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2 Universität Freiburg, Germany,thiemann�informatik.uni-freiburg.deAbstrat. We propose lazy propagation as a tehnique for �ow- andontext-sensitive interproedural analysis of programs with objets and�rst-lass funtions where transfer funtions may not be distributive. Thetehnique is desribed formally as a systemati modi�ation of a variantof the monotone framework and its theoretial properties are shown. Itis implemented in a type analysis tool for JavaSript where it results ina signi�ant improvement in performane.1 IntrodutionWith the inreasing use of objet-oriented sripting languages, suh as JavaSript,program analysis tehniques are being developed as an aid to the program-mers [2, 8�10, 27, 29℄. Although programs written in suh languages are oftenrelatively small ompared to typial programs in other languages, their highlydynami nature poses di�ulties to stati analysis. In partiular, JavaSriptprograms involve omplex interplays between �rst-lass funtions, objets withmodi�able prototype hains, and impliit type oerions that all must be are-fully modeled to ensure su�ient preision.While developing a program analysis for JavaSript [15℄ aiming to stati-ally infer type information we enountered the following hallenge: How anwe obtain a �ow- and ontext-sensitive interproedural data�ow analysis thataounts for mutable heap strutures, supports objets and �rst-lass funtions,is amenable to non-distributive transfer funtions, and is e�ient and preise?Various diretions an be onsidered. First, one may attempt to apply the las-sial monotone framework [18℄ as a whole-program analysis with an iterative�xpoint algorithm, where funtion all and return �ow is treated as any otherdata�ow. This approah turns out to be unaeptable: the �xpoint algorithm re-quires too many iterations, and preision may su�er beause spurious data�owappears via interproedurally unrealizable paths. Another approah is to applythe IFDS tehnique [23℄, whih eliminates those problems. However, it is re-strited to distributive analyses, whih makes it inappliable in our situation.A further onsideration is the funtional approah [26℄ whih models eah fun-tion in the program as a partial summary funtion that maps input data�ow
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fats to output data�ow fats and then uses this summary funtion wheneverthe funtion is alled. However, with a data�ow lattie as large as in our aseit beomes di�ult to avoid reanalyzing eah funtion a large number of times.Although there are numerous alternatives and variations of these approahes,we have been unable to �nd one in the literature that adequately addresses thehallenge desribed above. Muh e�ort has also been put into more speializedanalyses, suh as pointer analysis [11℄, however it is far from obvious how togeneralize that work to our setting.As an introdutory example, onsider this fragment of a JavaSript program:funtion Person(n) { this.setName(n); }Person.prototype.setName = funtion(n) { this.name = n; }funtion Student(n,s) { Person.all(this, n);this.studentid = s.toString(); }Student.prototype = new Person;var x = new Student("John Doe", 12345);x.setName("John Q. Doe");The ode de�nes two �lasses� with onstrutors Person and Student. Personhas a method setName via its prototype objet, and Student inherits setNameand de�nes an additional �eld studentid. The all statement in Student in-vokes the super lass onstrutor Person.Analyzing the often intriate �ow of ontrol and data in suh programs re-quires detailed modeling of points-to relations among objets and funtions andof type oerion rules. TAJS is a whole-program analysis based on the monotoneframework that follows this approah, and our �rst implementation is apableof analyzing omplex properties of many JavaSript programs. However, ourexperiments have shown a onsiderable redundany of omputation during theanalysis that auses simple funtions to be analyzed a large number of times.If, for example, the setName method is alled from other loations in the pro-gram, then the slightest hange of any abstrat state appearing at any all siteof setName during the analysis would ause the method to be reanalyzed, eventhough the hanges may be entirely irrelevant for that method. In this paper,we propose a tehnique for avoiding muh of this redundany while preserving,or even improving, the preision of the analysis. Although our main applia-tion is type analysis for JavaSript, we believe the tehnique is more generallyappliable to analyses for objet-oriented languages.The main idea is to introdue a notion of �unknown� values for objet �eldsthat are not aessed within the urrent funtion. This prevents muh irrelevantinformation from being propagated during the �xpoint omputation. The anal-ysis initially assumes that no �elds are aessed when �ow enters a funtion.When suh an unknown value is read, a reovery operation is invoked to go bakthrough the all graph and propagate the orret value. By avoiding to reoverthe same values repeatedly, the total amortized ost of reovery is never higherthan that of the original analysis. With large abstrat states, the mehanismmakes a notieable di�erene to the analysis performane.2



Lazy propagation should not be onfused with demand-driven analysis [14℄.The goal of the latter is to ompute the results of an analysis only at spei� pro-gram points thereby avoiding the e�ort to ompute a global result. In ontrast,lazy propagation omputes a model of the state for eah program point.The ontributions of this paper an be summarized as follows:� We propose an ADT-based adaptation of the monotone framework to pro-gramming languages with mutable heap strutures and �rst-lass funtionsand exhibit some of its limitations regarding preision and performane.� We desribe a systemati modi�ation of the framework that introdueslazy propagation. This novel tehnique propagates data�ow fats �by need�in an iterative �xpoint algorithm. We provide a formal desription of themethod to reason about its properties and to serve as a blueprint for animplementation.� The lazy propagation tehnique is experimentally validated: It has been im-plemented into our type analysis for JavaSript, TAJS [15℄, resulting in asigni�ant improvement in performane.In the appendix we prove termination, relate lazy propagation with the basiframework�showing that preision does not derease, and sketh a soundnessproof of the analysis.2 A Basi Analysis FrameworkOur starting point is the lassial monotone framework [18℄ tailored to pro-gramming languages with mutable heap strutures and �rst-lass funtions. Themutable state onsists of a heap of objets. Eah objet is a map from �eldnames to values, and eah value is either a referene to an objet, a funtion, orsome primitive value. Note that this setion ontains no new results, but it setsthe stage for presenting our approah in Setion 3.2.1 Analysis InstanesGiven a program Q, an instane of the monotone framework for an analysis of
Q is a tuple A = (F,N,L, P, C, n0, c0,Base, T ) onsisting of:
F : the set of funtions in Q;
N : the set of primitive statements (also alled nodes) in Q;
L: a set of objet labels in Q;
P : a set of �eld names (also alled properties) in Q;
C: a set of abstrat ontexts, whih are used for ontext sensitivity;
n0 ∈ N and c0 ∈ C: an initial statement and ontext desribing the entry of Q;Base: a base lattie for modeling primitive values, suh as integers or booleans;
T : C ×N → AnalysisLattie → AnalysisLattie: a monotone transfer funtion foreah primitive statement, where AnalysisLattie is a lattie derived from theabove information as detailed in Setion 2.2.3



Eah of the sets must be �nite and the Base lattie must have �nite height. Theprimitive statements are organized into intraproedural ontrol �ow graphs [19℄,and the set of objet labels is typially determined by alloation-site abstra-tion [5, 16℄.The notation fun(n) ∈ F denotes the funtion that ontains the statement
n ∈ N , and entry(f) and exit(f) denote the unique entry statement and exitstatement, respetively, of the funtion f ∈ F . For a funtion all statement
n ∈ N , after (n) denotes the statement being returned to after the all. A loationis a pair (c, n) of a ontext c ∈ C and a statement n ∈ N .2.2 Derived LattiesAn analysis instane gives rise to a olletion of derived latties. In the following,eah funtion spae is ordered pointwise and eah powerset is ordered by inlu-sion. For a lattie X , the symbols ⊥X , ⊑X , and ⊔X denote the bottom element(representing the absene of information), the partial order, and the least upperbound operator (for merging information). We omit the X subsript when it islear from the ontext.An abstrat value is desribed by the lattie Value as a set of objet labels,a set of funtions, and an element from the base lattie:Value = P(L)× P(F )× BaseAn abstrat objet is a map from �eld names to abstrat values:Obj = P → ValueAn abstrat state is a map from objet labels to abstrat objets:State = L → ObjCall graphs are desribed by this powerset lattie:CallGraph = P(C ×N × C × F )In a all graph g ∈ CallGraph, we interpret (c1, n1, c2, f2) ∈ g as a potentialfuntion all from statement n1 in ontext c1 to funtion f2 in ontext c2.Finally, an element of AnalysisLattie provides an abstrat state for eah on-text and primitive statement (in a forward analysis, the program point immedi-ately before the statement), ombined with a all graph:AnalysisLattie = (C ×N → State)× CallGraphIn pratie, an analysis may involve additional lattie omponents suh as anabstrat stak or extra information assoiated with eah abstrat objet or �eld.We omit suh omponents to simplify the presentation as they are irrelevant tothe features that we fous on here. Our previous paper [15℄ desribes the fulllatties used in our type analysis for JavaSript.4



solve
(

A
) where A = (F,N, L, P, C, n0, c0,Base, T ):

a := ⊥AnalysisLattie
W := {(c0, n0)}while W 6= ∅ doselet and remove (c, n) from W

Ta(c, n)end whilereturn aFig. 1. The worklist algorithm. The worklist ontains loations, i.e., pairs of a ontextand a statement. The operation Ta(c, n) omputes the transfer funtion for (c, n) onthe urrent analysis lattie element a and updates a aordingly. Additionally, it mayadd new entries to the worklist W . The transfer funtion for the initial loation (c0, n0)is responsible for reating the initial abstrat state.2.3 Computing the SolutionThe solution to A is the least element a ∈ AnalysisLattie that solves theseonstraints:
∀c ∈ C, n ∈ N : T (c, n)(a) ⊑ aComputing the solution to the onstraints involves �xpoint iteration of thetransfer funtions, whih is typially implemented with a worklist algorithm asthe one presented in Figure 1. The algorithm maintains a worklist W ⊆ C ×Nof loations where the abstrat state has hanged and thus the transfer funtionshould be applied. Lattie elements representing funtions, in partiular a ∈AnalysisLattie, are generally onsidered as mutable and we use the notation

Ta(c, n) for the assignment a := T (c, n)(a). As a side e�et, the all to Ta(c, n)is responsible for adding entries to the worklist W , as explained in Setion 2.4.This slightly unonventional approah to desribing �xpoint iteration simpli�esthe presentation in the subsequent setions.Note that the solution onsists of both the omputed all graph and anabstrat state for eah loation. We do not onstrut the all graph in a prelim-inary phase beause the presene of �rst-lass funtions implies that data�owfats and all graph information are mutually dependent (as evident from theexample program in Setion 1).This �xpoint algorithm leaves two implementation hoies: the order in whihentries are removed from the worklist W , whih an greatly a�et the number ofiterations needed to reah the �xpoint, and the representation of lattie elements,whih an a�et both time and memory usage. These hoies are, however, notthe fous of the present paper (see, e.g. [3, 13, 17, 19, 28℄).2.4 An Abstrat Data Type for Transfer FuntionsTo preisely explain our modi�ations of the framework in the subsequent se-tions, we treat AnalysisLattie as an imperative ADT (abstrat data type) [20℄with the following operations: 5



� getfield : C ×N × L× P → Value� getcallgraph : () → CallGraph� getstate : C ×N → State� propagate : C ×N × State → ()� funentry : C ×N × C × F × State → ()� funexit : C ×N × C × F × State → ()We let a ∈ AnalysisLattie denote the urrent, mutable analysis lattie element.The transfer funtions an only aess a through these operations.The operation getfield(c, n, ℓ, p) returns the abstrat value of the �eld p inthe abstrat objet ℓ at the entry of the primitive statement n in ontext c. Inthe basi framework, getfield performs a simple lookup, without any side e�etson the analysis lattie element:
a.getfield(c ∈ C, n ∈ N, ℓ ∈ L, p ∈ P ):return u(ℓ)(p) where (m,_) = a and u = m(c, n)The getcallgraph operation selets the all graph omponent of the analysislattie element:
a.getcallgraph():return g where (_, g) = aTransfer funtions typially use the getcallgraph operation in ombination withthe funexit operation explained below. Moreover, the getcallgraph operationplays a role in the extended framework presented in Setion 3.The getstate operation returns the abstrat state at a given loation:
a.getstate(c ∈ C, n ∈ N):return m(c, n) where (m,_) = aThe transfer funtions must not read the �eld values from the returned abstratstate (for that, the getfield operation is to be used). They may onstrut param-eters to the operations propagate , funentry, and funexit by updating a opy ofthe returned abstrat state.The transfer funtions must use the operation propagate(c, n, s) to pass in-formation from one loation to another within the same funtion (exluding re-ursive funtion alls). As a side e�et, propagate adds the loation (c, n) to theworklist W if its abstrat state has hanged. In the basi framework, propagateis de�ned as follows:
a.propagate(c ∈ C, n ∈ N , s ∈ State):let (m, g) = aif s 6⊑ m(c, n) then

m(c, n) := m(c, n) ⊔ s
W := W ∪ {(c, n)}end ifThe operation funentry(c1, n1, c2, f2, s) models funtion alls in a forwardanalysis. It modi�es the analysis lattie element a to re�et the possibility of a6



funtion all from a statement n1 in ontext c1 to a funtion entry statement
entry(f2) in ontext c2 where s is the abstrat state after parameter passing.(With languages where parameters are passed via the stak, whih we ignorehere, the lattie is augmented aordingly.) In the basi framework, funentryadds the all edge from (c1, n1) to (c2, f2) and propagates s into the abstratstate at the funtion entry statement entry(f2) in ontext c2:
a.funentry(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
g := g ∪ {(c1, n1, c2, f2)} where (_, g) = a
a.propagate(c2, entry(f2), s)
a.funexit(c1, n1, c2, f2,m(c2, exit(f2)))Adding a new all edge also triggers a all to funexit to establish data�ow fromthe funtion exit to the suessor of the new all site.The operation funexit(c1, n1, c2, f2, s) is used for modeling funtion returns.It modi�es the analysis lattie element to re�et the data�ow of s from the exitof a funtion f2 in allee ontext c2 to the suessor of the all statement n1with aller ontext c1. The basi framework does so by propagating s into theabstrat state at the latter loation:

a.funexit(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
a.propagate(c1, after (n1), s)The parameters c2 and f2 are not used in the basi framework; they will be usedin Setion 3. The transfer funtions obtain the onnetions between allers andallees via the getcallgraph operation explained earlier. If using an augmentedlattie where the all stak is also modeled, that omponent would naturally behandled di�erently by funexit simply by opying it from the all loation (c1, n1),essentially as loal variables are treated in, for example, IFDS [23℄.This basi framework is su�iently general as a foundation for many analysesfor objet-oriented programming languages, suh as Java or C#, as well as forobjet-based sripting languages like JavaSript as explained in Setion 4. Atthe same time, it is su�iently simple to allow us to preisely demonstrate theproblems we attak and our solution in the following setions.2.5 Problems with the Basi Analysis FrameworkThe �rst implementation of TAJS, our program analysis for JavaSript, is basedon the basi analysis framework. Our initial experiments showed, perhaps notsurprisingly, that many simple funtions in our benhmark programs were ana-lyzed over and over again (even for the same alling ontexts) until the �xpointwas reahed.For example, a funtion in the rihards.js benhmark from the V8 olle-tion was analyzed 18 times when new data�ow appeared at the funtion entry:TaskControlBlok.prototype.markAsRunnable = funtion () {this.state = this.state | STATE_RUNNABLE;}; 7



Most of the time, the new data�ow had nothing to do with the this objet or theSTATE_RUNNABLE variable. Although this partiular funtion body is very short,it still takes time and spae to analyze it and similar situations were observedfor more omplex funtions and in other benhmark programs.In addition to this abundant redundany, we observed � again not surpris-ingly � a signi�ant amount of spurious data�ow resulting from interproedurallyinvalid paths. For example, if the funtion above is alled from two di�erent lo-ations, with the same alling ontext, their entire heap strutures (that is, theState omponent in the lattie) beome joined, thereby losing preision.Another issue we notied was time and spae required for propagating theinitial state, whih onsists of 161 objets in the ase of JavaSript. These objetsare mutable and the analysis must aount for hanges made to them by theprogram. Sine the analysis is both �ow- and ontext-sensitive, a typial elementof AnalysisLattie arries a lot of information even for small programs.Our �rst version of TAJS applied two tehniques to address these issues: (1)Lattie elements were represented in memory using opy-on-write to make theironstituents shared between di�erent loations until modi�ed. (2) The lattiewas extended to inorporate a simple e�et analysis alled maybe-modi�ed : Foreah objet �eld, the analysis would keep trak of whether the �eld might havebeen modi�ed sine entering the urrent funtion. At funtion exit, �eld valuesthat were de�nitely not modi�ed by the funtion would be replaed by thevalue from the all site. As a onsequene, the �ow of unmodi�ed �elds was nota�eted by funtion alls. Although these two tehniques are quite e�etive, thelazy propagation approah that we introdue in the next setion often supersedesthe maybe-modi�ed tehnique and renders opy-on-write essentially super�uous.In Setion 4 we experimentally ompare lazy propagation with both the basiframework and the basi framework extended with the opy-on-write and maybe-modi�ed tehniques.3 Extending the Framework with Lazy PropagationTo remedy the shortomings of the basi framework, we propose an extensionthat an help reduing the observed redundany and the amount of informa-tion being propagated by the transfer funtions. The key idea is to ensure thatthe �xpoint solver propagates information �by need�. The extension onsists ofa systemati modi�ation of the ADT representing the analysis lattie. Thismodi�ation impliitly hanges the behavior of the transfer funtions withouttouhing their implementation.3.1 Modi�ations of the Analysis LattieIn short, we modify the analysis lattie as follows:1. We introdue an additional abstrat value, unknown. Intuitively, a �eld p ofan objet has this value in an abstrat state assoiated with some loation in8



a funtion f if the value of p is not known to be needed (that is, referened)in f or in a funtion alled from f .2. Eah all edge is augmented with an abstrat state that aptures the data�ow along the edge after parameter passing, suh that this information isreadily available when resolving unknown �eld values.3. A speial abstrat state, none, is added, for desribing absent all edges andloations that may be unreahable from the program entry.More formally, we modify three of the sub-latties as follows:Obj = P →
(Value↓unknown)CallGraph = C ×N × C × F → (State↓none)AnalysisLattie = (

C ×N → (State↓none))× CallGraphHere, X↓y means the lattie X lifted over a new bottom element y. In a all graph
g ∈ CallGraph in the original lattie, the presene of an edge (c1, n1, c2, f2) ∈ gis modeled by g′(c1, n1, c2, f2) 6= none for the orresponding all graph g′ in themodi�ed lattie. Notie that ⊥State is now the funtion that maps all objetlabels and �eld names to unknown, whih is di�erent from the element none.3.2 Modi�ations of the Abstrat Data Type OperationsBefore we desribe the systemati modi�ations of the ADT operations we mo-tivate the need for an auxiliary operation, recover , on the ADT:

recover : C ×N × L× P → ValueSuppose that, during the �xpoint iteration, a transfer funtion Ta(c, n) invokes
a.getfield(c, n, ℓ, p) with the result unknown. This result indiates the situationthat the �eld p of an abstrat objet ℓ is referened at the loation (c, n), butthe �eld value has not yet been propagated to this loation due to the lazypropagation. The recover operation an then ompute the proper �eld value byperforming a speialized �xpoint omputation to propagate just that �eld valueto (c, n). We explain in Setion 3.3 how recover is de�ned.The getfield operation is modi�ed suh that it invokes recover if the de-sired �eld value is unknown, as shown in Figure 2. The modi�ation may breakmonotoniity of the transfer funtions, however, as we argue in Appendix A, theanalysis still produes the orret result.Similarly, the propagate operation needs to be modi�ed to aount for thelattie element none and for the situation where unknown is joined with an ordi-nary element. The latter is aomplished by using recover whenever this situationours. The resulting operation propagate ′ is shown in Figure 3.We then modify funentry(c1, n1, c2, f2, s) suh that the abstrat state s ispropagated �lazily� into the abstrat state at the primitive statement entry(f2)in ontext c2. Here, laziness means that every �eld value that, aording to a,is not referened within the funtion f2 in ontext c2 gets replaed by unknownin the abstrat state. Additionally, the modi�ed operation reords the abstratstate at the all edge as required in the modi�ed CallGraph lattie. The resulting9



a.getfield ′(c ∈ C, n ∈ N , ℓ ∈ L, p ∈ P ):if m(c, n) 6= none where (m,_) = a then
v := a.getfield(c, n, ℓ, p)if v = unknown then

v := a.recover (c, n, ℓ, p)end ifreturn velsereturn ⊥Valueend ifFig. 2. Algorithm for getfield ′(c, n, ℓ, p). This modi�ed version of getfield invokes
recover in ase the desired �eld value is unknown. If the state is none aording to
a, the operation simply returns ⊥Value.
a.propagate ′(c ∈ C, n ∈ N , s ∈ State):let (m, g) = a and u = m(c, n)

s′ := sif u 6= none thenfor all ℓ ∈ L, p ∈ P doif u(ℓ)(p) = unknown ∧ s(ℓ)(p) 6= unknown then
u(ℓ)(p) := a.recover (c, n, ℓ, p)else if u(ℓ)(p) 6= unknown ∧ s(ℓ)(p) = unknown then
s′(ℓ)(p) := a.recover (c, n, ℓ, p)end ifend forend if

a.propagate(c, n, s′)Fig. 3. Algorithm for propagate ′(c, n, s). This modi�ed version of propagate takes intoaount that �eld values may be unknown in both a and s. Spei�ally, it uses recoverto ensure that the invoation of propagate in the last line never omputes the leastupper bound of unknown and an ordinary �eld value. The treatment of unknown valuesin s assumes that s is reoverable with respet to the urrent loation (c, n). If theabstrat state at (c, n) is none (the least element), then that gets updated to s.operation funentry ′ is de�ned in Figure 4. (Without loss of generality, we assumethat the statement at exit(f2) returns to the aller without modifying the state.)As onsequene of the modi�ation, unknown �eld values get introdued into theabstrat states at funtion entries.The funexit operation is modi�ed suh that every unknown �eld value ap-pearing in the abstrat state being returned is replaed by the orresponding�eld value from the all edge, as shown in Figure 5. In JavaSript, entering afuntion body at a funtions all a�ets the heap, whih is the reason for usingthe state from the all edge rather than the state from the all statement. If weextended the lattie to also model the all stak, then that omponent wouldnaturally be reovered from the all statement rather than the all edge.Figure 6 illustrates the data�ow at funtion entries and exits as modeledby the funexit ′ and funentry ′ operations. The two nodes n1 and n2 represent10



a.funentry ′(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):let (m, g) = a and u = m(c2, entry(f2))// update the all edge
g(c1, n1, c2, f2) := g(c1, n1, c2, f2) ⊔ s// introdue unknown �eld values
s′ := ⊥Stateif u 6= none thenfor all ℓ ∈ L, p ∈ P doif u(ℓ)(p) 6= unknown then// the �eld has been referened

s′(ℓ)(p) := s(ℓ)(p)end ifend forend if// propagate the resulting state into the funtion entry
a.propagate ′(c2, entry(f2), s

′)// propagate �ow for the return edge, if any is known alreadylet t = m(c2, exit(f2))if t 6= none then
a.funexit ′(c1, n1, c2, f2, t)end ifFig. 4. Algorithm for funentry ′(c1, n1, c2, f2, s). This modi�ed version of funentry�lazily� propagates s into the abstrat state at entry(f2) in ontext c2. The abstratstate s′ is unknown for all �elds that have not yet been referened by the funtion beingalled aording to u (reall that ⊥State maps all �elds to unknown).

a.funexit ′(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):let (_, g) = a and ug = g(c1, n1, c2, f2)
s′ := ⊥Statefor all ℓ ∈ L, p ∈ P doif s(ℓ)(p) = unknown then// the �eld has not been aessed, so restore its value from the all edge state

s′(ℓ)(p) := ug(ℓ)(p)else
s′(ℓ)(p) := s(ℓ)(p)end ifend for

a.propagate ′(c1, after(n1), s
′)Fig. 5. Algorithm for funexit ′(c1, n1, c2, f2, s). This modi�ed version of funexit restores�eld values that have not been aessed within the funtion being alled, using the valuefrom before the all. It then propagates the resulting state as in the original operation.funtion all statements that invoke the funtion f . Assume that the value ofthe �eld p in the abstrat objet ℓ, denoted ℓ.p, is v1 at n1 and v2 at n2 where

v1, v2 ∈ Value. When data�ow �rst arrives at entry(f) the funentry ′ operationsets ℓ.p to unknown. Assuming that f does not aess ℓ.p it remains unknownthroughout f , so funexit ′ an safely restore the original value v1 by merging thestate from exit(f) with ug1 (the state reorded at the all edge) at after(n1).11
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entry(f)

exit(f)

f

Fig. 6. A funtion f being alled from two di�erent statements, n1 and n2 appearingin other funtions (for simpliity, all with the same ontext c). The edges indiatedata�ow, and eah bullet orresponds to an element of State with ug1 = g(c, n1, c, f)and ug2 = g(c, n2, c, f) where g ∈ CallGraph.Similarly for the other all site, the value v2 will be restored at after (n2). Thus,the data�ow for non-referened �elds respets the interproedurally valid paths.This is in ontrast to the basi framework where the value of ℓ.p would be
v1 ⊔ v2 at both after (n1) and after(n2). Thereby, the modi�ation of funexitmay � perhaps surprisingly � ause the resulting analysis solution to be morepreise than in the basi framework. If a statement in f writes a value v′ to ℓ.p itwill no longer be unknown, so v′ will propagate to both after (n1) and after(n2).If the transfer funtion of a statement in f invokes getfield ′ to obtain the valueof ℓ.p while it is unknown, it will be reovered by onsidering the all edges into
f , as explained in Setion 3.3.The getstate operation is not modi�ed. A transfer funtion annot notie thefat that the returned State elements may ontain unknown �eld values, beauseit is not permitted to read a �eld value through suh a state.Finally, the getcallgraph operation requires a minor modi�ation to ensurethat its output has the same type although the underlying lattie has hanged:
a.getcallgraph ′():return {(c1, n1, c2, f2) | g(c1, n1, c2, f2) 6= none} where (_, g) = aTo demonstrate how the lazy propagation framework manages to avoid er-tain redundant omputations, onsider again the markAsRunnable funtion inSetion 2.5. Suppose that the analysis �rst enounters a all to this funtionwith some abstrat state s. This all triggers the analysis of the funtion body,whih aesses only a few objet �elds within s. The abstrat state at the entryloation of the funtion is unknown for all other �elds. If new �ow subsequentlyarrives via a all to the funtion with another abstrat state s′ where s ⊑ s′, theintrodution of unknown values ensures that the funtion body is only reanalyzedif s′ di�ers from s at the few relevant �elds that are not unknown.3.3 Reovering Unknown Field ValuesWe now turn to the de�nition of the auxiliary operation recover . It gets invokedby getfield ′ and propagate ′ whenever an unknown element needs to be replaed12



by a proper �eld value. The operation returns the desired �eld value but also,as a side e�et, modi�es the relevant abstrat states for funtion entry loationsin a.The key observation for de�ning recover (c, n, ℓ, p) where c ∈ C, n ∈ N , ℓ ∈ L,and p ∈ P is that unknown is only introdued in funentry ′ and that eah alledge � very onveniently � reords the abstrat state just before the ordinary �eldvalue is hanged into unknown. Thus, the operation needs to go bak throughthe all graph and reover the missing information. However, it only needs tomodify the abstrat states that belong to funtion entry statements.Reovery is a two phase proess. The �rst phase onstruts a direted multi-rooted graph G the nodes of whih are a subset of C ×F . It is onstruted fromthe all graph in a bakward manner starting from (c, n) as the smallest graphsatisfying the following two onstraints, where (m, g) = a:� The graph G ontains the node (c, fun(n)).3� For eah node (c2, f2) inG and for eah (c1, n1) where g(c1, n1, c2, f2) 6= none:
• If ug(ℓ)(p) = unknown ∧ u1(ℓ)(p) = unknown where ug = g(c1, n1, c2, f2)and u1 = m(c1, entry(fun(n1))) then G ontains the node (c1, fun(n1))with an edge to (c2, f2),
• otherwise, (c2, f2) is a root of G.The resulting graph is essentially a subgraph of the all graph. A node in Gis a root if at least one of the inoming all graph edges of the orrespondingfuntion ontributes with a non-unknown value. Notie that root nodes may haveinoming edges in G.The seond phase is a �xpoint omputation over G:// reover the abstrat value at the roots of Gfor eah root (c′, f ′) of G dolet u′ = m(c′, entry(f ′))for all (c1, n1) where g(c1, n1, c

′, f ′) 6= none dolet ug = g(c1, n1, c
′, f ′) and u1 = m(c1, entry(fun(n1)))if ug(ℓ)(p) 6= unknown then

u′(ℓ)(p) := u′(ℓ)(p) ⊔ ug(ℓ)(p)else if u1(ℓ)(p) 6= unknown then
u′(ℓ)(p) := u′(ℓ)(p) ⊔ u1(ℓ)(p)end ifend forend for// propagate throughout G at funtion entry nodes

S := the set of roots of Gwhile S 6= ∅ doselet and remove (c′, f ′) from Slet u′ = m(c′, entry(f ′))for eah suessor (c2, f2) of (c′, f ′) in G dolet u2 = m(c2, entry(f2))3 This onstraint has been orreted after the SAS 2010 paper was published.13



if u′(ℓ)(p) 6⊑ u2(ℓ)(p) then
u2(ℓ)(p) := u2(ℓ)(p) ⊔ u′(ℓ)(p)add (c2, f2) to Send ifend forend whileThis phase reovers the abstrat value at the roots of G and then propagatesthe value through the nodes of G until a �xpoint is reahed. Although recovermodi�es abstrat states in this phase, it does not modify the worklist, an issuewhih we return to in Appendix A.3. After this phase, we have u(ℓ)(p) 6= unknownwhere u = m(c′, entry(f ′)) for eah node (c′, f ′) inG. (Notie that the side e�etson a only onern abstrat states at funtion entry statements.) In partiular,this holds for (c, fun(n)), so when recover(c, n, ℓ, p) has ompleted the two phases,it returns the desired value u(ℓ)(p) where u = m(c, entry(fun(n))).Notie that the graph G is empty if u(ℓ)(p) 6= unknown where u = m(c,

entry(fun(n))) (see the �rst of the two onstraints de�ning G). In this ase, thedesired �eld has already been reovered, the seond phase is e�etively skipped,and u(ℓ)(p) is returned immediately.Figure 7 illustrates an example of interproedural data�ow among four fun-tions. (This example ignores data�ow for funtion returns and assumes a �xedalling ontext c.) The statements write1 and write2 write to a �eld ℓ.p, and
read reads from it. Assume that the analysis disovers all the all edges beforevisiting read . In that ase, ℓ.p will have the value unknown when entering f2 and
f3, whih will propagate to f4. The transfer funtion for read will then invoke
getfield ′, whih in turn invokes recover . The graph G will be onstruted withthree nodes: (c, f2), (c, f3), and (c, f4) where (c, f2) and (c, f3) are roots andhave edges to (c, f4). The seond phase of recover will replae the unknown valueof ℓ.p at entry(f2) and entry(f2) by its proper value stored at the all edges andthen propagate that value to entry(f3) and �nally return it to getfield ′. Notiethat the value of ℓ.p at, for example, the all edges, remains unknown. How-ever, if data�ow subsequently arrives via transfer funtions of other statements,those unknown values may be replaed by ordinary values. Finally, note thatthis simple example does not require �xpoint iteration within recover , howeverthat beomes neessary when all graphs ontain yles (resulting from programswith reursive funtion alls).The modi�ations only onern the AnalysisLattie ADT, in terms of whih alltransfer funtions of an analysis are de�ned. The transfer funtions themselvesare not hanged. Although invoations of recover involve traversals of parts ofthe all graph, the main worklist algorithm (Figure 1) requires no modi�ations.4 Implementation and ExperimentsTo examine the impat of lazy propagation on analysis performane, we ex-tended the Java implementation of TAJS, our type analyzer for JavaSript [15℄,14



entry(f2)

call2

entry(f3)

call3

write1

call1

entry(f4)

read

write2

f1

f2

f4

f3

Fig. 7. Fragments of four funtions, f1 . . . f4. As in Figure 6, edges indiate data�owand bullets orrespond to elements of State. The statements write1 and write2 write toa �eld ℓ.p, and read reads from it. The recover operation applied to the read statementand ℓ.p will ensure that values written at write1 and write2 will be read at the readstatements, despite the possible presene of unknown values.by systematially applying the modi�ations desribed in Setion 3. As usual indata�ow analysis, primitive statements are grouped into basi bloks. The im-plementation fouses on the JavaSript language itself and the built-in library,but presently exludes the DOM API, so we use the most omplex benhmarksfrom the V84 and SunSpider5 benhmark olletions for the experiments.Desriptions of other aspets of TAJS not diretly related to lazy propaga-tion may be found in the TAJS paper [15℄. These inlude the use of reenyabstration [4℄, whih ompliates the implementation, but does not hange theproperties of the lazy propagation tehnique.We ompare three versions of the analysis: basi orresponds to the basiframework desribed in Setion 2; basi+ extends the basi version with the opy-on-write and maybe-modi�ed tehniques disussed in Setion 2.5, whih is theversion used in [15℄; and lazy is the new implementation using lazy propagation(without the other extensions from the basi+ version).4 http://v8.googleode.om/svn/data/benhmarks/v1/5 http://www2.webkit.org/perf/sunspider-0.9/sunspider.html15



Iterations Time (seonds) Memory (MB)LOC Bloks basi basi+ lazy basi basi+ lazy basi basi+ lazyrihards.js 529 478 2663 2782 1399 5.6 4.6 3.8 11.05 6.4 3.7benhpress.js 463 710 18060 12581 5097 33.2 13.4 5.4 42.02 24.0 7.8delta-blue.js 853 1054 ∞ ∞ 63611 ∞ ∞ 136.7 ∞ ∞ 140.5ryptobenh.js 1736 2857 ∞ 43848 17213 ∞ 99.4 22.1 ∞ 127.9 42.83d-ube.js 342 545 7116 4147 2009 14.1 5.3 4.0 18.4 10.6 6.23d-raytrae.js 446 575 ∞ 30323 6749 ∞ 24.8 8.2 ∞ 16.7 10.1rypto-md5.js 296 392 5358 1004 646 4.5 2.0 1.8 6.1 3.6 2.7aess-nbody.js 179 149 551 523 317 1.8 1.3 1.0 3.2 1.7 0.9Table 1. Performane benhmark results.Table 1 shows for eah program, the number of lines of ode, the number ofbasi bloks, the number of �xpoint iterations for the worklist algorithm (Fig-ure 1), analysis time (in seonds, running on a 3.2GHz PC), and memory on-sumption. We use ∞ to denote runs that require more than 512MB of memory.We fous on the time and spae requirements for these experiments. On ourbenhmark programs, the preision improvement is insigni�ant with respet tothe number of potential type related bugs, whih is the preision measure wehave used in our previous work.The experiments demonstrate that although the opy-on-write and maybe-modi�ed tehniques have a signi�ant positive e�et on the resoure require-ments, lazy propagation leads to even better results. The results for rihards.jsare a bit unusual as it takes more iterations in basi+ than in basi, however the�xpoint is more preise in basi+.The benhmark results demonstrate that lazy propagation results in a signif-iant redution of analysis time without sari�ing preision. Memory onsump-tion is redued by propagating less information during the �xpoint omputationand �xpoints are reahed in fewer iterations by eliminating a ause of redundantomputation observed in the basi framework.5 Related WorkReently, JavaSript and other sripting languages have ome into the fous ofresearh on stati program analysis, partly beause of their hallenging dynaminature. These works range from analysis for seurity vulnerabilities [9, 29℄ tostati type inferene [1, 8, 15, 27℄. We onentrate on the latter ategory, aimingto develop program analyses that an ompensate for the lak of stati typeheking in these languages. The interplay of language features of JavaSript,inluding �rst-lass funtions, objets with modi�able prototype hains, andimpliit type oerions, makes analysis a demanding task.The IFDS framework by Reps, Horwitz, and Sagiv [23℄ is a powerful andwidely used approah for obtaining preise interproedural analyses. It requiresthe underlying lattie to be a powerset and the transfer funtions to be dis-tributive. Unfortunately, these requirements are not met by our type analysisproblem for dynami objet-oriented sripting languages. The more general IDEframework also requires distributive transfer funtions [25℄. A onnetion to ourapproah is that �elds that are marked as unknown at funtion exits, and hene16



have not been referened within the funtion, are reovered from the all site inthe same way loal variables are treated in IFDS.Sharir and Pnueli's funtional approah to interproedural analysis an bephrased both with symboli representations and in an iterative style [26℄, wherethe latter is loser to our approah. With the omplex latties and transferfuntions that appear to be neessary in analyses for objet-oriented sriptinglanguages, symboli representations are di�ult to work with, so TAJS uses theiterative style and a relatively diret representation of lattie elements. Further-more, the funtional approah is expensive if the analysis lattie is large.Our analysis framework enompasses a general notion of ontext sensitivitythrough the C omponent of the analysis instanes. Di�erent instantiations of Clead to di�erent kinds of ontext sensitivity, inluding variations of the all-stringapproah [26℄, whih may also a�et the quality of interproedural analysis. Weleave the hoie of C open here; TAJS urrently uses a heuristi that distinguishesall sites that have di�erent values of this.The use of unknown �eld values is related to the maybe-modi�ed tehniquethat we used in the �rst version of TAJS [15℄: a �eld whose value is unknownis de�nitely not modi�ed. Both ideas an be viewed as instanes of side e�etanalysis. Unlike, for example, the side e�et analysis by Landi et al. [24℄ ouranalysis omputes the all graph on-the-�y and we exploit the information thatertain �elds are found to be non-referened for obtaining the lazy propagationmehanism. Via this onnetion to side e�et analysis, one may also view theunknown �eld values as establishing a frame ondition as in separation logi [21℄.Combining all graph onstrution with other analyses is ommon in pointeralias analysis with funtion pointers, for example in the work of Burke et al. [12℄.That paper also desribes an approah alled deferred evaluation for inreasinganalysis e�ieny, whih is speialized to �ow insensitive alias analysis.Lazy propagation is related to lazy evaluation (e.g., [22℄) as it produes valuespassed to funtions on demand, but there are some di�erenes. Lazy propagationdoes not defer evaluation as suh, but just the propagation of the values; itapplies not just to the parameters but to the entire state; and it restrits lazinessto data strutures (values of �elds).Lazy propagation is di�erent from demand-driven analysis [14℄. Both ap-proahes defer omputation, but demand-driven analysis only omputes resultsfor seleted hot spots, whereas our goal is a whole-program analysis that infersinformation for all program points. Other tehniques for reduing the amountof redundant omputation in �xpoint solvers is di�erene propagation [7℄ anduse of interproedural def-use hains [28℄. It might be possible to ombine thosetehniques with lazy propagation, although they are di�ult to apply to theomplex transfer funtions that we have in type analysis for JavaSript.6 ConlusionWe have presented lazy propagation as a tehnique for improving the perfor-mane of interproedural analysis in situations where existing methods, suh asIFDS or the funtional approah, do not apply. The tehnique is desribed by a17
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A Theoretial PropertiesThe lazy propagation analysis framework is supposed to improve on the resultsof the basi framework in several respets. First, the modi�ations should nota�et termination. Seond, analysis results with lazy propagation should alwaysbe at least as preise as in the basi framework, meaning that the extensionsintrodue no spurious results. Third, the extensions should be sound in the sensethat the analysis result is still a �xpoint of the transfer funtions, whih has tobe adjusted beause of the introdution of unknown �eld values, and that thetransfer funtions remain meaningful with respet to the language semantis. Inthe following, we state these properties more preisely and study them in somedetail.A.1 TerminationAs observed in Setion 3, the AnalysisLattiemodi�ations do not preserve mono-toniity of the transfer funtions. Nevertheless, it is easy to see that the worklistalgorithm (Figure 1) always terminates.Proposition 1. The worklist algorithm always terminates in the lazy propaga-tion framework.Proof. Eah AnalysisLattie operation terminates. The only nontrivial ase is
recover : Its �rst phase learly terminates as only a �nite set of nodes is onsid-ered, and the seond phase terminates beause AnalysisLattie has �nite height.Every iteration of the worklist algorithm removes a loation from the worklist,and transfer funtions only add new loations to the worklist when the lattieelement is modi�ed. As every suh modi�ation makes the lattie element largerand the lattie has �nite height, termination is ensured.The number of iterations required to reah the �xpoint may di�er due to themodi�ations. First, as mentioned in Setion 2.3, we have left the worklist pro-essing order unspei�ed and that order may be a�eted by the modi�ations.Seond, as desribed in Setion 3, the operation funexit

′ improves preision withrespet to the original funexit operation by avoiding ertain interproedurallyinvalid paths. Depending on the partiular analysis instane, this improved pre-ision may result in an inrease or in a derease of the number of iterationsrequired to ompute the �xpoint. In pratie, we observe an overall derease oneah of our benhmark programs, as shown in Setion 4.The ost of performing a recover operation is proportional to the number oftimes it applies ⊔. In the basi framework, the same amount of work is done,although �eagerly� within propagate operations. Hene, reovery does not impairthe amortized analysis omplexity. 20



α(m′, g′) = (α(m′), α(g′)) where (m′, g′) ∈ AnalysisLattie′
α(g′) = {x ∈ C ×N × C × F | g′(x) 6= none} where g′ ∈ CallGraph′
α(m′)(c, n) = α(m′(c, n)) where m′ ∈ (C ×N → State'↓none), c ∈ C, n ∈ N

α(u′)(ℓ)(p) = α(u′(ℓ)(p)) where u′ ∈ State'↓none, ℓ ∈ L, p ∈ P, if u′ 6= none
α(none) = ⊥State
α(v′) = v′ where v′ ∈ Value↓unknown, if v′ 6= unknown
α(unknown) = ⊥ValueFig. 8. Mapping between latties in the extended and the basi framework.A.2 PreisionFor larity, the text in this subsetion marks all elements and latties from thelazy propagation framework with primes ′ whereas entities from the basi frame-work remain unadorned. Let a0 ∈ AnalysisLattie be a solution of an analysis in-stane A in the basi framework, and let a′ ∈ AnalysisLattie′ be an intermediatestep arising during the �xpoint iteration in the extended framework for A. Thegoal is to show that a′ is always smaller than a0 in the lattie ordering, but thisordering annot be diretly established beause the two latties are di�erent.Hene, we �rst need a funtion α that maps values of the extended analysis tovalues of the basi analysis. Figure 8 ontains the de�nition of this funtion onthe various latties. It is easily seen to be bottom-preserving, monotone, anddistributive.The property that no spurious results arise with lazy propagation an now bestated as an invariant of the while loop in the worklist algorithm from Figure 1.Proposition 2. Let A be an analysis instane, a0 ∈ AnalysisLattie be the solu-tion of A in the basi framework, and a′ ∈ AnalysisLattie′ be the analysis lattieelement on an entry to the while loop in the worklist algorithm (Figure 1) ap-plied to A with the lazy propagation framework. Then a′ and a0 are α-related,i.e., α(a′) ⊑ a0.Proof. On �rst entry to the loop, a′ = ⊥AnalysisLattie′ . As α is bottom-preserving,
α(a′) ⊑ a0. To establish the invariant, we assume that α(a′) ⊑ a0, let t =
T (c0, n0), for some (c0, n0) ∈ C ×N , and show that α(t(a′)) ⊑ a0.As part of the omputation of t(a′), the transfer funtion t may invoke theADT operations on a′, and we need to (1) hek the e�et of eah operationon a′ and prove that the α relation still holds. Additionally, sine the outputof one operation may be used as input to another and we may assume that thearguments of eah invoation of an operation in a transfer funtion are omputedby monotone funtions, we are also obliged to (2) hek that α-related argumentsto the operations yield α-related results. In the following, we let (m0, g0) = a0and (m′, g′) = a′ and prove the properties (1) and (2) for eah operation in turn.Case getcallgraph ′. The invoation of a′.getcallgraph ′() does not a�et a′.The result is a subset of a0.getcallgraph() beause α(a′) ⊑ a0.Case getstate. This operation does not modify a′. For the result, we have
α(a′.getstate(c, n)) ⊑ a0.getstate(c, n). 21



Case getfield ′. Consider the invoation of a′.getfield ′(c, n, ℓ, p). If m′(c, n) =none, then a′ is not hanged and the result is ⊥ whih preserves the invariant.Let now m′(c, n) 6= none and v = a′.getfield(c, n, ℓ, p). If v 6= unknown, then a′ isnot hanged and α(v) ⊑ a0.getfield(c, n, ℓ, p). If v = unknown, then we need toonsider the hanges e�eted by recover where we also relate the result to theexpeted one.Case propagate ′. Consider the invoation of a′.propagate ′(c, n, s′) from atransfer funtion t = T (c0, n0), where (c0, n0) is a predeessor of (c, n). As a0 isa solution, it holds that t(a0) ⊑ a0 and that onsequently a0.propagate(c, n, s)leaves a0 unhanged, where α(s′) ⊑ s as both states are omputed by the samemonotone funtion from α-related arguments.If u′ = m′(c, n) is none, then m′(c, n) is e�etively updated to s′. Now,
α(m′(c, n)) = α(s′) ⊑ s ⊑ m(c, n) with the last equation holding beause
a0.propagate leaves a0 unhanged.Otherwise, parts of u′ may need to be reovered whih (assumedly) doesnot violate the invariant. We then have that α(m′(c, n)) ⊑ m(c, n) before theinvoation of propagate and α(m′(c, n)⊔s′) = α(m′(c, n))⊔α(s′) ⊑ m(c, n)⊔s ⊑
m(c, n) afterwards.This operation returns no result, so the α-relation trivially holds.Case recover . Consider the invoation of a′.recover (c, n, ℓ, p). The �rst nodeadded to the graph G is (c, fun(n)).For this return value, it holds that α(v′) ⊑ m(c, entry(fun(n)))(ℓ)(p) byassumption. By similar reasoning as in subase B below, it must be that

m(c, entry(fun(n)))(ℓ)(p) ⊑ m(c, n)(ℓ)(p) = a0.getfield(c, n, ℓ, p).Hene, α(v′) ⊑ a0.getfield(c, n, ℓ, p) as required.One the graphG has been onstruted, the reovery algorithm �rst examinesthe roots (c′, f ′) of G and modi�es their states in a′. Let (c′, f ′) be suh a root,
u′ = m′(c′, entry(f ′)), and let (c1, n1) be suh that u′

g = g′(c1, n1, c
′, f ′) 6= none.Let further u′

c = m′(c1, n1) and u′
1 = m′(c1, entry(fun(n1))).As (c′, f ′) is reahable there must have been a prior step in the �xpointiteration where some transfer funtion t′ = T (c1, n1) invokes funentry′. Inside ofthis t′ there must be a monotone funtion invoke whih ommutes with α andwhih onstruts the State argument to funentry ′ suh that u′

g = invoke(u′
c).This same funtion is also used in the veri�ation that a0 is a solution. In thisveri�ation, suppose that the State argument is s = invoke(uc) where uc =

m0(c1, n1). Let further u = m0(c
′, entry(f ′)) and u1 = m0(c1, entry(fun(n1))).Subase A. Let us �rst assume that u′

g(ℓ)(p) 6= unknown. By our assump-tions, it holds that α(u′) ⊑ u and α(u′
c) ⊑ uc. Beause u′

g = invoke(u′
c) and

s = invoke(uc) and invoke ommutes with α, it also holds that α(u′
g) ⊑ s.Now, let u′

g
ℓp be bottom exept at ℓ.p where it is equal to u′

g(ℓ)(p). With thissetting, we an reason that
α(u′ ⊔ u′

g

ℓp
) ⊑ α(u′ ⊔ u′

g) = α(u′ ⊔ invoke(u′
c))

= α(u′) ⊔ α(invoke(u′
c)) ⊑ u ⊔ invoke(uc) = u22



where the last equality is due to the propagate operation in the standard funentryoperation.Subase B. For the seond ase, assume that u′
g(ℓ)(p) = unknown but

u′
1(ℓ)(p) 6= unknown. As the algorithm propagates the latter value, we needto prove that it would not hange if it were propagated to u′

c. In fat, to estab-lish the invariant it is su�ient to show that u1(ℓ)(p) ⊑ uc(ℓ)(p) in the basianalysis.Suppose for a ontradition that u1(ℓ)(p) 6⊑ uc(ℓ)(p). Then there must besome nx on a path between ne = entry(fun(n1)) and n1 where eah node between
ne and nx satis�es u1(ℓ)(p) ⊑ m0(c1, ne)(ℓ)(p) but u1(ℓ)(p) 6⊑ m0(c1, nx)(ℓ)(p).Let n′

x be the predeessor of nx on this path. Clearly, T (c1, n′
x) hanges the

ℓ.p �eld by invoking propagate(c1, n
′
x, sx) for some sx = action(m0(c1, n

′
x)) with

sx(ℓ)(p) ⊐ ⊥.As the same transfer funtion must have been alled in the extended frame-work (otherwise the funtion all at n1 would not be reahable), there musthave been an invoation of propagate ′(c1, n′
x, s

′
x) for some s′x with α(s′x) ⊑ sxand s′x(ℓ)(p) ⊐ ⊥ (beause T never proesses unknown). But suh an invoationontradits u′

g(ℓ)(p) = unknown, so no suh node nx exists.Hene, α(u′
1(ℓ)(p)) ⊑ u1(ℓ)(p) ⊑ uc(ℓ)(p) so that

α(u′ ⊔ u′
1)(ℓ)(p) ⊑ α(u′ ⊔ u′

1)(ℓ)(p)

= α(u′)(ℓ)(p) ⊔ α(u′
1)(ℓ)(p)

⊑ u(ℓ)(p) ⊔ u1(ℓ)(p)

⊑ u(ℓ)(p) ⊔ uc(ℓ)(p)

⊑ u(ℓ)(p) ⊔ invoke(uc)(ℓ)(p)

= u(ℓ)(p)Thus, reovery at the roots does not violate the desired invariant. The �nalpropagation does not do so either. It propagates state from the funtion entrynode of the aller to the funtion entry node of the allee under the assumptionthat the orresponding omponent on the all edge is unknown. This assumptionholds by onstrution of G. With the same argumentation as in the previousase, the state of the ℓ.p �eld annot hange between the entry to the aller andthe atual all, so the invariant holds after eah iteration of the loop and thusfor the �xpoint as well.The return value is extrated from m′(c, entry(fun(n)))(ℓ)(p) whih α ap-proximates the value a0.getfield(c, n, ℓ, p) as explained in the beginning of thisase.Case funentry′. An invoation of a′.funentry′(c1, n1, c2, f2, s
′) �rst adds s′ tothe all edge, whih is orret beause the orresponding all to funentry(c1, n1,

c2, f2, s) in the basi framework adds the tuple (c1, n1, c2, f2) to the basi allgraph.Next it omputes a projetion s′′ of s′, for whih learly s′′ ⊑ s′ and hene
α(s′′) ⊑ s holds. With this preondition, the all to propagate preserves theinvariant. 23



If the �nal all to funexit′ does not happen, then there is no further hangeto a′. Otherwise, the invariant holds by assumption on funexit.This operation returns no result, so again the α-relation trivially holds.Case funexit ′. Eah invoation a′.funexit ′(c1, n1, c2, f2, s
′) happens with astate argument omputed from the exit node of funtion f2, suh as, n2 =

exit(f2), so that s′ = fexit(m
′(c2, n2)). Hene, the analogous all in the veri�a-tion of the basi framework uses s = fexit(m(c2, n2)), so that α(s′) ⊑ s holds, asusual.Let furthermore u′

g = g′(c1, n1, c2, f2) be the orresponding all edge and ugthe state parameter of the orresponding funentry all in the basi framework.Let LP = {(ℓ, p) | s′(ℓ, p) = unknown}. By similar reasoning as in the asefor reover, for eah (ℓ, p) ∈ LP , it holds that ug(ℓ)(p) ⊑ m(c2, n2)(ℓ)(p), that is,this state omponent is preserved from the invoation to the end of the funtion.For the state s′′ omputed in funexit′ we must argue that α(s′′) ⊑ s whih isnot obvious. For (ℓ, p) /∈ LP , it holds that α(s′′(ℓ)(p)) = α(s′(ℓ)(p)) ⊑ s(ℓ)(p) byassumption α(s′) ⊑ s. For (ℓ, p) ∈ LP , it holds that α(s′′(ℓ)(p)) = α(u′
g(ℓ)(p)) ⊑

ug(ℓ)(p) ⊑ m(c2, n2)(ℓ)(p) = s(ℓ)(p).Hene, the �nal all to propagate′ happens with α-related arguments anddoes not destroy the invariant.This operation returns no result, so again the α-relation trivially holds.A.3 SoundnessThe hanges made to the AnalysisLattie operations indiretly modify the transferfuntions, so it is also important that these remain sound with respet to thesemantis of the program. To state this more preisely, let [[Q]] be a olletingsemantis of a programQ (in the abstrat interpretation sense [6℄) suh that β[[Q]]is an abstration of [[Q]] in the domain AnalysisLattie from Setion 2 expressedvia the operations getfield and getcallgraph . We say that a ∈ AnalysisLattie(using either the basi framework or lazy propagation) over-approximates β[[Q]]if
β[[Q]].getfield ⊑ a.getfield ∧ β[[Q]].getcallgraph ⊑ a.getcallgraphWe onjeture that lazy propagation is then sound in the following sense:Assume that a0 ∈ AnalysisLattie is the solution in the basi analysis frameworkof an analysis instane A for a program Q and that a0 over-approximates β[[Q]].If a′0 is the solution of A in the lazy propagation framework then a′0 also over-approximates β[[Q]].Without giving a full proof, we mention some key aspets of the reasoning.Most importantly, lazy propagation gives a safe approximation ompared to themaybe-modi�ed tehnique brie�y mentioned in Setion 2.5, and that tehniqueis learly sound relative to the basi framework.The worklist algorithm for the basi framework produes a solution to theanalysis in the sense de�ned in Setion 2.3. A requirement for this to hold is that24



every AnalysisLattie ADT operation that modi�es an abstrat state at some lo-ation also adds that loation to the worklist. This requirement is also ful�lledwith lazy propagation � exept for a subtlety in the recover operation: It mod-i�es states that belong to funtion entry loations without adding these to theworklist. This means that suh values that have been reovered at the fun-tion entry loations may not be propagated. However, reall that transfer fun-tions an only read objet �eld values via the getfield ′ operation. Assume that
getfield ′(c, n, ℓ, p) is invoked and the �eld ℓ.p is unknown at the loation (c, n). Inthat ase, getfield ′ will all recover , and in the situation where the proper value
v has already been reovered at the funtion entry loation (c, entry(fun(n)))the value v is returned by getfield

′. This means that the transfer funtion willbehave in the same way as if v had been propagated from the funtion entryloation. A similar situation ours if the reovery has taken plae not at thesame funtion but at an earlier loation in the all graph. Thus, the fat that
recover modi�es abstrat states without adding their loations to the worklistdoes not a�et orretness of the analysis result.
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