-
able. The analyzer handles the full Java language. The runtime represen-
tation has been crafted to obtain good performance despite operating on
immutable structures. [26]

Although less mathematically elegant, the template-based mechanism in Xact

can be more flexible to program with than the XDuce model. First, using the
plug operation, templates with gaps can be passed around as first-class values.
Gaps may be filled in any order and computed templates can be reused; in the
XDuce family of languages, trees must be constructed bottom-up. Second, the
use of XPath appears powerful for addressing deeply into XML trees; several
other languages have chosen XPath for the same purpose, as described in the
following sections. Third, the gapify operation makes it easy to make almost-
identity transformations without explicitly reconstructing everything that does
not change.

Despite the differences between the XDuce and Xact approaches, there is
a connection between the underlying formalisms used in the type checkers: as

9



shown in [9], the notions of summary graphs and regular expression types are
closely related.

Current work on the Xact project aims to obtain a closer integration with
the new generics and iteration features that have been introduced in Java 5.0.

4.3 XJ

The development of the XJ [17] language aims at integrating XML processing
closely into Java using XML Schema as type formalism.

Language type: XJ is an embedded DSL using Java as host language.
Model for XML data: XML data is represented as mutable trees. Construc-

tion of XML data is performed at the level of individual nodes. It is dy-
namically checked that every node has at most one parent. Subtrees are ad-
dressed using XPath. Updating attribute values or character data is likewise
expressed using XPath, whereas insertion and deletion of subtrees involving
elements are expressed with special insert and delete operations.

Type formalism: Types are regular expressions over XML Schema declara-
tions of elements, attributes, and simple types. Thus, the type system has
two levels: regular expression operators and XML Schema constructions.
Subtyping on the schema level is defined by the use of type derivations (ex-
tensions and restrictions) and substitution groups in the schemas: if A is
derived from B or is in the substitution group of B, then A is defined to be
a subtype of B. In other words, this is a nominal style of subtyping. Subtyp-
ing on the regular expression level is defined as regular language inclusion
on top of the schema subtyping. Coercions are made between certain XML
types and normal Java types, for example between int of XML Schema and
int of Java, or between Kleene star and java.lang.List.

Annotations: All XML variable declarations must be annotated with types.
Precision: The type checker is in the pragmatic category because updates

require runtime checks due to potential aliasing. Also, not all features in
XML Schema are accounted for by the type system, an example being facet
constraints. Updates involving XPath expressions that evaluate to multiple
nodes result in runtime errors.

Complexity: Since subtyping relies on inclusion between regular expressions,
complexity is exponential in the size of the regular expressions being used.

Modularity: Due to the heavy use of annotations, each operation can be checked
separately, which leads to a high degree of modularity.

Implementation quality and availability: A prototype implementing parts
of the system has been made (in particular, type checking of updates of
complex types is not implemented). This prototype has not been available
to us.

The authors of [17] acknowledge the fact that the type checker of XJ can be too
rigid. Since the values of a variable at all times must adhere to its type and this
type is fixed at the variable declaration, it is impossible to type check a sequence

10



of operations that temporarily invalidate the data. A plausible example is con-
structing an element and inserting a number of mandatory attributes through a
sequence of updates.

A problem with the nominal style of subtyping is that a given XML value
is tied too closely with its schema type. Imagine a transformation (inspired by
the addrbook example from [21]), which creates a telephone book document
from an address book document by extracting the entries that have telephone
numbers. That is, the output language is a subset of the input language, the only
difference being that telephone elements are mandatory in the content model
of person elements in the output. Since the nominal type system treats the two
versions of person elements as unrelated, an XJ transformation must explicitly
reconstruct all person elements instead of merely removing those without a
telephone element.

4.4 XOBE

The XOBE language [24] has been developed with similar goals as XJ and has
many similarities in the language design; however, the type checking approach
appears closer to that of XDuce.

Language type: XOBE is an embedded DSL using Java as host language.
Model for XML data: XML data is represented as mutable trees. (It is not

explicitly stated in the available papers on XOBE that the XML trees are
mutable, however an example program in [24] strongly suggests that this
is the case.) Construction of XML trees is written in an XML-like notation
with embedded expressions (unlike XJ). Subtrees are addressed using XPath
expressions.

Type formalism: The underlying type formalism is regular hedge expressions,
which corresponds to the class of regular tree languages that, for instance,
XDuce also relies on. From the programmer’s point of view, XML Schema
can be used as type formalism, but features of XML Schema that go beyond
regularity are naturally not handled by the type checker. It is not clear how
the type derivation and substitution group features of XML Schema are
handled, but it might be along the lines suggested in [35].

Annotations: XOBE requires explicit type annotations on every XML variable
declaration.

Precision: The main ingredient of the type checker is checking subtype rela-
tionship for assignment statements. Since mutable updates are possible and
the potential aliases that then may arise are apparently ignored (unlike in
the XJ approach which relies on runtime checks), the XOBE type checker is
unsound and hence belongs in the pragmatic category. However, if assuming
that problematic aliases do not arise, type checking is conservative. When
XML Schema is used as type formalism, certain kinds of constraints that are
expressible in XML Schema, such as number of occurrences and restricted
string types, are handled by runtime checks.

Complexity: The complexity of checking subtype relationship is exponential.

11



Modularity: As with XJ, the modularity of type checking is high.
Implementation quality and availability: A binary-code prototype is avail-

able (but, at the time of writing, with minimal documentation).

As in XJ, integrating XML into a GPL using mutable trees as data model and
XPath for addressing subtrees is a tempting and elegant approach. However, two
crucial problems remain: it appears infeasible to ensure soundness of the type
checker when aliasing and updates can be mixed, and the type checker can be
too rigid as noted above.

4.5 JDOM

As as baseline, we include JDOM [23] – a popular approach that does not perform
any type checking for validity of the generated XML data but only ensures well-
formedness. In return, it is simple, offers maximal flexibility and performance,
and is widely used. JDOM is developed as a Java-specific alternative to the
language independent DOM [1].

Language type: JDOM is a GPL library (for Java).
Model for XML data: XML data is represented as mutable trees (in partic-

ular, nodes must have unique parents). The library contains a plethora of
operations for performing low-level tree navigation and manipulation and
for importing and exporting to other formats. Additionally, there is built-in
support for evaluating XPath location path expressions.

Type formalism: Well-formedness comes for free with the tree representation,
but JDOM contains no type system (in addition to what Java already has).

Implementation quality and availability: JDOM has an open source in-
dustrial strength implementation.

Compared to the other approaches mentioned in this paper, DOM and JDOM are
generally regarded as low-level frameworks. They are often used as foundations
for implementing more advanced approaches.

4.6 JAXB

Relative to DOM/JDOM, Sun’s JAXB framework [37] and numerous related
projects [6] can be viewed as the next step in integrating XML into GPL pro-
gramming languages.

Language type: JAXB is a data binding framework for Java.
Model for XML data: Schemas written in the XML Schema language are

converted to Java classes that mimic the schema structure. XML data is
represented as objects of these classes. Conversion between textual XML
representation and objects is performed by marshall and unmarshall op-
erations. The mapping from schemas to classes can be customized either via
annotations in the schema or in separate binding files.

12



Type formalism: JAXB relies on the native Java type system. Note that, in
contrast to JDOM, this representation is able to obtain static guarantees of
certain aspects of validity because the binding reflects many properties of
the schemas. Full XML Schema validation is left as a runtime feature.

Annotations: No special annotations are needed in the Java code.
Precision: The approach is pragmatic due to the significant impedance mis-

match between XML schema languages and the type system of Java. Using
a customized binding, this mismatch can be alleviated, though. Neverthe-
less, there is no automatic translation from DTD, XML Schema, or the more
idealized schema languages that provides precise bindings.

Implementation quality and availability: JAXB has several (even open
source) industrial strength implementations.

Data binding frameworks are a commonly used alternative to the DOM/JDOM
approach. Still, they constitute a pragmatic approach that cannot provide the
static guarantees of conservative frameworks.

4.7 HaXml

If the host language has a more advanced type system, then data binding may be
more precise. An example of that is the HaXml [42] system, which uses Haskell as
host language. HaXml additionally contains a generic library like JDOM, which
we will not consider here.

Language type: HaXml is a data binding framework for Haskell.
Model for XML data: DTDs are converted into algebraic types using a fixed

strategy.
Type formalism: HaXml uses the native Haskell types.
Annotations: Type annotations are optional.
Precision: The Haskell type checker is conservative and generally acknowledged

to have good precision. For the XML binding, however, the lack of subtyping
of algebraic types rejects many natural programs. On the other hand, the
presence of polymorphism allows a different class of useful programs to be
type checked.

Complexity: The type checker of Haskell is exponential.
Modularity: Modularity is excellent, since Haskell supports separate compila-

tion.
Implementation quality and availability: The Haskell compiler has indus-

trial strength implementations.

In [38] different binding algorithms for Haskell are discussed, enabling more
flexible programming styles while trading off full DTD validity.

4.8 Cω

The Cω language (formerly known as Xen) is an extension of C] that aims at
unifying data models for objects, XML, and also databases [4, 31]. This goes a
step beyond data binding.

13



Language type: Cω is an XML-centric GPL based on the C] language.
Model for XML data: The mutable data values of C] are extended to include

immutable structural sequences, unions, and products on top of objects and
simple values. XML trees are then encoded as such values. XML templates
may be used as syntactic sugar for the corresponding constructor invocations.
A notion of generalized member access emulates simple XPath expressions
for navigation and deconstruction.

Type formalism: The Cω type system similarly supports structural sequence,
union, and product types. There is no support for external types, but the
basic features of DTD or XML Schema may be encoded in the type system.

Annotations: Cω requires ubiquitous type annotations, as does C].
Precision: The Cω type checker appears somewhat restrictive, since the notion

of subtyping is not semantically complete: two types whose values are in a
subset relation are not necessarily in a subtype relation. This means that
many programs will be unfairly rejected by the type checker. For example,
an addrbook with mandatory telephone elements cannot be assigned to a
variable expecting an addrbook with optional telephone elements.

Complexity: The complexity is not stated (but appears to be polynomial given
the simple notion of subtyping).

Modularity: The type system is highly modular as that of the underlying C]

language.
Implementation quality and availability: The language is available in a

prototype implementation.

Cω solves a more ambitious problem than merely type checked XML transfor-
mations, and many of its interesting features arise from the merger of different
data models.

4.9 Tree Transducers

XML has a mathematical idealization as ordered labeled trees and schemas may
be modeled as regular tree languages. Corresponding to this view, XML trans-
formations may be seen as some notion of tree transducers. Two representative
examples are tl transformers [30] and k-pebble transducers [32].

Language type: Tree transducers are declarative stand-alone DSLs. Actually,
they are generally presented simply as 5-tuples with alphabets and transition
functions. The languages are not Turing complete but still capture many
central aspects of other transformation languages.

Model for XML data: XML data is immutable. Attributes must be encoded
as special nodes, and attribute values and character data are ignored. Con-
struction is performed node by node. Navigation and pattern matching is in
the k-pebble approach performed by tree walking and in the tl approach by
evaluating formulas in monadic second-order logic.

Type formalism: Types are general regular tree languages.
Annotations: Only the input and output types are specified.

14



Precision: These classes of tree transducers are particularly interesting, since
their type checking problems are decidable. The k-pebble transducers may be
viewed as low-level machines, while tl transformers provide a more succinct
declarative syntax.

Complexity: The type checking algorithms are hyperexponential.
Modularity: Tree transducers are closed under composition, which provides a

simple form of modular type checking.
Implementation quality and availability: The type checking algorithms have

not been implemented and are thus pure theoryware. However, non-elementary
algorithms on tree automata have previously been seen to be feasible in prac-
tice [28].

This work fits into a classical scenario where practical language design and the-
oretical underpinnings inspire each other. Type checking algorithms for Turing
complete languages will become ever more precise and formalisms with decidable
type checking will become ever more expressive, but the two will of course never
meet.

4.10 XQuery

XQuery is the W3C recommendation for programming transformations of data-
centric XML [5] (currently with the status of working draft). As XML trees
may been seen to generalize relational databases tables, the XQuery language is
designed to generalize the SQL query language.

Language type: XQuery is a Turing complete declarative stand-alone lan-
guage. Like XDuce, it is also a first-order pure functional language.

Model for XML data: XML data is treated as immutable trees. Future ex-
tensions plan to generalize also the update mechanisms of SQL, but the query
language itself continues to operate on immutable data. Nodes of trees also
have a physical identity, which means that fragments may be either identical
or merely equal as labeled trees. A term language is used for constructing
values, and XPath is used for deconstruction and pattern matching.

Type formalism: The input and output types are XML Schema instances.
Internally, types are tree languages with data values, corresponding to single-
type tree grammars. Input/output types are mapped approximately into
internal types, and the subtyping is structural (unlike XJ). Most of XML
Schema fits into this framework [35].

Annotations: Variables, parameters, and function results have type annota-
tions that by default denote a type containing all values.

Precision: The internal type checker is conservative and based on type rules.
Some XQuery constructions are difficult to describe, and the designers ac-
knowledge that some type rules may need to be sharpened in later ver-
sions [14]. While XQuery unlike most other transformation languages handle
computed element and attribute names, it should be noted that the corre-
sponding type rule must pessimistically assume that any kind of result could

15



arise. The external type checker is strictly speaking pragmatic. The unsound-
ness arises because XML Schema is only mapped approximately into internal
types. To achieve a conservative external type checker, the mapping of the
input language should produce an upper approximation and the mapping
of the output language a lower approximation. The current mapping appar-
ently meets neither criterion. The practical precision of the type checking
algorithm is as yet unknown.

Complexity: The type checking algorithm is exponential.
Modularity: The type checker is in a sense modular, since functions may be

type checked separately against their type annotations. However, since the
type system lacks analogies of principal type schemes, a single most general
choice of type annotations does not exist.

Implementation quality and availability: XQuery is available in several pro-
totype implementations, both commercial and open source. Only a single
prototype supports type checking. Industrial strength implementations are
being undertaken by several companies.

XQuery will undoubtedly fulfill its goal as an industrial XML standard. In that
light, its strong theoretical foundation is a welcome novelty.

4.11 Type Checking XSLT

XSLT 1.0 is the current W3C recommendation for programming transformations
of document-centric XML [12]. There is no associated type checker, but in a
recent project we have applied the summary graph technology from Xact to
create a flow-based external type checker [34]. This tool has been designed to
handle a real-life situation, thus the full XSLT 1.0 language is supported.

Language type: XSLT is a declarative stand-alone DSL. It is Turing com-
plete [25], but only in the encoded sense. Even though computed element
and attribute names are allowed, there are several XML transformations
that cannot be expressed, primarily because XSLT transformations cannot
be composed. For example, a transformation that sorts a list of items and
alternatingly colors them red and blue cannot be programmed in XSLT.

Model for XML data: XML data is treated as immutable trees. Templates
are used as a term language (in a declarative fashion, unlike the template
mechanism in Xact). Navigation is performed using XPath.

Type formalism: XSLT 1.0 is itself untyped, but our tool uses summary graphs
for internal types. External types are DTDs. The output type may in fact
be a DSD2 schema, as in Xact.

Annotations: Our tool works on ordinary XSLT stylesheets, thus only the
input and output type must be specified.

Precision: The analysis is conservative. At present, no internal type checks are
performed, but we obtain the required information to catch XPath naviga-
tion errors and detect dead code. The external type checker has been tested
on a dozen scenarios with XSLT files ranging from 35 to 1,353 lines and

16



DTDs ranging from 8 to 2,278 lines. Most of these examples originate from
real-life projects and were culled from the Web. In a total of 3,665 lines of
XSLT, the type checker reported 87 errors. Of those, 54 were identified as real
problems in the stylesheets, covering a a mixture of misplaced, undefined,
or missing elements and attributes, unexpected empty contents, and wrong
namespaces. Most are easily found and corrected, but a few seem to indicate
serious problems. The 33 false errors fall in two categories. A total of 30
are due to insufficient analysis of string values, which causes problems when
attribute values are restricted to NMTOKEN in the output schema. A variation
of the string analysis presented in [11] may remedy this. The remaining 3
false errors are caused by approximations we introduce and would require so-
phisticated refinements to avoid. Another important measure of the achieved
precision is that the generic identity transformation always type checks.

Complexity: The algorithm is polynomial and appears reasonably efficient in
practice. The largest example with 1,353 lines of XSLT, 104 lines of input
DTD, and 2,278 lines of output DSD2 schema (for XHTML) ran in 80 sec-
onds on a typical PC (constructing a summary graph with more than 26,000
nodes).

Modularity: The type checker is based on whole-program analysis and thus is
not modular.

Implementation quality and availability: XSLT 1.0 has of course many in-
dustrial strength implementations. The type checker is implemented as a
prototype, which we are currently developing further.

The analysis has several phases. First, we desugar the full XSLT syntax into
a smaller core language using only the instructions apply-templates, choose,
copy-of, attribute, element, and value-of. The transformation has the prop-
erty that the type check of the original stylesheet may soundly be performed on
the reduced version instead.

Second, we perform a control flow analysis finding for each apply-templates

instruction the possible target template rules. This reduces to checking that two
XPath expressions are compatible relative to a DTD, which is challenging to solve
with the required precision. We use a combination of two heuristic algorithms,
partly inspired by a statistical analysis of 200,000 lines of real-life XSLT code
written by hundreds of different authors.

Third, a summary graph that soundly represents the possible output docu-
ments is constructed based on the control flow graph and the input DTD. The
main challenge here is to provide sufficiently precise representations of content
sequences in the output language.

Finally, the resulting summary graph is compared to the output schema using
the algorithm presented in [10].

There have been other approaches to type checking XSLT stylesheets [40, 2],
but our tool is the first working implementation for the full language.

17



5 Conclusion

Many different programming systems have been proposed for writing transfor-
mations of XML data. We have identified a number of aspects by which these
systems and their type checking capabilities can be compared. The approaches
range from integration of XML into existing languages to development of lan-
guage extensions or entirely new languages. Some aim for soundness where others
are more pragmatic. Additionally, we have presented a brief overview of a novel
approach for type checking XSLT 1.0 stylesheets and have shown how this fits
into the design space of XML type checkers. An extensive description of this
approach is currently in preparation [34].

The variety of approaches indicates that the general problem of integrat-
ing XML into programming languages with static guarantees of validity has no
canonical solution. Nevertheless, some general observations can be made:

– A fundamental issue seems to be that real-life schema languages are too far
from traditional type systems in programming languages.

– The choice of using an immutable representation is common, even in imper-
ative languages. (We have seen the problems that arise with mutability and
aliasing).

– It is common to rely on type annotations on all variable declarations. This
improves modularity of type checking but is an extra burden on the pro-
grammer.

– Many type checkers appear restrictive in the sense that they significantly
limit the flexibility of the underlying language. One example is type systems
that are not structural; another is rigidity that enforces a programming style
where XML trees are constructed purely bottom-up.

– Irrespectively of the type checker, it is important that the language is flexible
in supporting common XML transformation scenarios. For example, variants
of template mechanisms can be convenient for writing larger fragments of
XML data. Also, XPath is widely used for addressing into XML data.

– In many proposals, runtime efficiency is an issue that has not been addressed
yet. Also, handling huge amounts of XML data seems problematic for most
systems.

– A claim made in many papers is that high theoretical complexity does not
appear to be a problem in practice. Nevertheless, it is unclear how well
most of the proposed type checking techniques work on real, large scale
programming projects.

Overall, the general problem is challenging and far from being definitively solved,
and we look forward to seeing the next 700 XML transformation languages and
type checking techniques.

Acknowledgments

We thank Claus Brabrand and Christian Kirkegaard for useful comments and
inspiring discussions.

18



References

1. Vidur Apparao et al. Document Object Model (DOM) level 1 specification, October
1998. W3C Recommendation. http://www.w3.org/TR/REC-DOM-Level-1/.

2. Philippe Audebaud and Kristoffer Rose. Stylesheet validation. Technical Report
RR2000-37, ENS-Lyon, November 2000.

3. Veronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: An XML-
centric general-purpose language. In Proc. 8th ACM International Conference on

Functional Programming, ICFP ’03, August 2003.

4. Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence
of data access in Cω. Technical report, Microsoft Research, 2004.
http://research.microsoft.com/Comega/.

5. Scott Boag et al. XQuery 1.0: An XML query language, November 2003. W3C
Working Draft. http://www.w3.org/TR/xquery/.

6. Ronald Bourret. XML data binding resources, September 2004.
http://www.rpbourret.com/xml/XMLDataBinding.htm.

7. Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The <bigwig>

project. ACM Transactions on Internet Technology, 2(2):79–114, 2002.

8. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois Yergeau.
Extensible Markup Language (XML) 1.0 (third edition), February 2004. W3C
Recommendation. http://www.w3.org/TR/REC-xml.

9. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Static anal-
ysis for dynamic XML. Technical Report RS-02-24, BRICS, May 2002. Presented
at Programming Language Technologies for XML, PLAN-X ’02.

10. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extending
Java for high-level Web service construction. ACM Transactions on Programming

Languages and Systems, 25(6):814–875, November 2003.

11. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
analysis of string expressions. In Proc. 10th International Static Analysis Sympo-

sium, SAS ’03, volume 2694 of LNCS, pages 1–18. Springer-Verlag, June 2003.

12. James Clark. XSL transformations (XSLT), November 1999. W3C Recommenda-
tion. http://www.w3.org/TR/xslt.

13. James Clark and Makoto Murata. RELAX NG specification, December 2001.
OASIS. http://www.oasis-open.org/committees/relax-ng/.

14. Denise Draper et al. XQuery 1.0 and XPath 2.0 formal semantics, November 2002.
W3C Working Draft. http://www.w3.org/TR/query-semantics/.

15. Vladimir Gapayev and Benjamin C. Pierce. Regular object types. In Proc. 17th

European Conference on Object-Oriented Programming, ECOOP’03, volume 2743
of LNCS. Springer-Verlag, July 2003.

16. Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce, and Alan Schmitt. XML
goes native: Run-time representations for Xtatic, 2004.

17. Matthew Harren, Mukund Raghavachari, Oded Shmueli, Michael Burke, Vivek
Sarkar, and Rajesh Bordawekar. XJ: Integration of XML processing into Java.
Technical Report RC23007, IBM Research, 2003.

18. Haruo Hosoya. Regular expression filters for XML, January 2004. Presented at
Programming Language Technologies for XML, PLAN-X ’04.

19. Haruo Hosoya and Makoto Murata. Validation and boolean operations for
attribute-element constraints, October 2002. Presented at Programming Language
Technologies for XML, PLAN-X ’02.

19



20. Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern matching for
XML. Journal of Functional Programming, 13(4), 2002.

21. Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML processing
language. ACM Transactions on Internet Technology, 3(2), 2003.

22. Haruo Hosoya, Jerome Vouillon, and Benjamin C. Pierce. Regular expression types
for XML. ACM Transactions on Programming Languages and Systems, 2004. To
appear.

23. Jason Hunter and Brett McLaughlin. JDOM, 2004. http://jdom.org/.
24. Martin Kempa and Volker Linnemann. On XML objects, October 2002. Presented

at Programming Language Technologies for XML, PLAN-X ’02.
25. Stephan Kepser. A proof of the Turing-completeness of XSLT and XQuery. Tech-

nical report, SFB 441, University of Tübingen, 2002.
26. Christian Kirkegaard, Aske Simon Christensen, and Anders Møller. A runtime

system for XML transformations in Java. In Proc. Second International XML

Database Symposium, XSym ’04, volume 3186 of LNCS. Springer-Verlag, August
2004.

27. Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. Static analysis
of XML transformations in Java. IEEE Transactions on Software Engineering,
30(3):181–192, March 2004.

28. Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA implementa-
tion secrets. International Journal of Foundations of Computer Science, 13(4):571–
586, 2002. World Scientific Publishing Company.

29. Michael Y. Levin. Compiling regular patterns. In Proc. 8th ACM SIGPLAN

International Conference on Functional Programming, ICFP ’03, August 2003.
30. Sebastian Maneth, Alexandru Berlea, Thomas Perst, and Helmut Seidl. XML type

checking with macro tree transducers. Technical Report TUM-I0407, TU Munich,
2004.

31. Erik Meijer, Wolfram Schulte, and Gavin Bierman. Programming with rectan-
gles, triangles, and circles. In Proc. XML Conference and Exposition, XML ’03,
December 2003.

32. Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers.
Journal of Computer and System Sciences, 66, February 2002. Special Issue on
PODS ’00, Elsevier.

33. Anders Møller. Document Structure Description 2.0, December 2002. BRICS,
Department of Computer Science, University of Aarhus, Notes Series NS-02-7.
Available from http://www.brics.dk/DSD/.

34. Anders Møller, Mads Østerby Olesen, and Michael I. Schwartzbach. Static valida-
tion of XSL Transformations, 2004. In preparation.

35. Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy of XML schema
languages using formal language theory. In Proc. Extreme Markup Languages,
August 2001.

36. Frank Neven. Automata, logic, and XML. In Proc. 16th International Workshop

on Computer Science Logic, CSL ’02, September 2002.
37. Sun Microsystems. JAXB, 2004. http://java.sun.com/xml/jaxb/.
38. Peter Thiemann. A typed representation for HTML and XML documents in

Haskell. Journal of Functional Programming, 12(5):435–468, 2002.
39. Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-

sohn. XML Schema part 1: Structures, May 2001. W3C Recommendation.
http://www.w3.org/TR/xmlschema-1/.

40. Akihiko Tozawa. Towards static type checking for XSLT. In Proc. ACM Symposium

on Document Engineering, DocEng ’01, November 2001.

20



41. Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An
annotated bibliography. ACM SIGPLAN Notices, 35(6):26–36, June 2000.

42. Malcolm Wallace and Colin Runciman. Haskell and XML: Generic combinators
or type-based translation? In Proc. 4th ACM SIGPLAN International Conference

on Functional Programming, ICFP ’99, September 1999.

21


