Static Analysisfor Event-Based XML Processing

Anders Mgller

Department of Computer Science
University of Aarhus

amoeller@brics.dk

Abstract

Event-based processing of XML data — as exemplified by the pop
ular SAX framework — is a powerful alternative to using W3C's
DOM or similar tree-based APIls. The event-based approach is
particularly superior when processing large XML documents
streaming fashion with minimal memory consumption.

This paper discusses challenges for creating program semly
for SAX applications. In particular, we consider the probl®f
statically guaranteeing that a given SAX program alwaysipoes
only well-formed and valid XML output. We propose an anadysi
technique based on existing analyses of Servlets, striagatipns,
and XML graphs.

1. Introduction

Most existing work on providing static guarantees abougmms
that manipulate XML documents has concentrated on program-
ming languages or APIs that assume a tree-view of XML doc-
uments. (A survey is presented in [19].) Naturally, thisemlon

a high-level view of XML that implies convenient programmin
models and permits sophisticated type systems or prograhy-an
ses. However, many real-world applications are built usirfign-
damentally different model where XML documents are viewsd a
streams of events, as produced by an XML parser encountzgsg
and character data while reading documents left-to-rigbt.many
applications this model leads to significantly lower memoon-
sumption although it is often regarded more difficult to peog
with. The most well-known event-based framework is SAX [1],
which is based on Java.

The goal is to provide static analysis for SAX, as a step tdaar
complementing the existing work for tree-based XML transfa-
tion systems. Specifically, we attack the following probéefor a
given SAX application:

e if the application produces XML output, is the output guar-
anteed to be well-formed and valid (according to some given
schema)?

e if the input is XML and we have a schema describing the
possible input, how can that schema be exploited to improve
precision of analyses of the Java code?

¢ if both input and output are XML, does validity of the input
imply validity of the output?

To the extent possible, we wish to solve these problems witho
changing the SAX framework. In particular, we avoid impaséig-
nificant restrictions on the programming style or requirgatpema-
based type annotations.

The approach suggested here builds upon existing work on
XML graphs [20], static analysis for the AT system [14, 12],
analysis for Java Servlets [13], and analysis of string @ipans in
Java [4]. It would of course be an interesting challengedteiad try

building on alternative techniques, for example regulgregsion
types [9], but we leave that to others.

Although SAX is widely used, it is often considered a low-
level tool for stream processing XML data. An entirely diffat
approach is to develop high-level languages that are cedhpito
event-based programs and then obtain static guaranteestype
checking on the source code. For example, stream procesaors
be derived from macro forest transducers [21], and Transfois
a related approach based on extended regular tree gramaears [
Other related work targets stream processing for XPath [8] o
XQuery [6] and development of new high-level languageshas
STX[5] and XStream [7], but usually without consideringidétly
guarantees. Another use of static analysis is to check thratgam
written in a tree-oriented XML transformation language qgasses
its input in a linear way that permits streaming [16]. Theults
presented here complement the existing work by demonsgrtiat
static validity analysis is realistic for event-based XMiogessing
with general purpose languages.

In addition to focusing on the particular problem of anafhggi
SAX applications, the issues being raised here in many deses
a more general nature where solutions may also be usefuttier o
program analyses that work on Java code, for example the need
for precise modeling of field variables and conditional esta¢nts.
Conversely, it should ideally be possible to develop compiee-
cialized program analyses, such as this one for SAX, in a ceamp
sitional manner from simpler analyses that each focus orpane
ticular aspect. Furthermore, the considerations predemes may
(together with our analysis for XSLT [18]) provide inspiat for
developing type checking or static analysis for the donsgieeific
event-based XML transformation language STX.

Overview

First, in Section 2, we give a brief introduction to the SAX02.
framework, discuss some of the challenges it imposes oit stat
analysis, and present some simple but typical example anagr
Section 3 outlines a well-formedness and validity analg$idava
programs that produce SAX events as output, and Sectiongidton
ers the more difficult problem of reasoning about SAX filtensl a
relating input schemas with the control-flow and data-flovthie
program. Section 5 concludes by summarizing the key ideds an
contributions and suggesting future work.

2. The SAX 2.0 Framework and
Challengesfor Static Analysis

With SAX 2.0, an XML document is viewed as a stream of events,
the most important being of the following kindstart docu-
ment end documentstart elementend elementand characters
The most central constituent is tf®ntentHandler interface,
which contains a method for each kind of event. In partiGutas
methodstartElement has arguments for the element name, its

namespace URI, and the attributes. The latter are repezberd
the interfaceAttributes, which allows access to attributes ei-

ther as an ordered list or as a name—value map. Namespaee decl end prefix mapping

rations are represented by two additional event handlehoaist
startPrefixMapping, which has arguments for the prefix and the
URI of a namespace declaration, astiPrefixMapping, which
marks the end of the scope of a namespace declaration.

XMLReader is an interface for parsers that produce events from,
for example, the textual representation of XML documentse T
XMLWriter class is a simple example of an implementation of
theContentHandler interface that converts in the other direction:
from events to (hopefully well-formed and namespace coemp)i
textual XML documents.

A common way to implementontentHandler classes is to
extend the claspefaultHandler, which provides empty event
handlers for all kinds of events.

ExamMPLE 1. Assume that we want to convert a collectiorcakd
objects, described by the following class, into an XML strea
representation.

class Card {
int id;
String name;
List<String> emails;
String phone; // null represents "not available"

}

The XML representation is described by the following schema
cards.xsd (using XML Schema notation):

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:b="http://businesscard.org"
targetNamespace="http://businesscard.org"
elementFormDefault="qualified">

<element name="cards">
<complexType>
<sequence>
<element name="card"

minOccurs="0" maxOccurs="unbounded">

<complexType>
<sequence>
<element name="name" type="string"/>
<element name="email" type="string"

minOccurs="0"
max0Occurs="unbounded" />
name="phone" type="string"
minOccurs="0"/>
</sequence>
<attribute name="id" type="integer"/>
</complexType>
</element>
</sequence>
</complexType>
</element>

<element

</schema>

The output could be the following sequence of events forglesin
Card object:

start document
start prefix mapping
start elementards
start elementard with attribute id=42
start elemenhame

charactersJohn Doe

end elemenhame

start elementmail
charactersjohn.doewidget . inc

end elemenémail

+— http://businesscard.org

end elementard
end elementards

end document

This conversion can be achieved with the following methad th
generates the appropriate SAX events toC@ntentHandler
(which may be an instance dMLwriter):

void cards2xml(Collection<Card> cards, ContentHandler out)
throws SAXException {
String NS = "http://businesscard.org";
out.startDocument () ;
out.startPrefixMapping("", NS);
out.startElement (NS, "cards", null,
new AttributesImpl());
for (Card c : cards) {
AttributesImpl empty_attr = new AttributesImpl();
AttributesImpl attr = new AttributesImpl();
attr.addAttribute("", "id", null, null,
Integer.toString(c.id));
out.startElement (NS, "card", null, attr);
out.startElement (NS, "name", null, empty_attr);
out.characters(c.name.toCharArray(),
0, c.name.length());
out.endElement (NS, "name", null);
for (String email : c.emails) {
out.startElement (NS, "email", null, empty_attr);
out.characters(email.toCharArray(),
0, email.length());
out.endElement (NS, "email", null);
}
if (c.phone != null) {
out.startElement (NS, "phone", null, empty_attr);
out.characters(c.phone.toCharArray(),
0, c.phone.length());
out.endElement (NS, "phone", null);
¥
out.endElement (NS,
}
out.endElement (NS, "cards", null);
out.endPrefixMapping("");
out.endDocument () ;

}

"card", null);

(We here ignore the QName argumentsstartElement/end-
Element and the type argument taddAttribute.) The big ques-
tion is: is the output always well-formed, namespace caampli
and valid relative to the schema? (Unlike the tree-based XML
processing frameworks, not even well-formedness and meoes
compliance are guaranteed here, but in return it consumesna m
imal amount of memory.) Our program analysis should be able t
automatically verify whether this is indeed the case.

This tiny example already exposes a number of non-trivial-ch
lenges for static analysis:

(1) The analysis must be able to extract an approximatiomef t
possible sequences of events and transform it into a repre-
sentation that is amendable to checking well-formedness an
validity, preferably with the widely used schema language
XML Schema.

(2) Element names, attribute names, attribute values, sipaces
URIs, and character data all come from, in general, dyndiyica
computed strings, so the analysis must be capable of rewsoni
about string operations in general Java code.

(3) The argument to theharacters method is a substring that
is given as an interval of a character array — so to obtain good
analysis precision, the character array and the intervahts
must be tracked collectively by the analysis.

(4) TheAttributes interface and its implementing classes must
obtain special treatment to be able to reason about atshnot
the resulting XML documents.

A SAX filter, represented by the interfag®LFilter, is a spe-
cialization ofXMLReader that obtains its events from another XML
reader rather than a primary source like a textual XML docoime
Thus, a filter is an XML transformation that takes events asiin
and produces events as output. Typically, filters are implaed
as subclasses GMLFilterImpl, which is both anXMLFilter
and aContentHandler, by itself acting as the identity transfor-
mation. In subclasses aMLFilterImpl, events can be modified
by overriding the event handler methods and producing evient
invoking the appropriate event handler methods in the saless.
This design allows filters to be pipelined to make composité.X
transformations.

ExAMPLE 2. The following filter takes as input a document that is
valid according tccards . xsd (such as, the output from Example 1)
and produces as output a list of theme elements that appear
insidecard elements where phone element is present:

class NamesFilter extends XMLFilterImpl {
private static final String NS =
"http://businesscard.org";

private boolean is_name, has_phone;
private StringBuffer name;

public NamesFilter() {}
public NamesFilter (XMLReader parent) {

super (parent) ;

public void startElement(String uri, String localName,
String qName, Attributes atts)
throws SAXException {

is_name = localName.equals("name");
if (is_name)
name = new StringBuffer();

if (localName.equals("phone"))
has_phone = true;

}

public void characters(char[] ch, int start,
int length)
throws SAXException {
if (is_name)
name.append(ch, start, length);
}

public void endElement(String uri, String localName,
String gName)
throws SAXException {
if (localName.equals("card") && has_phone) {
AttributesImpl empty_attr = new AttributesImpl();
super.startElement (NS, "name", null, empty_attr);
super.characters (name.toString() .toCharArray(),
0, name.length());
super.endElement (NS, "name", null);
has_phone = false;
}
}
}

When executed, this program simultaneously consumes and pr
duces XML events. (One may argue that programs like thisi&re d
ficult to understand, but SAX is nevertheless being usedsxedy

in practice.)

The filter uses several recurring pattern in SAX programsstri
field variables are used to correlate events. In this patticyro-
gram, when a start tag is encountered, information aboutése
is stored to be able to determine whether or not characteadat
is relevant and output should be emitted. Second, the SAcffispe
cation allows contiguous character data to be reported assa
consecutiveeharacters events, so the name data is collected via
aStringBuffer.

The following simple XML Schema type describes the intended
output format:

<complexType name="Names">
<sequence minOccurs="0" maxOccurs="unbounded">
<element name="name" type="string"/>
</sequence>
</complexType>

The big question is now: given that the input to the filter ifdva
according tocards.xsd, is the output always valid according to
theNames type?

This example illustrates a number of additional challerfgeshe
static analysis:

(5) The control-flow and data-flow clearly depends on the iptess
sequences of input events, so in order to reason preciselyt ab
flow, the input schema must be taken into account. In pagtrcul
the following problem must be addressed: Given a schema
(written in XML Schema), we need a representation of the even
sequences that correspond to valid documents, in a way that
can be combined with control/data-flow graphs. Moreover, we
need to consider the possibility of pipelining filters. Do mexd
schema annotations as pre/post conditions at each filter,itor
possible to reason fully automatically about a whole pipesi
Fortunately, it appears that filter pipelines are usuallgdiat
compile time rather than being assembled dynamically.

6

~

Field variables in the filter object are commonly usedtfans-
ferring information between event handler methods, su¢chas

two boolean flags and the string buffer in the example above.
The analysis must be able to model such fields flow sensitively
and with strong updating to maintain precision. (More gener
ally, one could imagine SAX programs that materialize short
event sequences into DOM trees, but that does not appear to be
common in practice.)

(7) The analysis must be path sensitive to properly modettieet
of the conditional statements in the event handlers. AtJéas
cannot disregard boolean operations and simple string asmp
isons.

ExAMPLE 3. The examples shown above are closely connected to
concrete XML languages described by schemas. However, some
SAX filters are more generic. As an example, the followiner filt
runs on input from any XML language and, allegedly, stripSa(X
events related to “Bookmarks channels”:

public class BookmarksRemover extends XMLFilterImpl {
private boolean striplt = false;

public void startElement(String uri, String localName,
String gName, Attributes atts)
throws SAXException {
if (gName.equals("channel")) {
String name = atts.getValue("name");
if (name != null && name.equals("Bookmarks"))
striplt = true;

if (!stripIt)
super.startElement (uri, localName, gName, atts);

output

method specialization schema
input Sec. 4
SChema\ program that : : validity
; L ol flow »| context-free| .| XML - :
rintstoan [> > » analysis
autput stream } graph grammar graph | result

SAX

program Sec. 3

Figure 1. Structure of the analysis. The dashed box contains pattatbalescribed in earlier papers [13, 12].

public void endElement(String uri, String localName,
String gName)
throws SAXException {
if (!stripIt)
super.endElement (uri, localName, gName);
if (stripIt && gName.equals('"channel"))
striplt = false;
}

public void characters(char[] ch, int start,
int length)
throws SAXException {
if (!striplt)
super.characters(ch, start, length);
¥
}

(This is a condensed version of some program code found at
uportal.org.) In SAX programs like this where schemas are not
available, our program analysis will focus on well-formeds, in
particular on balancing of start and end tags in the outputthis
case, however, well-formedness may fail for some inputhwive
return to in Section 4.

It should be evident from the discussions above that deiredop

a high-precision static analyzer for SAX applications i®asider-
able task with plenty of obstacles. Nevertheless, the thitugs far
from hopeless: First, SAX applications tend to be fairly #ret
least if slicing away code that is not directly related togaroing or
consuming events. Second, as argued in the following, métheo
challenges seem closely related to problems that have eeked
by other program analysis techniques in the past, and otherbe
viewed as inspiration for developing new analysis techesfor
general Java programs.

3. Analyzing SAX Event Producers

As a modest first step, we will focus on programs that gmtyduce
SAX events, like Example 1.

This problem is remarkably close to analyzing the output of
applications built with Java Servlets, which is the topictbé
paper [13] and described briefly below. (See also the rebatatt
by Minamide and Tozawa [17].) With servlets, output is geted
by printing strings to an output stream in a way that hopgfull
results in well-formed and valid XML documents. To reasonub
generation of SAX events instead, the idea is simply to tegaht
generation, for examplendElement (..., "E", ...) (let us
for now ignore namespaces), as an alternative way of writirey
string </E> to a servlet-like output stream. If we slightly rewrite
Example 1 in this way by outputting strings toPaintWriter
stream rather than outputting events t@€@tentHandler, the
connection to servlet analysis becomes obvious:

void cards2xml(Collection<Card> cards, PrintWriter out) {
out.print("<cards>");
for (Card c : cards) {
out.print("<card id=\""+Integer.toString(c.id)+">");
out.print ("<name>") ;
out.print (escapeXML(c.name)) ;
out.print("</name>");
for (String email : c.emails) {
out.print("<email>");
out.print (escapeXML(email));
out.print("</email>");
}
if (c.phone != null) {
out.print ("<phone>");
out.print (escapeXML (phone)) ;
out.print ("</phone>");
}
out.print("</card>");

out.print("</cards>");

(We here use a methagkcapeXML for escaping the special XML
charactersg, &, etc.) In other words, the key idea is to translate the
SAX event generation method invocations into servlet-feam
printing commands and then apply the existing analysisatt, f
the situation is in a way simpler than in the general servheti-a
ysis since output here always comes in entire tags ratheritha
individual characters. (Technically, some of the grammangfor-
mation steps in [13] then become superfluous.) Building dngst
analysis [4], the servlet analysis is already capable ofamiag
about the possible values of dynamically computed stringsye
already have a grip on challenges (1) and (2) from Section 2.
Hence, our approach is to reduce the problem of analyzing SAX
event producers to string analysis and servlet analysis fallow-
ing sections describe the reduction in more detail. Thecgire of
the analysis is illustrated in Figure 1.

3.1 Analysisof String Operations

The Java String Analyzer, as presented in [4], works by fixst e
tracting an abstract flow graph from the given Java progrard, a
then converting that into a context-free grammar (extendlitd a
suitable collection of additional string operations). &y, regular
approximations are applied to obtain, for each programtpdim-
terest, a finite-state automaton whose language approesntae
set of strings that may appear at runtime.

The existing string analysis tool has some well-known limi-
tations regarding precision, but recent work [3, 10] shohat it
can smoothly be extended with standard techniques forrtiettgp
modeling [2] and context sensitivity [23].

As an example, the string analyzer provides the informatian
the possible values of the expressihiteger.toString(c.id)
in Example 1 are described by the regular expression

cards2xni

<car ds>

Figure2. Flow graph for Example 1.

01-7[1-9]1 [0-9]1* (or rather, an equivalent automaton), which
eventually will allow the remaining analysis to verify \dilly of
the generatedd attributes. In fact, the analyzer will also point out
that the values of th@ame, email, andphone fields can beany
strings, including characters, such as Unicode code poithéal
are not allowed in XML documents, so the resulting output imil
this case not be well-formed XML, which the subsequent dutpu
stream analysis will report. (In this particular case, tbeial possi-
ble values of those strings will presumably be more well beba
This can be controlled by the programmer using a type anootat
feature in the string analyzer.)

3.2 Analysisof String-based Output Streams

The overall structure of the analysis of output streamsresegmted
in [13], is as follows. First, it runs the string analyzer tbtain a
regular language for all string expressions that appeargasrents
to operations that print to the output stream. Based on tteggdar
languages, dlow graphis constructed for modeling the order of
output stream operations and their arguments. The flow geaghih
vided into fragments corresponding to the methods in thgnara.
Edges represent control flow, and nodes have the followingski

‘ SEQ ‘ phone

Figure 3. XML graph for Example 1.

As an example, the flow graph for the program from Example 1
is shown in Figure 2. The circles amp nodes, the diamond is

a return node, and the rounded boxes aifgpend nodes where
INT is the regular language of integer literals from Sectionghd
CHARDATA represents arbitrary character data.

The flow graph is then transformed straightforwardly into a
context-free grammar whose language approximates thebboss
output of running the program.

The next phase of the analysis checks that all strings in the
language of the grammar are well-formed XML documents. This
is done in three steps: First, the grammar is converted tol-a ba
anced grammar (treating the tag delimiterg&nd </ as left and
right parentheses, respectively) using a modified versiégmnath’s
algorithm [15]. Second, the balanced grammar is converted t
grammar on tag-form, if possible. (If not, then there are-non
well-formed documents in the language.) A grammar on tagifo
clearly shows the XML element tags and attributes that apjea
the derivable strings. Third, it is checked that these tayb at-
tributes satisfy the requirements for XML well-formedngasid
namespace compliance).

If the well-formedness check is passed, the last phase of the
analysis converts the grammar to an XML graph [20] (alsceckl
summary graplhin earlier papers). The XCT project [12] provides
an algorithm for checking language inclusion between an XML
graph and a schema written in XML Schema, which gives the final
step to checking validity.

For the output stream version of Example 1, the analysis will
infer the XML graph shown in Figure 3 using the graphical tiota

« append nodes describe operations that output strings to the €xPlainedin [20, 13]. As this example indicates, there &fferént
stream (where the possible strings are represented by au-Kinds of nodes in XML graphselementnodes, attribute nodes,

tomata);

text nodes,sequencenodes, andhoicenodes. (See [20, 13] for a
more formal description.) Theext nodeINT is, again, the regular

* invoke nodes describe method invocations and are labeled with language for integer literals, and\Y is the set of all Unicode

the possible targets;
e return nodes describe method exitand
¢ nop nodes correspond to flow join points.

11n [13], return nodes are defined as a special kincdhop nodes.

strings (including special characters suchkps

3.3 Considerations Regarding Analysis Precision

The analysis is conservative: the language of the XML graghd
produced contains all XML documents that may be output at run

time. Since SAX is based on a Turing complete language, Gsiri
errors are inevitable. Naturally, the programming styl8uiences

the precision of the analysis. As an example of a potentiafcso

of imprecision, element name strings can be computed dyadiyi

and used for producing events in the following style:

String x = ...;
out.startElement (...
out.endElement (..., x, ..., ..

R S

DN

The existing string analysis may be able to find out that the
only possible values of are, say,A andB, but to avoid spuri-
ous well-formedness warnings it is necessary to be able ter-de
mine and exploit the fact that always has the same value when
startElement and endElement are invoked. One approach to
achieve this is to augment the context-free grammars beiag p
duced with knowledge about such string identities and thiee t
into account when performing the well-formedness checkieg.
In casex has finitely many possible values, another approach is to
copy the flow graph fragments to perform a polyvariant arialgé
the relevant program parts.

A related hypothetical challenge is path sensitive output:

if (b)

out.startElement(..., "E", ..., ...);
if (b)

out.endElement(..., "E", ..., ...);

Arguing that the start and end tags are balanced in the obgret
involves reasoning about modificationstobetween the two con-
ditionals, which is beyond the capabilities of the curremdlgsis.

Furthermore, heuristic method inlining or related teclueis|
may be necessary when analyzing programs that use wrappers f
the event generators, such as this one:

void open(String tag) throws SAXException {
out.startElement (NS, tag, null, new AttributesImpl());
}

We return to some of these issue in Section 4 and leave others t
future work. Results in this direction may also be usefuldtrer
program analyses that are based on XML graphs [20]. NeJeghge
a small study of existing SAX programs indicates that thedas
analysis presented above often appears to be sufficienaatige,
regarding validation of element structure [11].

3.4 Remaining | ssues

As explained above, the two main challenges (1) and (2) frem S
tion 2 are handled via the string analysis and the servidysisa

An implementation based on this will be able to catch errelated

to, in particular, the structure of elements in the outpuiwidver,

we are in a good position to also address namespaces, @raract
data, and attributes, despite their peculiarities in SAX.

Namespaces

Namespace events can be handled by treasitbgrtPrefix-
Mapping andendPrefixMapping as generating special tags, such
as,<:P: ns="N"> and</:P:> for prefix P and namespace URI
N, and then — at the level of XML graphs — transform this into
ordinary namespace mappings. However, for elements with mu
tiple namespace declarations, the SAX specification alltves
invocations ofendPrefixMapping to come in any order, so the
analysis might need to reorder them to match the the invacsitbf
startPrefixMapping.

Character Data

Regarding the character array intervals, i.e. challenggetif@ fol-
lowing observations have been made on a small collectiorAof S

programs [11]: First, the typical case where a string is eoted
into a character array interval (as in Example 1) is easiboge
nized and modeled with flow graphs. Second, most other charac
ter array intervals come as arguments in iaracters event
handler method in filters or content handlers, and in thesesca

it is unlikely that any integer operations are performed loa in-
terval end points or that the array content is modified. Théans
that it appears to be sufficient to track character arrayvate that
flow unmodified from arguments in titharacters event handler
method to arguments in the event construction method.

Attributes

Regarding construction of objects of typetributes, i.e. chal-
lenge (4), we concentrate the effort on the standard imphéimg
classAttributesImpl as other implementations are uncommon.

If furthermore only considering the basic methedgiAttribute

and clear, then these objects can be represented as finite maps
from attribute names to attribute values where both are heddzes
regular languages.

4. Analyzing SAX Event Consumers

To reason about applications that consume SAX events, ssich a
content handlers or filters like Examples 2 and 3, the maiblpro

is how to incorporate the schemas that describe the possiile
(challenge (5) in Section 2).

The key idea for attacking this problem is to translate thputn
schema into program code that corresponds to the possiblésev
being generated by a SAX parser reading valid input. Thisscod
then acts as a “main” method that invokes the appropriatateve
handlers. The combined program — consisting of this mairhotet
and the actual code to be analyzed — is then processed a#ddscr
in the previous section. In other words, our strategy is thuoe the
problem of reasoning about filters that both consume andused
events to reasoning about programs that only produce events

When analyzing generic filters, such BsokmarksResolver
from Example 3 where no schemas are available, it can still be
useful to verify well-formedness of the output. A simple eggzh
to do this is to just supply a default input schema correspantd
every possible event sequence.

4.1 Converting Schemasto Event Producer Code

The XacT project provides a translation from schemas written in
XML Schema into XML graphs [12, 20]. For instance, the XML
graph being generated for the scheszads . xsd from Section 2

is essentially the one shown in Section 3.2 (except that éhat-
tributes are optional in the schema and XML Schemsaattributes
are permitted). Each node in the XML graph is then trans|attd

a Java method as follows:

e An elementnode results in a method that first calisart-
Element, then it calls the method that corresponds to its content
node, and finally it callendElement.

e A sequencenode, which has a sequence of successor nodes,
becomes a method that calls each of the corresponding nmeethod
in order.

e A choicenode, which has a set of successor nodes, is modeled
by nondeterministically invoking the corresponding metfio

(We defer the modeling dadttributeandtext nodes to Section 4.4.)
For the root node we add an extra method catllefn, which first
callsstartDocument then the method corresponding to its content
node and finallyendDocument.

The regular languages being used in XML graphs for describ-
ing element names, attribute names, attribute values, laawccter

data can be represented by an operatieg(r) that nondetermin-
istically returns a string from a given regular languag@lthough
the languages are mostly singletons). Also, we allow thddaoo
expressiorr that nondeterministically evaluatestteue or false.

The translation has the property that the set of event seggen
corresponding to XML documents that are valid accordinght® t
schema coincides with the event sequences that can be tghera
from the Java code.

Continuing the examples, the schemards.xsd is con-
verted into the following code (again, ignoring namespaaed
attributes):

void main() {
startDocument () ;
element1();
endDocument () ;

}

void element1() {
startElement (...,
choicel1();
endElement (...,

}

"cards", ...);

DN

"cards", ..

void choicel() {
if (?)
seql();
else
seq2();
}

void seql() {
}

void seq2() {
element2();
choicel();

}

void element2() {
startElement (...,
choicel();
endElement (...,
}

"email", ..., ...);

"email", ..., ...);

We can now combine this with the filter code, such as the

NamesFilter class from Example 2, resulting in a program that

produces — but no longer consumes — SAX events. This program

can now be analyzed as in Section 3. The precision of thiysisal
will not be acceptable, however, since we have not yet addtes
challenges (6) and (7), which are the topic of the next sectio

4.2 Method Specialization

Since afilter has all start element event handling combintxidne
single methodstartElement — and similarly forendElement,
these methods need to be analyzed polyvariantly. (One raight
that an alternative design of SAX using one event handlehatet

Inspired by Whaley and Lam [25], we propose to obtain context
sensitivity by cloning methods for every context of intéraad
running a context insensitive analysis over the expandedram
code to weed out infeasible paths, thereby specializingaiesant
methods in the program:

(1) First, extract a finite collection aflement nameéor, in case
of wildcards, regular sets of nhames), for example thosedoein
declared by the input schema, and a collectioftagf variables
for example those that are declared as private boolean fields
the filter class.

(2) Now clone thestartElement, endElement, andcharacters
event handler methods in the filter class such that we have one
copy for each combination of an element name and valuation of
the flag variabled.Each invocation of one of these methods is
changed into a nondeterministic choice of the new copies.

(3) Finally, we are in a position to perform interproceducain-
stant propagation and eliminate unreachable code (thebrs,
ditional branches whose guards are constafilyse) as in the
Conditional Constanélgorithms by Wegman and Zadeck [24].
The constant propagation is path sensitive: it takes sicmie-
parisons on booleans and strings into account. The flag vari-
ables are initialized in theain method as done in the filter
class (for examplestripIt from BookmarksRemover is ini-

tialized tofalse).

This results in specialized versions of the methods depgndi
on their invocation context, and it eliminates infeasibdatrol
flow at invocation sites.

For the schemaards.xsd and theNamesFilter class from
Example 2, we extract the element nam{eards, card, name,
email, phone} and the flag variabledis_name,has_phone}.
(Note that extracting imprecise collections here may affser-
formance and precision of the analysis but not soundnes$gs) T
means that 20 copies of theartElement method are considered
(although 15 of them are subsequently eliminated as unaééeh
code):

public void startElement[localName="card",
is_name=false,
has_phone=false] (...) {

is_name = localName.equals("name");
if (is_name)
name = new StringBuffer();

if (localName.equals("phone"))
has_phone = true;

public void startElement[localName="name",
is_name=false,
has_phone=false] (...) {
is_name = localName.equals("name");
if (is_name)
new StringBuffer();
if (localName.equals("phone"))
has_phone = true;

name =

}

per element name would have been more manageable for the proPublic void startElement [localName="phone",

grammers — and it would allow us to simplify this step in thalan
ysis.)

To model field variables, we can take advantage of a pattern
that appears to be common in SAX filters: The fields that are

relevant for well-formedness and validity are typicallyoteans
that are modified only from inside the filter (often they areldesd

is_name=false,
has_phone=false] (...) {

is_name = localName.equals("name");
if (is_name)
name = new StringBuffer();

if (localName.equals("phone"))

private), and by only one thread. This means that each field can 2A lazy evaluation strategy can be used to avoid explicitigdorcing all

be modeled flow sensitively as a global variable.

possible combinations.

has_phone = true;

(The methods are here written with augmented method nantks an
without theSAXExceptions.) After the constant propagation and
unreachable code elimination, the methods have been $ipedia

public void startElement[localName="card",
is_name=false,
has_phone=false] (...) {
is_name = false;

}

public void startElement[localName="name",
is_name=false,
has_phone=false] (...) {
is_name = true;
name = new StringBuffer();

}

public void startElement[localName="phone",
is_name=false,
has_phone=false] (...) {
is_name = false;
has_phone = true;

}

When we now run the well-formedness and validity analysis as
in Section 3, precision is sufficient for thkamesFilter and
BookmarksRemover examples. In fact, folamesFilter, special-
izing with respect to only the element names is sufficiengrehs
correctness oBookmarksRemover also depends on the flag vari-
ables. Applying the method specializationBsbkmarksRemover
using a dummy input schema results in the following methods,
among others:

public void startElement[gName="channel",
stripIt=falsel(...) {
if (7)
striplt = true;
if (!striplt)
super.startElement (..., "channel", ...);
}

public void startElement[gName="channel",
stripIt=truel (...) {
if (?)
striplt = true;
if (!striplt)
super.startElement (..., "channel", ...);
}

public void endElement[gName="channel",
stripIt=falsel(...) {

super.endElement (..., "channel");

}

public void endElement[gName="channel",
stripIt=true] (...) {
striplt = false;
}

Running the analysis from Section 3 on this code revealstthraty
produce output that is not well-formed (that is, start and &gs

are not balanced); indeed, the program only runs correcttieu
the assumption thathannel elements are not nested.

The success of this method specialization approach depends
on several assumptions discussed in earlier sections.rticydar,
SAX programs that involve many flag variables may lead to a
blow-up in program size, and reasoning about well-formedne
and validity may be more intricate, requiring more sophbasted
techniques than focusing only on element names and flagiesia
Still, according to the small study mentioned before [11AXS
programs tend to follow the patterns covered by the approach
suggested here.

4.3 Filter Pipeines

Let us now return to the issue of pipelines of filters. Pipetican
be handled rather elegantly through the use of XML graphs for
modeling both input and output of individual filters. Assuthet
we have a pipeline consisting offilters, F, . . ., F,, a schema
describing the initial input, and a schemya describing the final
output. We now run the analysis &f using.Sp as input schema,
which gives us an XML graptX; describing the possible output
of the first filter. Rather than requiring a schema for desagb
the possible input of, we may now simply bypass that step and
use X; for the purpose (recall from Section 4.1 that the input
schema is converted via an XML graph anyway). This process is
repeated until the last filtef,, whose output XML graphX;, is
compared against the scherfig. Thus, the analysis is inherently
compositional, assuming that the filter pipeline is knowatisally.

For instance, this would allow us to check validity of theputt
of pipelining Example 1 and Example 2:

Card
objects

Nanes

> > XML data

car ds2xm NanesFi | ter

As an alternative (or supplementary) strategy we could tatao
each intermediate pipeline stage with a schema, much likesie
of optional schema annotations ir&T [12].

4.4 Remaining | ssues

The previous sections have focused on the most central tagspec
XML well-formedness and validity: the structuring of elenmiéags.
Extending the analysis to also model character data evemnis a
attributes is less elegant due to the peculiarities of SAX.

Character data is representedtbyt nodes in the XML graphs.
In the conversion to event producer coddezt node labeled with
a regular language describing the possible values can hexted
into an invocation of theharacters method. However, since con-
tiguous character data in SAX may be reported as multiplatsve
as mentioned earlier, ortext node must be converted into a loop
containing an invocation ofharacters labeled withall possi-
ble substringof the character data in order to preserve soundness.
Clearly, this will incur a loss of precision in some cases.osgible
way around that could be to identify occurrences of the patised
in Example 2 for collecting the substrings irsaringBuffer and
for these cases directly model theleringBuffers as the regu-
lar languages from théext nodes. Again, experiments will show
whether this suffices in practice.

To model attributes, we need a way of convertiatjribute
nodes in XML graphs into additional information on invoceis
of startElement. This is naturally connected to the discussion of
theAttributes interface in Section 3.4, and we leave this aspect
of the analysis to future work.

5. Conclusion

We have exposed the challenges that must be tackled in arder t
provide static analysis of event-based XML processingiagbns
that use general purpose programming languages. Congretisl
paper has focused on SAX. The challenges include reasohg a
sequences of SAX events both as input and as output, flontisensi
string computations, attribute maps, and field variablekava.

In addition to discussing the challenges, we have outlined a

strategy for a particular program analysis that may servea as
starting point. To summarize, the key ideas suggested heréha
following, which build on top of the existing program analy/s
technique for Java Servlets anch&T:

¢ producers of SAX events can be modeled via a translation into

string-based output stream operations (Section 3); and

e SAX filters can be modeled by a reduction to event producers
via a translation from XML schemas to program code that
simulates the possible events, together with cloningdbas¢h
sensitive method specialization (Section 4).

Besides fitting naturally with the existing analysis teciugs, the
use of XML graphs for representing sets of XML documents reake
the analysis inherently compositional, making it capalfl@lso
handling filter pipelines.

The next step is to implement the central parts of the aralysi
and evaluate the performance and precision on real SAX @ppli
tions to be able to prioritize the efforts on the remainingltgmges.
Some progress in this direction is reported in the maste€sis by
Jacobsen [11]. This includes an implementation of a sineplifier-
sion of the conversions from SAX event producers to sendets
from schemas to flow graphs, and additionally a preliminauygy
of SAX programs found on the web, which has confirmed the as-
sumptions made in this paper about how SAX is typically being
used. Larger case studies and a complete implementatioeMea,
remain as future work. Another interesting direction is tmsider
well-formedness and validity analyses for other evenetdasML
frameworks, in particular STX [5].

References
[1] David Brownell. SAX2 O'Reilly & Associates, January 2002.

[2] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Aigly
of pointers and structures. Froc. ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLD) Jhe
1990.

Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung-GahD

A practical string analyzer by the widening approach. Plroc.

4th Asian Symposium on Programming Languages and Systems,
APLAS '06 November 2006.

Aske Simon Christensen, Anders Mgller, and Michael h\8artzbach.
Precise analysis of string expressions. Pirmc. 10th International
Static Analysis Symposium, SAS,’08lume 2694 ofLNCS pages
1-18. Springer-Verlag, June 2003.

Petr Cimprich et al. Streaming transformations for XMET(X).
Working Draft, April 2007.

Daniela Florescu, Chris Hillery, Donald Kossmann, Rautas, Fabio
Riccardi, Till Westmann, Michael J. Carey, and Arvind Suradajan.
The BEA streaming XQuery processdrLDB Journa) 13(3):294—

315, 2004.

[7] Alain Frisch and Keisuke Nakano. Streaming XML transfiation
using term rewriting. Presented at Programming Languaghriao-
gies for XML, PLAN-X '07.

[8] Ashish Kumar Gupta and Dan Suciu. Stream processing @ftiXP
queries with predicates. IRroc. ACM SIGMOD International
Conference on Management of Data, SIGMOD, '03ne 2003.

[3

—_

[4

[l

[5

—

6

—

[9] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically
typed XML processing languageACM Transactions on Internet
Technology 3(2):117-148, 2003.

[10] Bardur Haskor. Analysis of string expressions. Mastémnesis,
Department of Computer Science, University of Aarhus, 2007

[11] Anders Jacobsen. Analyse af SAX applikationer. Mastidresis,
Department of Computer Science, University of Aarhus, 200
Danish).

[12] Christian Kirkegaard and Anders Mgller. Type checkimigh XML
Schema in XAcT. Technical Report RS-05-31, BRICS, 2005.
Presented at Programming Language Technologies for XMIANRL
X'06.

[13] Christian Kirkegaard and Anders Mgller. Static an@y®r Java
Servlets and JSP. IRroc. 13th International Static Analysis
Symposium, SAS '0golume 4134 o£ NCS Springer-Verlag, August
2006. Full version available as BRICS RS-06-10.

[14] Christian Kirkegaard, Anders Mgller, and Michael |.H8@rtzbach.
Static analysis of XML transformations in JaEEE Transactions
on Software Engineerin@0(3):181-192, March 2004.

[15] Donald E. Knuth. A characterization of parenthesisglaages.
Information and Contrql11:269-289, 1967.

[16] Koichi Kodama, Kohei Suenaga, and Naoki KobayashinSlegion of
tree-processing programs into stream-processing pragtesed on
ordered linear type. IProc. 2nd Asian Symposium on Programming
Languages and Systems, APLAS Wévember 2004.

[17] Yasuhiko Minamide and Akihiko Tozawa. XML validatiororf
context-free grammars. IRroc. 4th Asian Symposium on Program-
ming Languages and Systems, APLAS Nidvember 2006.

[18] Anders Mgller, Mads @sterby Olesen, and Michael |. Sattabach.
Static validation of XSL TransformationsACM Transactions on
Programming Languages and Syste2&(4), July 2007.

[19] Anders Mgller and Michael I. Schwartzbach. The desigace of
type checkers for XML transformation languages. Aroc. 10th
International Conference on Database Theory, ICDT,’06lume
3363 of LNCS pages 17-36. Springer-Verlag, January 2005.

[20] Anders Mgller and Michael I. Schwartzbach. XML graphgrogram
analysis. InProc. ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, PEPM 'Qdanuary 2007.

[21] Keisuke Nakano and Shin-Cheng Mu. A pushdown machime fo
recursive XML processing. IProc. 4th Asian Symposium on
Programming Languages and Systems, APLAS vOtume 4279
of LNCS Springer-Verlag, November 2006.

[22] Stefanie Scherzinger and Alfons Kemper. Syntax-dé@drans-
formations of XML streams. Presented at Programming Laggua
Technologies for XML, PLAN-X '05.

[23] Micha Sharir and Amir Pnueli. Two approaches to integadural
dataflow analysis. IfProgram Flow Analysis: Theory and Applica-
tions, pages 189-233. Prentice-Hall, 1981.

[24] Mark N. Wegman and F. Kenneth Zadeck. Constant propagatith
conditional branchesACM Transactions on Programming Languages
and Systemd 2(2):181-210, 1991.

[25] John Whaley and Monica S. Lam. Cloning-based contersiive
pointer alias analysis using binary decision diagrams.Piaoc.
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI '04June 2004.

