
Static Analysis for Event-Based XML Processing

Anders Møller
Department of Computer Science

University of Aarhus
amoeller@brics.dk

Abstract
Event-based processing of XML data – as exemplified by the pop-
ular SAX framework – is a powerful alternative to using W3C’s
DOM or similar tree-based APIs. The event-based approach is
particularly superior when processing large XML documentsin a
streaming fashion with minimal memory consumption.

This paper discusses challenges for creating program analyses
for SAX applications. In particular, we consider the problem of
statically guaranteeing that a given SAX program always produces
only well-formed and valid XML output. We propose an analysis
technique based on existing analyses of Servlets, string operations,
and XML graphs.

1. Introduction
Most existing work on providing static guarantees about programs
that manipulate XML documents has concentrated on program-
ming languages or APIs that assume a tree-view of XML doc-
uments. (A survey is presented in [19].) Naturally, this takes on
a high-level view of XML that implies convenient programming
models and permits sophisticated type systems or program analy-
ses. However, many real-world applications are built usinga fun-
damentally different model where XML documents are viewed as
streams of events, as produced by an XML parser encounteringtags
and character data while reading documents left-to-right.For many
applications this model leads to significantly lower memorycon-
sumption although it is often regarded more difficult to program
with. The most well-known event-based framework is SAX [1],
which is based on Java.

The goal is to provide static analysis for SAX, as a step towards
complementing the existing work for tree-based XML transforma-
tion systems. Specifically, we attack the following problems for a
given SAX application:

• if the application produces XML output, is the output guar-
anteed to be well-formed and valid (according to some given
schema)?

• if the input is XML and we have a schema describing the
possible input, how can that schema be exploited to improve
precision of analyses of the Java code?

• if both input and output are XML, does validity of the input
imply validity of the output?

To the extent possible, we wish to solve these problems without
changing the SAX framework. In particular, we avoid imposing sig-
nificant restrictions on the programming style or requiringschema-
based type annotations.

The approach suggested here builds upon existing work on
XML graphs [20], static analysis for the XACT system [14, 12],
analysis for Java Servlets [13], and analysis of string operations in
Java [4]. It would of course be an interesting challenge to instead try

building on alternative techniques, for example regular expression
types [9], but we leave that to others.

Although SAX is widely used, it is often considered a low-
level tool for stream processing XML data. An entirely different
approach is to develop high-level languages that are compiled into
event-based programs and then obtain static guarantees using type
checking on the source code. For example, stream processorscan
be derived from macro forest transducers [21], and TransformX is
a related approach based on extended regular tree grammars [22].
Other related work targets stream processing for XPath [8] or
XQuery [6] and development of new high-level languages, such as
STX [5] and XStream [7], but usually without considering validity
guarantees. Another use of static analysis is to check that aprogram
written in a tree-oriented XML transformation language processes
its input in a linear way that permits streaming [16]. The results
presented here complement the existing work by demonstrating that
static validity analysis is realistic for event-based XML processing
with general purpose languages.

In addition to focusing on the particular problem of analyzing
SAX applications, the issues being raised here in many caseshave
a more general nature where solutions may also be useful for other
program analyses that work on Java code, for example the need
for precise modeling of field variables and conditional statements.
Conversely, it should ideally be possible to develop complex spe-
cialized program analyses, such as this one for SAX, in a compo-
sitional manner from simpler analyses that each focus on onepar-
ticular aspect. Furthermore, the considerations presented here may
(together with our analysis for XSLT [18]) provide inspiration for
developing type checking or static analysis for the domain-specific
event-based XML transformation language STX.

Overview

First, in Section 2, we give a brief introduction to the SAX 2.0
framework, discuss some of the challenges it imposes on static
analysis, and present some simple but typical example programs.
Section 3 outlines a well-formedness and validity analysisof Java
programs that produce SAX events as output, and Section 4 consid-
ers the more difficult problem of reasoning about SAX filters and
relating input schemas with the control-flow and data-flow inthe
program. Section 5 concludes by summarizing the key ideas and
contributions and suggesting future work.

2. The SAX 2.0 Framework and
Challenges for Static Analysis

With SAX 2.0, an XML document is viewed as a stream of events,
the most important being of the following kinds:start docu-
ment, end document, start element, end element, andcharacters.
The most central constituent is theContentHandler interface,
which contains a method for each kind of event. In particular, the
methodstartElement has arguments for the element name, its

1



namespace URI, and the attributes. The latter are represented via
the interfaceAttributes, which allows access to attributes ei-
ther as an ordered list or as a name–value map. Namespace decla-
rations are represented by two additional event handler methods:
startPrefixMapping, which has arguments for the prefix and the
URI of a namespace declaration, andendPrefixMapping, which
marks the end of the scope of a namespace declaration.

XMLReader is an interface for parsers that produce events from,
for example, the textual representation of XML documents. The
XMLWriter class is a simple example of an implementation of
theContentHandler interface that converts in the other direction:
from events to (hopefully well-formed and namespace compliant)
textual XML documents.

A common way to implementContentHandler classes is to
extend the classDefaultHandler, which provides empty event
handlers for all kinds of events.

EXAMPLE 1. Assume that we want to convert a collection ofCard
objects, described by the following class, into an XML stream
representation.

class Card {
int id;
String name;
List<String> emails;
String phone; // null represents "not available"

}

The XML representation is described by the following schema,
cards.xsd (using XML Schema notation):

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:b="http://businesscard.org"
targetNamespace="http://businesscard.org"
elementFormDefault="qualified">

<element name="cards">
<complexType>

<sequence>
<element name="card"

minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>

<element name="name" type="string"/>
<element name="email" type="string"

minOccurs="0"
maxOccurs="unbounded"/>

<element name="phone" type="string"
minOccurs="0"/>

</sequence>
<attribute name="id" type="integer"/>

</complexType>
</element>

</sequence>
</complexType>

</element>

</schema>

The output could be the following sequence of events for a single
Card object:

start document
start prefix mapping ""7→ http://businesscard.org
start elementcards
start elementcard with attributeid=42
start elementname
charactersJohn Doe
end elementname
start elementemail
charactersjohn.doewidget.inc
end elementemail

end elementcard
end elementcards
end prefix mapping ""
end document

This conversion can be achieved with the following method that
generates the appropriate SAX events to aContentHandler
(which may be an instance ofXMLWriter):

void cards2xml(Collection<Card> cards, ContentHandler out)
throws SAXException {

String NS = "http://businesscard.org";
out.startDocument();
out.startPrefixMapping("", NS);
out.startElement(NS, "cards", null,

new AttributesImpl());
for (Card c : cards) {

AttributesImpl empty_attr = new AttributesImpl();
AttributesImpl attr = new AttributesImpl();
attr.addAttribute("", "id", null, null,

Integer.toString(c.id));
out.startElement(NS, "card", null, attr);
out.startElement(NS, "name", null, empty_attr);
out.characters(c.name.toCharArray(),

0, c.name.length());
out.endElement(NS, "name", null);
for (String email : c.emails) {
out.startElement(NS, "email", null, empty_attr);
out.characters(email.toCharArray(),

0, email.length());
out.endElement(NS, "email", null);

}
if (c.phone != null) {
out.startElement(NS, "phone", null, empty_attr);
out.characters(c.phone.toCharArray(),

0, c.phone.length());
out.endElement(NS, "phone", null);

}
out.endElement(NS, "card", null);

}
out.endElement(NS, "cards", null);
out.endPrefixMapping("");
out.endDocument();

}

(We here ignore the QName arguments tostartElement/end-
Element and the type argument toaddAttribute.) The big ques-
tion is: is the output always well-formed, namespace compliant,
and valid relative to the schema? (Unlike the tree-based XML
processing frameworks, not even well-formedness and namespace
compliance are guaranteed here, but in return it consumes a min-
imal amount of memory.) Our program analysis should be able to
automatically verify whether this is indeed the case.

This tiny example already exposes a number of non-trivial chal-
lenges for static analysis:

(1) The analysis must be able to extract an approximation of the
possible sequences of events and transform it into a repre-
sentation that is amendable to checking well-formedness and
validity, preferably with the widely used schema language
XML Schema.

(2) Element names, attribute names, attribute values, namespaces
URIs, and character data all come from, in general, dynamically
computed strings, so the analysis must be capable of reasoning
about string operations in general Java code.

(3) The argument to thecharacters method is a substring that
is given as an interval of a character array – so to obtain good
analysis precision, the character array and the interval bounds
must be tracked collectively by the analysis.

2



(4) TheAttributes interface and its implementing classes must
obtain special treatment to be able to reason about attributes in
the resulting XML documents.

A SAX filter, represented by the interfaceXMLFilter, is a spe-
cialization ofXMLReader that obtains its events from another XML
reader rather than a primary source like a textual XML document.
Thus, a filter is an XML transformation that takes events as input
and produces events as output. Typically, filters are implemented
as subclasses ofXMLFilterImpl, which is both anXMLFilter
and aContentHandler, by itself acting as the identity transfor-
mation. In subclasses ofXMLFilterImpl, events can be modified
by overriding the event handler methods and producing events by
invoking the appropriate event handler methods in the superclass.
This design allows filters to be pipelined to make composite XML
transformations.

EXAMPLE 2. The following filter takes as input a document that is
valid according tocards.xsd (such as, the output from Example 1)
and produces as output a list of thename elements that appear
insidecard elements where aphone element is present:

class NamesFilter extends XMLFilterImpl {
private static final String NS =
"http://businesscard.org";

private boolean is_name, has_phone;
private StringBuffer name;

public NamesFilter() {}

public NamesFilter(XMLReader parent) {
super(parent);

}

public void startElement(String uri, String localName,
String qName, Attributes atts)

throws SAXException {
is_name = localName.equals("name");
if (is_name)

name = new StringBuffer();
if (localName.equals("phone"))

has_phone = true;
}

public void characters(char[] ch, int start,
int length)

throws SAXException {
if (is_name)

name.append(ch, start, length);
}

public void endElement(String uri, String localName,
String qName)

throws SAXException {
if (localName.equals("card") && has_phone) {

AttributesImpl empty_attr = new AttributesImpl();
super.startElement(NS, "name", null, empty_attr);
super.characters(name.toString().toCharArray(),

0, name.length());
super.endElement(NS, "name", null);
has_phone = false;

}
}

}

When executed, this program simultaneously consumes and pro-
duces XML events. (One may argue that programs like this are dif-
ficult to understand, but SAX is nevertheless being used extensively
in practice.)

The filter uses several recurring pattern in SAX programs: First,
field variables are used to correlate events. In this particular pro-
gram, when a start tag is encountered, information about itsname
is stored to be able to determine whether or not character data
is relevant and output should be emitted. Second, the SAX specifi-
cation allows contiguous character data to be reported as several
consecutivecharacters events, so the name data is collected via
a StringBuffer.

The following simple XML Schema type describes the intended
output format:

<complexType name="Names">
<sequence minOccurs="0" maxOccurs="unbounded">

<element name="name" type="string"/>
</sequence>

</complexType>

The big question is now: given that the input to the filter is valid
according tocards.xsd, is the output always valid according to
theNames type?

This example illustrates a number of additional challengesfor the
static analysis:

(5) The control-flow and data-flow clearly depends on the possible
sequences of input events, so in order to reason precisely about
flow, the input schema must be taken into account. In particular,
the following problem must be addressed: Given a schema
(written in XML Schema), we need a representation of the event
sequences that correspond to valid documents, in a way that
can be combined with control/data-flow graphs. Moreover, we
need to consider the possibility of pipelining filters. Do weneed
schema annotations as pre/post conditions at each filter, oris it
possible to reason fully automatically about a whole pipeline?
Fortunately, it appears that filter pipelines are usually fixed at
compile time rather than being assembled dynamically.

(6) Field variables in the filter object are commonly used fortrans-
ferring information between event handler methods, such asthe
two boolean flags and the string buffer in the example above.
The analysis must be able to model such fields flow sensitively
and with strong updating to maintain precision. (More gener-
ally, one could imagine SAX programs that materialize short
event sequences into DOM trees, but that does not appear to be
common in practice.)

(7) The analysis must be path sensitive to properly model theeffect
of the conditional statements in the event handlers. At least, it
cannot disregard boolean operations and simple string compar-
isons.

EXAMPLE 3. The examples shown above are closely connected to
concrete XML languages described by schemas. However, some
SAX filters are more generic. As an example, the following filter
runs on input from any XML language and, allegedly, strips all SAX
events related to “Bookmarks channels”:

public class BookmarksRemover extends XMLFilterImpl {
private boolean stripIt = false;

public void startElement(String uri, String localName,
String qName, Attributes atts)

throws SAXException {
if (qName.equals("channel")) {
String name = atts.getValue("name");
if (name != null && name.equals("Bookmarks"))

stripIt = true;
}
if (!stripIt)
super.startElement(uri, localName, qName, atts);

}

3



schema
output

SAX
program

input
schema

program that
prints to an

output stream graph
flow 
graph

context−free
grammar

XML validity
analysis
result

Sec. 4

method specialization

Sec. 3

Figure 1. Structure of the analysis. The dashed box contains parts that are described in earlier papers [13, 12].

public void endElement(String uri, String localName,
String qName)

throws SAXException {
if (!stripIt)

super.endElement(uri, localName, qName);
if (stripIt && qName.equals("channel"))

stripIt = false;
}

public void characters(char[] ch, int start,
int length)

throws SAXException {
if (!stripIt)

super.characters(ch, start, length);
}

}

(This is a condensed version of some program code found at
uportal.org.) In SAX programs like this where schemas are not
available, our program analysis will focus on well-formedness, in
particular on balancing of start and end tags in the output. In this
case, however, well-formedness may fail for some input, which we
return to in Section 4.

It should be evident from the discussions above that developing
a high-precision static analyzer for SAX applications is a consider-
able task with plenty of obstacles. Nevertheless, the situation is far
from hopeless: First, SAX applications tend to be fairly small, at
least if slicing away code that is not directly related to producing or
consuming events. Second, as argued in the following, many of the
challenges seem closely related to problems that have been attacked
by other program analysis techniques in the past, and otherscan be
viewed as inspiration for developing new analysis techniques for
general Java programs.

3. Analyzing SAX Event Producers
As a modest first step, we will focus on programs that onlyproduce
SAX events, like Example 1.

This problem is remarkably close to analyzing the output of
applications built with Java Servlets, which is the topic ofthe
paper [13] and described briefly below. (See also the relatedwork
by Minamide and Tozawa [17].) With servlets, output is generated
by printing strings to an output stream in a way that hopefully
results in well-formed and valid XML documents. To reason about
generation of SAX events instead, the idea is simply to treatevent
generation, for exampleendElement(..., "E", ...) (let us
for now ignore namespaces), as an alternative way of writingthe
string </E> to a servlet-like output stream. If we slightly rewrite
Example 1 in this way by outputting strings to aPrintWriter
stream rather than outputting events to aContentHandler, the
connection to servlet analysis becomes obvious:

void cards2xml(Collection<Card> cards, PrintWriter out) {
out.print("<cards>");
for (Card c : cards) {

out.print("<card id=\""+Integer.toString(c.id)+">");
out.print("<name>");
out.print(escapeXML(c.name));
out.print("</name>");
for (String email : c.emails) {
out.print("<email>");
out.print(escapeXML(email));
out.print("</email>");

}
if (c.phone != null) {
out.print("<phone>");
out.print(escapeXML(phone));
out.print("</phone>");

}
out.print("</card>");

}
out.print("</cards>");

}

(We here use a methodescapeXML for escaping the special XML
characters,<, &, etc.) In other words, the key idea is to translate the
SAX event generation method invocations into servlet-likestream
printing commands and then apply the existing analysis. In fact,
the situation is in a way simpler than in the general servlet anal-
ysis since output here always comes in entire tags rather than in
individual characters. (Technically, some of the grammar transfor-
mation steps in [13] then become superfluous.) Building on string
analysis [4], the servlet analysis is already capable of reasoning
about the possible values of dynamically computed strings,so we
already have a grip on challenges (1) and (2) from Section 2.

Hence, our approach is to reduce the problem of analyzing SAX
event producers to string analysis and servlet analysis. The follow-
ing sections describe the reduction in more detail. The structure of
the analysis is illustrated in Figure 1.

3.1 Analysis of String Operations

The Java String Analyzer, as presented in [4], works by first ex-
tracting an abstract flow graph from the given Java program, and
then converting that into a context-free grammar (extendedwith a
suitable collection of additional string operations). Finally, regular
approximations are applied to obtain, for each program point of in-
terest, a finite-state automaton whose language approximates the
set of strings that may appear at runtime.

The existing string analysis tool has some well-known limi-
tations regarding precision, but recent work [3, 10] shows that it
can smoothly be extended with standard techniques for better heap
modeling [2] and context sensitivity [23].

As an example, the string analyzer provides the informationthat
the possible values of the expressionInteger.toString(c.id)
in Example 1 are described by the regular expression

4



CHARDATA

</card>

</cards>

</email>

CHARDATA

CHARDATA

cards2xml

<card id="INT">

<cards>

<name>

</name>

<email>

<phone>

</phone>

Figure 2. Flow graph for Example 1.

0|-?[1-9][0-9]* (or rather, an equivalent automaton), which
eventually will allow the remaining analysis to verify validity of
the generatedid attributes. In fact, the analyzer will also point out
that the values of thename, email, andphone fields can beany
strings, including characters, such as Unicode code point 0, that
are not allowed in XML documents, so the resulting output will in
this case not be well-formed XML, which the subsequent output
stream analysis will report. (In this particular case, the actual possi-
ble values of those strings will presumably be more well behaved.
This can be controlled by the programmer using a type annotation
feature in the string analyzer.)

3.2 Analysis of String-based Output Streams

The overall structure of the analysis of output streams, as presented
in [13], is as follows. First, it runs the string analyzer to obtain a
regular language for all string expressions that appear as arguments
to operations that print to the output stream. Based on theseregular
languages, aflow graph is constructed for modeling the order of
output stream operations and their arguments. The flow graphis di-
vided into fragments corresponding to the methods in the program.
Edges represent control flow, and nodes have the following kinds:

• append nodes describe operations that output strings to the
stream (where the possible strings are represented by au-
tomata);

• invoke nodes describe method invocations and are labeled with
the possible targets;

• return nodes describe method exits1; and

• nop nodes correspond to flow join points.

1 In [13], return nodes are defined as a special kind ofnop nodes.

CHOICE

SEQ SEQ

card

SEQ

CHOICEnameid

SEQ SEQ

email

CHOICE

SEQ phone

cards

ANY

ANYINT

ANY

1 2

1
2 3 4

1 2

Figure 3. XML graph for Example 1.

As an example, the flow graph for the program from Example 1
is shown in Figure 2. The circles arenop nodes, the diamond is
a return node, and the rounded boxes areappend nodes where
INT is the regular language of integer literals from Section 3.1and
CHARDATA represents arbitrary character data.

The flow graph is then transformed straightforwardly into a
context-free grammar whose language approximates the possible
output of running the program.

The next phase of the analysis checks that all strings in the
language of the grammar are well-formed XML documents. This
is done in three steps: First, the grammar is converted to a bal-
anced grammar (treating the tag delimiters< and </ as left and
right parentheses, respectively) using a modified version of Knuth’s
algorithm [15]. Second, the balanced grammar is converted to a
grammar on tag-form, if possible. (If not, then there are non-
well-formed documents in the language.) A grammar on tag-form
clearly shows the XML element tags and attributes that appear in
the derivable strings. Third, it is checked that these tags and at-
tributes satisfy the requirements for XML well-formedness(and
namespace compliance).

If the well-formedness check is passed, the last phase of the
analysis converts the grammar to an XML graph [20] (also called a
summary graphin earlier papers). The XACT project [12] provides
an algorithm for checking language inclusion between an XML
graph and a schema written in XML Schema, which gives the final
step to checking validity.

For the output stream version of Example 1, the analysis will
infer the XML graph shown in Figure 3 using the graphical notation
explained in [20, 13]. As this example indicates, there are different
kinds of nodes in XML graphs:elementnodes,attribute nodes,
text nodes,sequencenodes, andchoicenodes. (See [20, 13] for a
more formal description.) Thetext nodeINT is, again, the regular
language for integer literals, andANY is the set of all Unicode
strings (including special characters such as<).

3.3 Considerations Regarding Analysis Precision

The analysis is conservative: the language of the XML graph being
produced contains all XML documents that may be output at run-

5



time. Since SAX is based on a Turing complete language, spurious
errors are inevitable. Naturally, the programming style influences
the precision of the analysis. As an example of a potential source
of imprecision, element name strings can be computed dynamically
and used for producing events in the following style:

String x = ...;
out.startElement(..., x, ..., ...);
out.endElement(..., x, ..., ...);

The existing string analysis may be able to find out that the
only possible values ofx are, say,A and B, but to avoid spuri-
ous well-formedness warnings it is necessary to be able to deter-
mine and exploit the fact thatx always has the same value when
startElement and endElement are invoked. One approach to
achieve this is to augment the context-free grammars being pro-
duced with knowledge about such string identities and take that
into account when performing the well-formedness checkingstep.
In casex has finitely many possible values, another approach is to
copy the flow graph fragments to perform a polyvariant analysis of
the relevant program parts.

A related hypothetical challenge is path sensitive output:

if (b)
out.startElement(..., "E", ..., ...);

...
if (b)

out.endElement(..., "E", ..., ...);

Arguing that the start and end tags are balanced in the outputhere
involves reasoning about modifications ofb between the two con-
ditionals, which is beyond the capabilities of the current analysis.

Furthermore, heuristic method inlining or related techniques
may be necessary when analyzing programs that use wrappers for
the event generators, such as this one:

void open(String tag) throws SAXException {
out.startElement(NS, tag, null, new AttributesImpl());

}

We return to some of these issue in Section 4 and leave others to
future work. Results in this direction may also be useful forother
program analyses that are based on XML graphs [20]. Nevertheless,
a small study of existing SAX programs indicates that the basic
analysis presented above often appears to be sufficient in practice,
regarding validation of element structure [11].

3.4 Remaining Issues

As explained above, the two main challenges (1) and (2) from Sec-
tion 2 are handled via the string analysis and the servlet analysis.
An implementation based on this will be able to catch errors related
to, in particular, the structure of elements in the output. However,
we are in a good position to also address namespaces, character
data, and attributes, despite their peculiarities in SAX.

Namespaces

Namespace events can be handled by treatingstartPrefix-
Mapping andendPrefixMapping as generating special tags, such
as,<:P: ns="N"> and</:P:> for prefix P and namespace URI
N, and then – at the level of XML graphs – transform this into
ordinary namespace mappings. However, for elements with mul-
tiple namespace declarations, the SAX specification allowsthe
invocations ofendPrefixMapping to come in any order, so the
analysis might need to reorder them to match the the invocations of
startPrefixMapping.

Character Data

Regarding the character array intervals, i.e. challenge (3), the fol-
lowing observations have been made on a small collection of SAX

programs [11]: First, the typical case where a string is converted
into a character array interval (as in Example 1) is easily recog-
nized and modeled with flow graphs. Second, most other charac-
ter array intervals come as arguments in thecharacters event
handler method in filters or content handlers, and in these cases
it is unlikely that any integer operations are performed on the in-
terval end points or that the array content is modified. This means
that it appears to be sufficient to track character array intervals that
flow unmodified from arguments in thecharacters event handler
method to arguments in the event construction method.

Attributes

Regarding construction of objects of typeAttributes, i.e. chal-
lenge (4), we concentrate the effort on the standard implementing
classAttributesImpl as other implementations are uncommon.
If furthermore only considering the basic methodsaddAttribute
and clear, then these objects can be represented as finite maps
from attribute names to attribute values where both are modeled as
regular languages.

4. Analyzing SAX Event Consumers
To reason about applications that consume SAX events, such as
content handlers or filters like Examples 2 and 3, the main problem
is how to incorporate the schemas that describe the possibleinput
(challenge (5) in Section 2).

The key idea for attacking this problem is to translate the input
schema into program code that corresponds to the possible events
being generated by a SAX parser reading valid input. This code
then acts as a “main” method that invokes the appropriate event
handlers. The combined program – consisting of this main method
and the actual code to be analyzed – is then processed as described
in the previous section. In other words, our strategy is to reduce the
problem of reasoning about filters that both consume and produce
events to reasoning about programs that only produce events.

When analyzing generic filters, such asBookmarksResolver
from Example 3 where no schemas are available, it can still be
useful to verify well-formedness of the output. A simple approach
to do this is to just supply a default input schema corresponding to
every possible event sequence.

4.1 Converting Schemas to Event Producer Code

The XACT project provides a translation from schemas written in
XML Schema into XML graphs [12, 20]. For instance, the XML
graph being generated for the schemacards.xsd from Section 2
is essentially the one shown in Section 3.2 (except that theid at-
tributes are optional in the schema and XML Schemaxsi attributes
are permitted). Each node in the XML graph is then translatedinto
a Java method as follows:

• An elementnode results in a method that first callsstart-
Element, then it calls the method that corresponds to its content
node, and finally it callsendElement.

• A sequencenode, which has a sequence of successor nodes,
becomes a method that calls each of the corresponding methods
in order.

• A choicenode, which has a set of successor nodes, is modeled
by nondeterministically invoking the corresponding methods.

(We defer the modeling ofattributeandtext nodes to Section 4.4.)
For the root node we add an extra method calledmain, which first
callsstartDocument then the method corresponding to its content
node and finallyendDocument.

The regular languages being used in XML graphs for describ-
ing element names, attribute names, attribute values, and character

6



data can be represented by an operationreg(r) that nondetermin-
istically returns a string from a given regular languager (although
the languages are mostly singletons). Also, we allow the boolean
expression? that nondeterministically evaluates totrue or false.

The translation has the property that the set of event sequences
corresponding to XML documents that are valid according to the
schema coincides with the event sequences that can be generated
from the Java code.

Continuing the examples, the schemacards.xsd is con-
verted into the following code (again, ignoring namespacesand
attributes):

void main() {
startDocument();
element1();
endDocument();

}

void element1() {
startElement(..., "cards", ...);
choice1();
endElement(..., "cards", ...);

}

void choice1() {
if (?)
seq1();

else
seq2();

}

void seq1() {
}

void seq2() {
element2();
choice1();

}

void element2() {
startElement(..., "email", ..., ...);
choice1();
endElement(..., "email", ..., ...);

}

...

We can now combine this with the filter code, such as the
NamesFilter class from Example 2, resulting in a program that
produces – but no longer consumes – SAX events. This program
can now be analyzed as in Section 3. The precision of this analysis
will not be acceptable, however, since we have not yet addressed
challenges (6) and (7), which are the topic of the next section.

4.2 Method Specialization

Since a filter has all start element event handling combined into one
single method,startElement – and similarly forendElement,
these methods need to be analyzed polyvariantly. (One mightargue
that an alternative design of SAX using one event handler method
per element name would have been more manageable for the pro-
grammers – and it would allow us to simplify this step in the anal-
ysis.)

To model field variables, we can take advantage of a pattern
that appears to be common in SAX filters: The fields that are
relevant for well-formedness and validity are typically booleans
that are modified only from inside the filter (often they are declared
private), and by only one thread. This means that each field can
be modeled flow sensitively as a global variable.

Inspired by Whaley and Lam [25], we propose to obtain context
sensitivity by cloning methods for every context of interest and
running a context insensitive analysis over the expanded program
code to weed out infeasible paths, thereby specializing therelevant
methods in the program:

(1) First, extract a finite collection ofelement names(or, in case
of wildcards, regular sets of names), for example those being
declared by the input schema, and a collection offlag variables,
for example those that are declared as private boolean fieldsin
the filter class.

(2) Now clone thestartElement, endElement, andcharacters
event handler methods in the filter class such that we have one
copy for each combination of an element name and valuation of
the flag variables.2 Each invocation of one of these methods is
changed into a nondeterministic choice of the new copies.

(3) Finally, we are in a position to perform interproceduralcon-
stant propagation and eliminate unreachable code (that is,con-
ditional branches whose guards are constantlyfalse) as in the
Conditional Constantalgorithms by Wegman and Zadeck [24].
The constant propagation is path sensitive: it takes simplecom-
parisons on booleans and strings into account. The flag vari-
ables are initialized in themain method as done in the filter
class (for example,stripIt from BookmarksRemover is ini-
tialized tofalse).

This results in specialized versions of the methods depending
on their invocation context, and it eliminates infeasible control
flow at invocation sites.

For the schemacards.xsd and theNamesFilter class from
Example 2, we extract the element names{cards, card, name,
email, phone} and the flag variables{is_name, has_phone}.
(Note that extracting imprecise collections here may affect per-
formance and precision of the analysis but not soundness.) This
means that 20 copies of thestartElement method are considered
(although 15 of them are subsequently eliminated as unreachable
code):

public void startElement[localName="card",
is_name=false,
has_phone=false](...) {

is_name = localName.equals("name");
if (is_name)

name = new StringBuffer();
if (localName.equals("phone"))

has_phone = true;
}

public void startElement[localName="name",
is_name=false,
has_phone=false](...) {

is_name = localName.equals("name");
if (is_name)

name = new StringBuffer();
if (localName.equals("phone"))

has_phone = true;
}

public void startElement[localName="phone",
is_name=false,
has_phone=false](...) {

is_name = localName.equals("name");
if (is_name)

name = new StringBuffer();
if (localName.equals("phone"))

2 A lazy evaluation strategy can be used to avoid explicitly producing all
possible combinations.

7



has_phone = true;
}

...

(The methods are here written with augmented method names and
without theSAXExceptions.) After the constant propagation and
unreachable code elimination, the methods have been specialized:

public void startElement[localName="card",
is_name=false,
has_phone=false](...) {

is_name = false;
}

public void startElement[localName="name",
is_name=false,
has_phone=false](...) {

is_name = true;
name = new StringBuffer();

}

public void startElement[localName="phone",
is_name=false,
has_phone=false](...) {

is_name = false;
has_phone = true;

}

...

When we now run the well-formedness and validity analysis as
in Section 3, precision is sufficient for theNamesFilter and
BookmarksRemover examples. In fact, forNamesFilter, special-
izing with respect to only the element names is sufficient, whereas
correctness ofBookmarksRemover also depends on the flag vari-
ables. Applying the method specialization onBookmarksRemover
using a dummy input schema results in the following methods,
among others:

public void startElement[qName="channel",
stripIt=false](...) {

if (?)
stripIt = true;

if (!stripIt)
super.startElement(..., "channel", ...);

}

public void startElement[qName="channel",
stripIt=true](...) {

if (?)
stripIt = true;

if (!stripIt)
super.startElement(..., "channel", ...);

}

public void endElement[qName="channel",
stripIt=false](...) {

super.endElement(..., "channel");
}

public void endElement[qName="channel",
stripIt=true](...) {

stripIt = false;
}

...

Running the analysis from Section 3 on this code reveals thatit may
produce output that is not well-formed (that is, start and end tags

are not balanced); indeed, the program only runs correctly under
the assumption thatchannel elements are not nested.

The success of this method specialization approach depends
on several assumptions discussed in earlier sections. In particular,
SAX programs that involve many flag variables may lead to a
blow-up in program size, and reasoning about well-formedness
and validity may be more intricate, requiring more sophisticated
techniques than focusing only on element names and flag variables.
Still, according to the small study mentioned before [11], SAX
programs tend to follow the patterns covered by the approach
suggested here.

4.3 Filter Pipelines

Let us now return to the issue of pipelines of filters. Pipelines can
be handled rather elegantly through the use of XML graphs for
modeling both input and output of individual filters. Assumethat
we have a pipeline consisting ofn filters,F1, . . . , Fn, a schemaS0

describing the initial input, and a schemaSn describing the final
output. We now run the analysis ofF1 usingS0 as input schema,
which gives us an XML graphX1 describing the possible output
of the first filter. Rather than requiring a schema for describing
the possible input ofF2 we may now simply bypass that step and
use X1 for the purpose (recall from Section 4.1 that the input
schema is converted via an XML graph anyway). This process is
repeated until the last filter,Fn, whose output XML graphXn is
compared against the schemaSn. Thus, the analysis is inherently
compositional, assuming that the filter pipeline is known statically.

For instance, this would allow us to check validity of the output
of pipelining Example 1 and Example 2:

cards2xml NamesFilterobjects
Card

XML data
Names

.

As an alternative (or supplementary) strategy we could annotate
each intermediate pipeline stage with a schema, much like the use
of optional schema annotations in XACT [12].

4.4 Remaining Issues

The previous sections have focused on the most central aspect of
XML well-formedness and validity: the structuring of element tags.
Extending the analysis to also model character data events and
attributes is less elegant due to the peculiarities of SAX.

Character data is represented bytext nodes in the XML graphs.
In the conversion to event producer code, atext node labeled with
a regular language describing the possible values can be converted
into an invocation of thecharacters method. However, since con-
tiguous character data in SAX may be reported as multiple events
as mentioned earlier, onetext node must be converted into a loop
containing an invocation ofcharacters labeled withall possi-
ble substringsof the character data in order to preserve soundness.
Clearly, this will incur a loss of precision in some cases. A possible
way around that could be to identify occurrences of the pattern used
in Example 2 for collecting the substrings in aStringBuffer and
for these cases directly model theseStringBuffers as the regu-
lar languages from thetext nodes. Again, experiments will show
whether this suffices in practice.

To model attributes, we need a way of convertingattribute
nodes in XML graphs into additional information on invocations
of startElement. This is naturally connected to the discussion of
theAttributes interface in Section 3.4, and we leave this aspect
of the analysis to future work.

8



5. Conclusion
We have exposed the challenges that must be tackled in order to
provide static analysis of event-based XML processing applications
that use general purpose programming languages. Concretely, this
paper has focused on SAX. The challenges include reasoning about
sequences of SAX events both as input and as output, flow sensitive
string computations, attribute maps, and field variables inJava.

In addition to discussing the challenges, we have outlined a
strategy for a particular program analysis that may serve asa
starting point. To summarize, the key ideas suggested here are the
following, which build on top of the existing program analysis
technique for Java Servlets and XACT:

• producers of SAX events can be modeled via a translation into
string-based output stream operations (Section 3); and

• SAX filters can be modeled by a reduction to event producers
via a translation from XML schemas to program code that
simulates the possible events, together with cloning-based path
sensitive method specialization (Section 4).

Besides fitting naturally with the existing analysis techniques, the
use of XML graphs for representing sets of XML documents makes
the analysis inherently compositional, making it capable of also
handling filter pipelines.

The next step is to implement the central parts of the analysis
and evaluate the performance and precision on real SAX applica-
tions to be able to prioritize the efforts on the remaining challenges.
Some progress in this direction is reported in the master’s thesis by
Jacobsen [11]. This includes an implementation of a simplified ver-
sion of the conversions from SAX event producers to servletsand
from schemas to flow graphs, and additionally a preliminary study
of SAX programs found on the web, which has confirmed the as-
sumptions made in this paper about how SAX is typically being
used. Larger case studies and a complete implementation, however,
remain as future work. Another interesting direction is to consider
well-formedness and validity analyses for other event-based XML
frameworks, in particular STX [5].

References
[1] David Brownell. SAX2. O’Reilly & Associates, January 2002.

[2] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis
of pointers and structures. InProc. ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’90, June
1990.

[3] Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-Goo Doh.
A practical string analyzer by the widening approach. InProc.
4th Asian Symposium on Programming Languages and Systems,
APLAS ’06, November 2006.

[4] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach.
Precise analysis of string expressions. InProc. 10th International
Static Analysis Symposium, SAS ’03, volume 2694 ofLNCS, pages
1–18. Springer-Verlag, June 2003.

[5] Petr Cimprich et al. Streaming transformations for XML (STX).
Working Draft, April 2007.

[6] Daniela Florescu, Chris Hillery, Donald Kossmann, PaulLucas, Fabio
Riccardi, Till Westmann, Michael J. Carey, and Arvind Sundararajan.
The BEA streaming XQuery processor.VLDB Journal, 13(3):294–
315, 2004.

[7] Alain Frisch and Keisuke Nakano. Streaming XML transformation
using term rewriting. Presented at Programming Language Technolo-
gies for XML, PLAN-X ’07.

[8] Ashish Kumar Gupta and Dan Suciu. Stream processing of XPath
queries with predicates. InProc. ACM SIGMOD International
Conference on Management of Data, SIGMOD ’03, June 2003.

[9] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically
typed XML processing language.ACM Transactions on Internet
Technology, 3(2):117–148, 2003.

[10] Bárður Háskor. Analysis of string expressions. Master’s thesis,
Department of Computer Science, University of Aarhus, 2007.

[11] Anders Jacobsen. Analyse af SAX applikationer. Master’s thesis,
Department of Computer Science, University of Aarhus, 2007. (In
Danish).

[12] Christian Kirkegaard and Anders Møller. Type checkingwith XML
Schema in XACT. Technical Report RS-05-31, BRICS, 2005.
Presented at Programming Language Technologies for XML, PLAN-
X ’06.

[13] Christian Kirkegaard and Anders Møller. Static analysis for Java
Servlets and JSP. InProc. 13th International Static Analysis
Symposium, SAS ’06, volume 4134 ofLNCS. Springer-Verlag, August
2006. Full version available as BRICS RS-06-10.

[14] Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach.
Static analysis of XML transformations in Java.IEEE Transactions
on Software Engineering, 30(3):181–192, March 2004.

[15] Donald E. Knuth. A characterization of parenthesis languages.
Information and Control, 11:269–289, 1967.

[16] Koichi Kodama, Kohei Suenaga, and Naoki Kobayashi. Translation of
tree-processing programs into stream-processing programs based on
ordered linear type. InProc. 2nd Asian Symposium on Programming
Languages and Systems, APLAS ’04, November 2004.

[17] Yasuhiko Minamide and Akihiko Tozawa. XML validation for
context-free grammars. InProc. 4th Asian Symposium on Program-
ming Languages and Systems, APLAS ’06, November 2006.

[18] Anders Møller, Mads Østerby Olesen, and Michael I. Schwartzbach.
Static validation of XSL Transformations.ACM Transactions on
Programming Languages and Systems, 29(4), July 2007.

[19] Anders Møller and Michael I. Schwartzbach. The design space of
type checkers for XML transformation languages. InProc. 10th
International Conference on Database Theory, ICDT ’05, volume
3363 ofLNCS, pages 17–36. Springer-Verlag, January 2005.

[20] Anders Møller and Michael I. Schwartzbach. XML graphs in program
analysis. InProc. ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, PEPM ’07, January 2007.

[21] Keisuke Nakano and Shin-Cheng Mu. A pushdown machine for
recursive XML processing. InProc. 4th Asian Symposium on
Programming Languages and Systems, APLAS ’06, volume 4279
of LNCS. Springer-Verlag, November 2006.

[22] Stefanie Scherzinger and Alfons Kemper. Syntax-directed trans-
formations of XML streams. Presented at Programming Language
Technologies for XML, PLAN-X ’05.

[23] Micha Sharir and Amir Pnueli. Two approaches to interprocedural
dataflow analysis. InProgram Flow Analysis: Theory and Applica-
tions, pages 189–233. Prentice-Hall, 1981.

[24] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches.ACM Transactions on Programming Languages
and Systems, 12(2):181–210, 1991.

[25] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. InProc.
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’04, June 2004.

9


