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t. We propose lazy propagation as a te
hnique for �ow- and
ontext-sensitive interpro
edural analysis of programs with obje
ts and�rst-
lass fun
tions where transfer fun
tions may not be distributive. Thete
hnique is des
ribed formally as a systemati
 modi�
ation of a variantof the monotone framework and its theoreti
al properties are shown. Itis implemented in a type analysis tool for JavaS
ript where it results ina signi�
ant improvement in performan
e.1 Introdu
tionWith the in
reasing use of obje
t-oriented s
ripting languages, su
h as JavaS
ript,program analysis te
hniques are being developed as an aid to the program-mers [2, 8�10, 27, 29℄. Although programs written in su
h languages are oftenrelatively small 
ompared to typi
al programs in other languages, their highlydynami
 nature poses di�
ulties to stati
 analysis. In parti
ular, JavaS
riptprograms involve 
omplex interplays between �rst-
lass fun
tions, obje
ts withmodi�able prototype 
hains, and impli
it type 
oer
ions that all must be 
are-fully modeled to ensure su�
ient pre
ision.While developing a program analysis for JavaS
ript [15℄ aiming to stati-
ally infer type information we en
ountered the following 
hallenge: How 
anwe obtain a �ow- and 
ontext-sensitive interpro
edural data�ow analysis thata

ounts for mutable heap stru
tures, supports obje
ts and �rst-
lass fun
tions,is amenable to non-distributive transfer fun
tions, and is e�
ient and pre
ise?Various dire
tions 
an be 
onsidered. First, one may attempt to apply the 
las-si
al monotone framework [18℄ as a whole-program analysis with an iterative�xpoint algorithm, where fun
tion 
all and return �ow is treated as any otherdata�ow. This approa
h turns out to be una

eptable: the �xpoint algorithm re-quires too many iterations, and pre
ision may su�er be
ause spurious data�owappears via interpro
edurally unrealizable paths. Another approa
h is to applythe IFDS te
hnique [23℄, whi
h eliminates those problems. However, it is re-stri
ted to distributive analyses, whi
h makes it inappli
able in our situation.A further 
onsideration is the fun
tional approa
h [26℄ whi
h models ea
h fun
-tion in the program as a partial summary fun
tion that maps input data�ow
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fa
ts to output data�ow fa
ts and then uses this summary fun
tion wheneverthe fun
tion is 
alled. However, with a data�ow latti
e as large as in our 
aseit be
omes di�
ult to avoid reanalyzing ea
h fun
tion a large number of times.Although there are numerous alternatives and variations of these approa
hes,we have been unable to �nd one in the literature that adequately addresses the
hallenge des
ribed above. Mu
h e�ort has also been put into more spe
ializedanalyses, su
h as pointer analysis [11℄, however it is far from obvious how togeneralize that work to our setting.As an introdu
tory example, 
onsider this fragment of a JavaS
ript program:fun
tion Person(n) { this.setName(n); }Person.prototype.setName = fun
tion(n) { this.name = n; }fun
tion Student(n,s) { Person.
all(this, n);this.studentid = s.toString(); }Student.prototype = new Person;var x = new Student("John Doe", 12345);x.setName("John Q. Doe");The 
ode de�nes two �
lasses� with 
onstru
tors Person and Student. Personhas a method setName via its prototype obje
t, and Student inherits setNameand de�nes an additional �eld studentid. The 
all statement in Student in-vokes the super 
lass 
onstru
tor Person.Analyzing the often intri
ate �ow of 
ontrol and data in su
h programs re-quires detailed modeling of points-to relations among obje
ts and fun
tions andof type 
oer
ion rules. TAJS is a whole-program analysis based on the monotoneframework that follows this approa
h, and our �rst implementation is 
apableof analyzing 
omplex properties of many JavaS
ript programs. However, ourexperiments have shown a 
onsiderable redundan
y of 
omputation during theanalysis that 
auses simple fun
tions to be analyzed a large number of times.If, for example, the setName method is 
alled from other lo
ations in the pro-gram, then the slightest 
hange of any abstra
t state appearing at any 
all siteof setName during the analysis would 
ause the method to be reanalyzed, eventhough the 
hanges may be entirely irrelevant for that method. In this paper,we propose a te
hnique for avoiding mu
h of this redundan
y while preserving,or even improving, the pre
ision of the analysis. Although our main appli
a-tion is type analysis for JavaS
ript, we believe the te
hnique is more generallyappli
able to analyses for obje
t-oriented languages.The main idea is to introdu
e a notion of �unknown� values for obje
t �eldsthat are not a

essed within the 
urrent fun
tion. This prevents mu
h irrelevantinformation from being propagated during the �xpoint 
omputation. The anal-ysis initially assumes that no �elds are a

essed when �ow enters a fun
tion.When su
h an unknown value is read, a re
overy operation is invoked to go ba
kthrough the 
all graph and propagate the 
orre
t value. By avoiding to re
overthe same values repeatedly, the total amortized 
ost of re
overy is never higherthan that of the original analysis. With large abstra
t states, the me
hanismmakes a noti
eable di�eren
e to the analysis performan
e.2



Lazy propagation should not be 
onfused with demand-driven analysis [14℄.The goal of the latter is to 
ompute the results of an analysis only at spe
i�
 pro-gram points thereby avoiding the e�ort to 
ompute a global result. In 
ontrast,lazy propagation 
omputes a model of the state for ea
h program point.The 
ontributions of this paper 
an be summarized as follows:� We propose an ADT-based adaptation of the monotone framework to pro-gramming languages with mutable heap stru
tures and �rst-
lass fun
tionsand exhibit some of its limitations regarding pre
ision and performan
e.� We des
ribe a systemati
 modi�
ation of the framework that introdu
eslazy propagation. This novel te
hnique propagates data�ow fa
ts �by need�in an iterative �xpoint algorithm. We provide a formal des
ription of themethod to reason about its properties and to serve as a blueprint for animplementation.� The lazy propagation te
hnique is experimentally validated: It has been im-plemented into our type analysis for JavaS
ript, TAJS [15℄, resulting in asigni�
ant improvement in performan
e.In the appendix we prove termination, relate lazy propagation with the basi
framework�showing that pre
ision does not de
rease, and sket
h a soundnessproof of the analysis.2 A Basi
 Analysis FrameworkOur starting point is the 
lassi
al monotone framework [18℄ tailored to pro-gramming languages with mutable heap stru
tures and �rst-
lass fun
tions. Themutable state 
onsists of a heap of obje
ts. Ea
h obje
t is a map from �eldnames to values, and ea
h value is either a referen
e to an obje
t, a fun
tion, orsome primitive value. Note that this se
tion 
ontains no new results, but it setsthe stage for presenting our approa
h in Se
tion 3.2.1 Analysis Instan
esGiven a program Q, an instan
e of the monotone framework for an analysis of
Q is a tuple A = (F,N,L, P, C, n0, c0,Base, T ) 
onsisting of:
F : the set of fun
tions in Q;
N : the set of primitive statements (also 
alled nodes) in Q;
L: a set of obje
t labels in Q;
P : a set of �eld names (also 
alled properties) in Q;
C: a set of abstra
t 
ontexts, whi
h are used for 
ontext sensitivity;
n0 ∈ N and c0 ∈ C: an initial statement and 
ontext des
ribing the entry of Q;Base: a base latti
e for modeling primitive values, su
h as integers or booleans;
T : C ×N → AnalysisLatti
e → AnalysisLatti
e: a monotone transfer fun
tion forea
h primitive statement, where AnalysisLatti
e is a latti
e derived from theabove information as detailed in Se
tion 2.2.3



Ea
h of the sets must be �nite and the Base latti
e must have �nite height. Theprimitive statements are organized into intrapro
edural 
ontrol �ow graphs [19℄,and the set of obje
t labels is typi
ally determined by allo
ation-site abstra
-tion [5, 16℄.The notation fun(n) ∈ F denotes the fun
tion that 
ontains the statement
n ∈ N , and entry(f) and exit(f) denote the unique entry statement and exitstatement, respe
tively, of the fun
tion f ∈ F . For a fun
tion 
all statement
n ∈ N , after (n) denotes the statement being returned to after the 
all. A lo
ationis a pair (c, n) of a 
ontext c ∈ C and a statement n ∈ N .2.2 Derived Latti
esAn analysis instan
e gives rise to a 
olle
tion of derived latti
es. In the following,ea
h fun
tion spa
e is ordered pointwise and ea
h powerset is ordered by in
lu-sion. For a latti
e X , the symbols ⊥X , ⊑X , and ⊔X denote the bottom element(representing the absen
e of information), the partial order, and the least upperbound operator (for merging information). We omit the X subs
ript when it is
lear from the 
ontext.An abstra
t value is des
ribed by the latti
e Value as a set of obje
t labels,a set of fun
tions, and an element from the base latti
e:Value = P(L)× P(F )× BaseAn abstra
t obje
t is a map from �eld names to abstra
t values:Obj = P → ValueAn abstra
t state is a map from obje
t labels to abstra
t obje
ts:State = L → ObjCall graphs are des
ribed by this powerset latti
e:CallGraph = P(C ×N × C × F )In a 
all graph g ∈ CallGraph, we interpret (c1, n1, c2, f2) ∈ g as a potentialfun
tion 
all from statement n1 in 
ontext c1 to fun
tion f2 in 
ontext c2.Finally, an element of AnalysisLatti
e provides an abstra
t state for ea
h 
on-text and primitive statement (in a forward analysis, the program point immedi-ately before the statement), 
ombined with a 
all graph:AnalysisLatti
e = (C ×N → State)× CallGraphIn pra
ti
e, an analysis may involve additional latti
e 
omponents su
h as anabstra
t sta
k or extra information asso
iated with ea
h abstra
t obje
t or �eld.We omit su
h 
omponents to simplify the presentation as they are irrelevant tothe features that we fo
us on here. Our previous paper [15℄ des
ribes the fulllatti
es used in our type analysis for JavaS
ript.4



solve
(

A
) where A = (F,N, L, P, C, n0, c0,Base, T ):

a := ⊥AnalysisLatti
e
W := {(c0, n0)}while W 6= ∅ dosele
t and remove (c, n) from W

Ta(c, n)end whilereturn aFig. 1. The worklist algorithm. The worklist 
ontains lo
ations, i.e., pairs of a 
ontextand a statement. The operation Ta(c, n) 
omputes the transfer fun
tion for (c, n) onthe 
urrent analysis latti
e element a and updates a a

ordingly. Additionally, it mayadd new entries to the worklist W . The transfer fun
tion for the initial lo
ation (c0, n0)is responsible for 
reating the initial abstra
t state.2.3 Computing the SolutionThe solution to A is the least element a ∈ AnalysisLatti
e that solves these
onstraints:
∀c ∈ C, n ∈ N : T (c, n)(a) ⊑ aComputing the solution to the 
onstraints involves �xpoint iteration of thetransfer fun
tions, whi
h is typi
ally implemented with a worklist algorithm asthe one presented in Figure 1. The algorithm maintains a worklist W ⊆ C ×Nof lo
ations where the abstra
t state has 
hanged and thus the transfer fun
tionshould be applied. Latti
e elements representing fun
tions, in parti
ular a ∈AnalysisLatti
e, are generally 
onsidered as mutable and we use the notation

Ta(c, n) for the assignment a := T (c, n)(a). As a side e�e
t, the 
all to Ta(c, n)is responsible for adding entries to the worklist W , as explained in Se
tion 2.4.This slightly un
onventional approa
h to des
ribing �xpoint iteration simpli�esthe presentation in the subsequent se
tions.Note that the solution 
onsists of both the 
omputed 
all graph and anabstra
t state for ea
h lo
ation. We do not 
onstru
t the 
all graph in a prelim-inary phase be
ause the presen
e of �rst-
lass fun
tions implies that data�owfa
ts and 
all graph information are mutually dependent (as evident from theexample program in Se
tion 1).This �xpoint algorithm leaves two implementation 
hoi
es: the order in whi
hentries are removed from the worklist W , whi
h 
an greatly a�e
t the number ofiterations needed to rea
h the �xpoint, and the representation of latti
e elements,whi
h 
an a�e
t both time and memory usage. These 
hoi
es are, however, notthe fo
us of the present paper (see, e.g. [3, 13, 17, 19, 28℄).2.4 An Abstra
t Data Type for Transfer Fun
tionsTo pre
isely explain our modi�
ations of the framework in the subsequent se
-tions, we treat AnalysisLatti
e as an imperative ADT (abstra
t data type) [20℄with the following operations: 5



� getfield : C ×N × L× P → Value� getcallgraph : () → CallGraph� getstate : C ×N → State� propagate : C ×N × State → ()� funentry : C ×N × C × F × State → ()� funexit : C ×N × C × F × State → ()We let a ∈ AnalysisLatti
e denote the 
urrent, mutable analysis latti
e element.The transfer fun
tions 
an only a

ess a through these operations.The operation getfield(c, n, ℓ, p) returns the abstra
t value of the �eld p inthe abstra
t obje
t ℓ at the entry of the primitive statement n in 
ontext c. Inthe basi
 framework, getfield performs a simple lookup, without any side e�e
tson the analysis latti
e element:
a.getfield(c ∈ C, n ∈ N, ℓ ∈ L, p ∈ P ):return u(ℓ)(p) where (m,_) = a and u = m(c, n)The getcallgraph operation sele
ts the 
all graph 
omponent of the analysislatti
e element:
a.getcallgraph():return g where (_, g) = aTransfer fun
tions typi
ally use the getcallgraph operation in 
ombination withthe funexit operation explained below. Moreover, the getcallgraph operationplays a role in the extended framework presented in Se
tion 3.The getstate operation returns the abstra
t state at a given lo
ation:
a.getstate(c ∈ C, n ∈ N):return m(c, n) where (m,_) = aThe transfer fun
tions must not read the �eld values from the returned abstra
tstate (for that, the getfield operation is to be used). They may 
onstru
t param-eters to the operations propagate , funentry, and funexit by updating a 
opy ofthe returned abstra
t state.The transfer fun
tions must use the operation propagate(c, n, s) to pass in-formation from one lo
ation to another within the same fun
tion (ex
luding re-
ursive fun
tion 
alls). As a side e�e
t, propagate adds the lo
ation (c, n) to theworklist W if its abstra
t state has 
hanged. In the basi
 framework, propagateis de�ned as follows:
a.propagate(c ∈ C, n ∈ N , s ∈ State):let (m, g) = aif s 6⊑ m(c, n) then

m(c, n) := m(c, n) ⊔ s
W := W ∪ {(c, n)}end ifThe operation funentry(c1, n1, c2, f2, s) models fun
tion 
alls in a forwardanalysis. It modi�es the analysis latti
e element a to re�e
t the possibility of a6



fun
tion 
all from a statement n1 in 
ontext c1 to a fun
tion entry statement
entry(f2) in 
ontext c2 where s is the abstra
t state after parameter passing.(With languages where parameters are passed via the sta
k, whi
h we ignorehere, the latti
e is augmented a

ordingly.) In the basi
 framework, funentryadds the 
all edge from (c1, n1) to (c2, f2) and propagates s into the abstra
tstate at the fun
tion entry statement entry(f2) in 
ontext c2:
a.funentry(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
g := g ∪ {(c1, n1, c2, f2)} where (_, g) = a
a.propagate(c2, entry(f2), s)
a.funexit(c1, n1, c2, f2,m(c2, exit(f2)))Adding a new 
all edge also triggers a 
all to funexit to establish data�ow fromthe fun
tion exit to the su

essor of the new 
all site.The operation funexit(c1, n1, c2, f2, s) is used for modeling fun
tion returns.It modi�es the analysis latti
e element to re�e
t the data�ow of s from the exitof a fun
tion f2 in 
allee 
ontext c2 to the su

essor of the 
all statement n1with 
aller 
ontext c1. The basi
 framework does so by propagating s into theabstra
t state at the latter lo
ation:

a.funexit(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):
a.propagate(c1, after (n1), s)The parameters c2 and f2 are not used in the basi
 framework; they will be usedin Se
tion 3. The transfer fun
tions obtain the 
onne
tions between 
allers and
allees via the getcallgraph operation explained earlier. If using an augmentedlatti
e where the 
all sta
k is also modeled, that 
omponent would naturally behandled di�erently by funexit simply by 
opying it from the 
all lo
ation (c1, n1),essentially as lo
al variables are treated in, for example, IFDS [23℄.This basi
 framework is su�
iently general as a foundation for many analysesfor obje
t-oriented programming languages, su
h as Java or C#, as well as forobje
t-based s
ripting languages like JavaS
ript as explained in Se
tion 4. Atthe same time, it is su�
iently simple to allow us to pre
isely demonstrate theproblems we atta
k and our solution in the following se
tions.2.5 Problems with the Basi
 Analysis FrameworkThe �rst implementation of TAJS, our program analysis for JavaS
ript, is basedon the basi
 analysis framework. Our initial experiments showed, perhaps notsurprisingly, that many simple fun
tions in our ben
hmark programs were ana-lyzed over and over again (even for the same 
alling 
ontexts) until the �xpointwas rea
hed.For example, a fun
tion in the ri
hards.js ben
hmark from the V8 
olle
-tion was analyzed 18 times when new data�ow appeared at the fun
tion entry:TaskControlBlo
k.prototype.markAsRunnable = fun
tion () {this.state = this.state | STATE_RUNNABLE;}; 7



Most of the time, the new data�ow had nothing to do with the this obje
t or theSTATE_RUNNABLE variable. Although this parti
ular fun
tion body is very short,it still takes time and spa
e to analyze it and similar situations were observedfor more 
omplex fun
tions and in other ben
hmark programs.In addition to this abundant redundan
y, we observed � again not surpris-ingly � a signi�
ant amount of spurious data�ow resulting from interpro
edurallyinvalid paths. For example, if the fun
tion above is 
alled from two di�erent lo-
ations, with the same 
alling 
ontext, their entire heap stru
tures (that is, theState 
omponent in the latti
e) be
ome joined, thereby losing pre
ision.Another issue we noti
ed was time and spa
e required for propagating theinitial state, whi
h 
onsists of 161 obje
ts in the 
ase of JavaS
ript. These obje
tsare mutable and the analysis must a

ount for 
hanges made to them by theprogram. Sin
e the analysis is both �ow- and 
ontext-sensitive, a typi
al elementof AnalysisLatti
e 
arries a lot of information even for small programs.Our �rst version of TAJS applied two te
hniques to address these issues: (1)Latti
e elements were represented in memory using 
opy-on-write to make their
onstituents shared between di�erent lo
ations until modi�ed. (2) The latti
ewas extended to in
orporate a simple e�e
t analysis 
alled maybe-modi�ed : Forea
h obje
t �eld, the analysis would keep tra
k of whether the �eld might havebeen modi�ed sin
e entering the 
urrent fun
tion. At fun
tion exit, �eld valuesthat were de�nitely not modi�ed by the fun
tion would be repla
ed by thevalue from the 
all site. As a 
onsequen
e, the �ow of unmodi�ed �elds was nota�e
ted by fun
tion 
alls. Although these two te
hniques are quite e�e
tive, thelazy propagation approa
h that we introdu
e in the next se
tion often supersedesthe maybe-modi�ed te
hnique and renders 
opy-on-write essentially super�uous.In Se
tion 4 we experimentally 
ompare lazy propagation with both the basi
framework and the basi
 framework extended with the 
opy-on-write and maybe-modi�ed te
hniques.3 Extending the Framework with Lazy PropagationTo remedy the short
omings of the basi
 framework, we propose an extensionthat 
an help redu
ing the observed redundan
y and the amount of informa-tion being propagated by the transfer fun
tions. The key idea is to ensure thatthe �xpoint solver propagates information �by need�. The extension 
onsists ofa systemati
 modi�
ation of the ADT representing the analysis latti
e. Thismodi�
ation impli
itly 
hanges the behavior of the transfer fun
tions withouttou
hing their implementation.3.1 Modi�
ations of the Analysis Latti
eIn short, we modify the analysis latti
e as follows:1. We introdu
e an additional abstra
t value, unknown. Intuitively, a �eld p ofan obje
t has this value in an abstra
t state asso
iated with some lo
ation in8



a fun
tion f if the value of p is not known to be needed (that is, referen
ed)in f or in a fun
tion 
alled from f .2. Ea
h 
all edge is augmented with an abstra
t state that 
aptures the data�ow along the edge after parameter passing, su
h that this information isreadily available when resolving unknown �eld values.3. A spe
ial abstra
t state, none, is added, for des
ribing absent 
all edges andlo
ations that may be unrea
hable from the program entry.More formally, we modify three of the sub-latti
es as follows:Obj = P →
(Value↓unknown)CallGraph = C ×N × C × F → (State↓none)AnalysisLatti
e = (

C ×N → (State↓none))× CallGraphHere, X↓y means the latti
e X lifted over a new bottom element y. In a 
all graph
g ∈ CallGraph in the original latti
e, the presen
e of an edge (c1, n1, c2, f2) ∈ gis modeled by g′(c1, n1, c2, f2) 6= none for the 
orresponding 
all graph g′ in themodi�ed latti
e. Noti
e that ⊥State is now the fun
tion that maps all obje
tlabels and �eld names to unknown, whi
h is di�erent from the element none.3.2 Modi�
ations of the Abstra
t Data Type OperationsBefore we des
ribe the systemati
 modi�
ations of the ADT operations we mo-tivate the need for an auxiliary operation, recover , on the ADT:

recover : C ×N × L× P → ValueSuppose that, during the �xpoint iteration, a transfer fun
tion Ta(c, n) invokes
a.getfield(c, n, ℓ, p) with the result unknown. This result indi
ates the situationthat the �eld p of an abstra
t obje
t ℓ is referen
ed at the lo
ation (c, n), butthe �eld value has not yet been propagated to this lo
ation due to the lazypropagation. The recover operation 
an then 
ompute the proper �eld value byperforming a spe
ialized �xpoint 
omputation to propagate just that �eld valueto (c, n). We explain in Se
tion 3.3 how recover is de�ned.The getfield operation is modi�ed su
h that it invokes recover if the de-sired �eld value is unknown, as shown in Figure 2. The modi�
ation may breakmonotoni
ity of the transfer fun
tions, however, as we argue in Appendix A, theanalysis still produ
es the 
orre
t result.Similarly, the propagate operation needs to be modi�ed to a

ount for thelatti
e element none and for the situation where unknown is joined with an ordi-nary element. The latter is a

omplished by using recover whenever this situationo

urs. The resulting operation propagate ′ is shown in Figure 3.We then modify funentry(c1, n1, c2, f2, s) su
h that the abstra
t state s ispropagated �lazily� into the abstra
t state at the primitive statement entry(f2)in 
ontext c2. Here, laziness means that every �eld value that, a

ording to a,is not referen
ed within the fun
tion f2 in 
ontext c2 gets repla
ed by unknownin the abstra
t state. Additionally, the modi�ed operation re
ords the abstra
tstate at the 
all edge as required in the modi�ed CallGraph latti
e. The resulting9



a.getfield ′(c ∈ C, n ∈ N , ℓ ∈ L, p ∈ P ):if m(c, n) 6= none where (m,_) = a then
v := a.getfield(c, n, ℓ, p)if v = unknown then

v := a.recover (c, n, ℓ, p)end ifreturn velsereturn ⊥Valueend ifFig. 2. Algorithm for getfield ′(c, n, ℓ, p). This modi�ed version of getfield invokes
recover in 
ase the desired �eld value is unknown. If the state is none a

ording to
a, the operation simply returns ⊥Value.
a.propagate ′(c ∈ C, n ∈ N , s ∈ State):let (m, g) = a and u = m(c, n)

s′ := sif u 6= none thenfor all ℓ ∈ L, p ∈ P doif u(ℓ)(p) = unknown ∧ s(ℓ)(p) 6= unknown then
u(ℓ)(p) := a.recover (c, n, ℓ, p)else if u(ℓ)(p) 6= unknown ∧ s(ℓ)(p) = unknown then
s′(ℓ)(p) := a.recover (c, n, ℓ, p)end ifend forend if

a.propagate(c, n, s′)Fig. 3. Algorithm for propagate ′(c, n, s). This modi�ed version of propagate takes intoa

ount that �eld values may be unknown in both a and s. Spe
i�
ally, it uses recoverto ensure that the invo
ation of propagate in the last line never 
omputes the leastupper bound of unknown and an ordinary �eld value. The treatment of unknown valuesin s assumes that s is re
overable with respe
t to the 
urrent lo
ation (c, n). If theabstra
t state at (c, n) is none (the least element), then that gets updated to s.operation funentry ′ is de�ned in Figure 4. (Without loss of generality, we assumethat the statement at exit(f2) returns to the 
aller without modifying the state.)As 
onsequen
e of the modi�
ation, unknown �eld values get introdu
ed into theabstra
t states at fun
tion entries.The funexit operation is modi�ed su
h that every unknown �eld value ap-pearing in the abstra
t state being returned is repla
ed by the 
orresponding�eld value from the 
all edge, as shown in Figure 5. In JavaS
ript, entering afun
tion body at a fun
tions 
all a�e
ts the heap, whi
h is the reason for usingthe state from the 
all edge rather than the state from the 
all statement. If weextended the latti
e to also model the 
all sta
k, then that 
omponent wouldnaturally be re
overed from the 
all statement rather than the 
all edge.Figure 6 illustrates the data�ow at fun
tion entries and exits as modeledby the funexit ′ and funentry ′ operations. The two nodes n1 and n2 represent10



a.funentry ′(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):let (m, g) = a and u = m(c2, entry(f2))// update the 
all edge
g(c1, n1, c2, f2) := g(c1, n1, c2, f2) ⊔ s// introdu
e unknown �eld values
s′ := ⊥Stateif u 6= none thenfor all ℓ ∈ L, p ∈ P doif u(ℓ)(p) 6= unknown then// the �eld has been referen
ed

s′(ℓ)(p) := s(ℓ)(p)end ifend forend if// propagate the resulting state into the fun
tion entry
a.propagate ′(c2, entry(f2), s

′)// propagate �ow for the return edge, if any is known alreadylet t = m(c2, exit(f2))if t 6= none then
a.funexit ′(c1, n1, c2, f2, t)end ifFig. 4. Algorithm for funentry ′(c1, n1, c2, f2, s). This modi�ed version of funentry�lazily� propagates s into the abstra
t state at entry(f2) in 
ontext c2. The abstra
tstate s′ is unknown for all �elds that have not yet been referen
ed by the fun
tion being
alled a

ording to u (re
all that ⊥State maps all �elds to unknown).

a.funexit ′(c1 ∈ C, n1 ∈ N , c2 ∈ C, f2 ∈ F , s ∈ State):let (_, g) = a and ug = g(c1, n1, c2, f2)
s′ := ⊥Statefor all ℓ ∈ L, p ∈ P doif s(ℓ)(p) = unknown then// the �eld has not been a

essed, so restore its value from the 
all edge state

s′(ℓ)(p) := ug(ℓ)(p)else
s′(ℓ)(p) := s(ℓ)(p)end ifend for

a.propagate ′(c1, after(n1), s
′)Fig. 5. Algorithm for funexit ′(c1, n1, c2, f2, s). This modi�ed version of funexit restores�eld values that have not been a

essed within the fun
tion being 
alled, using the valuefrom before the 
all. It then propagates the resulting state as in the original operation.fun
tion 
all statements that invoke the fun
tion f . Assume that the value ofthe �eld p in the abstra
t obje
t ℓ, denoted ℓ.p, is v1 at n1 and v2 at n2 where

v1, v2 ∈ Value. When data�ow �rst arrives at entry(f) the funentry ′ operationsets ℓ.p to unknown. Assuming that f does not a

ess ℓ.p it remains unknownthroughout f , so funexit ′ 
an safely restore the original value v1 by merging thestate from exit(f) with ug1 (the state re
orded at the 
all edge) at after(n1).11



n1

after (n1)

ug1 ug2

n2

after(n2)

entry(f)

exit(f)

f

Fig. 6. A fun
tion f being 
alled from two di�erent statements, n1 and n2 appearingin other fun
tions (for simpli
ity, all with the same 
ontext c). The edges indi
atedata�ow, and ea
h bullet 
orresponds to an element of State with ug1 = g(c, n1, c, f)and ug2 = g(c, n2, c, f) where g ∈ CallGraph.Similarly for the other 
all site, the value v2 will be restored at after (n2). Thus,the data�ow for non-referen
ed �elds respe
ts the interpro
edurally valid paths.This is in 
ontrast to the basi
 framework where the value of ℓ.p would be
v1 ⊔ v2 at both after (n1) and after(n2). Thereby, the modi�
ation of funexitmay � perhaps surprisingly � 
ause the resulting analysis solution to be morepre
ise than in the basi
 framework. If a statement in f writes a value v′ to ℓ.p itwill no longer be unknown, so v′ will propagate to both after (n1) and after(n2).If the transfer fun
tion of a statement in f invokes getfield ′ to obtain the valueof ℓ.p while it is unknown, it will be re
overed by 
onsidering the 
all edges into
f , as explained in Se
tion 3.3.The getstate operation is not modi�ed. A transfer fun
tion 
annot noti
e thefa
t that the returned State elements may 
ontain unknown �eld values, be
auseit is not permitted to read a �eld value through su
h a state.Finally, the getcallgraph operation requires a minor modi�
ation to ensurethat its output has the same type although the underlying latti
e has 
hanged:
a.getcallgraph ′():return {(c1, n1, c2, f2) | g(c1, n1, c2, f2) 6= none} where (_, g) = aTo demonstrate how the lazy propagation framework manages to avoid 
er-tain redundant 
omputations, 
onsider again the markAsRunnable fun
tion inSe
tion 2.5. Suppose that the analysis �rst en
ounters a 
all to this fun
tionwith some abstra
t state s. This 
all triggers the analysis of the fun
tion body,whi
h a

esses only a few obje
t �elds within s. The abstra
t state at the entrylo
ation of the fun
tion is unknown for all other �elds. If new �ow subsequentlyarrives via a 
all to the fun
tion with another abstra
t state s′ where s ⊑ s′, theintrodu
tion of unknown values ensures that the fun
tion body is only reanalyzedif s′ di�ers from s at the few relevant �elds that are not unknown.3.3 Re
overing Unknown Field ValuesWe now turn to the de�nition of the auxiliary operation recover . It gets invokedby getfield ′ and propagate ′ whenever an unknown element needs to be repla
ed12



by a proper �eld value. The operation returns the desired �eld value but also,as a side e�e
t, modi�es the relevant abstra
t states for fun
tion entry lo
ationsin a.The key observation for de�ning recover (c, n, ℓ, p) where c ∈ C, n ∈ N , ℓ ∈ L,and p ∈ P is that unknown is only introdu
ed in funentry ′ and that ea
h 
alledge � very 
onveniently � re
ords the abstra
t state just before the ordinary �eldvalue is 
hanged into unknown. Thus, the operation needs to go ba
k throughthe 
all graph and re
over the missing information. However, it only needs tomodify the abstra
t states that belong to fun
tion entry statements.Re
overy is a two phase pro
ess. The �rst phase 
onstru
ts a dire
ted multi-rooted graph G the nodes of whi
h are a subset of C ×F . It is 
onstru
ted fromthe 
all graph in a ba
kward manner starting from (c, n) as the smallest graphsatisfying the following two 
onstraints, where (m, g) = a:� The graph G 
ontains the node (c, fun(n)).3� For ea
h node (c2, f2) inG and for ea
h (c1, n1) where g(c1, n1, c2, f2) 6= none:
• If ug(ℓ)(p) = unknown ∧ u1(ℓ)(p) = unknown where ug = g(c1, n1, c2, f2)and u1 = m(c1, entry(fun(n1))) then G 
ontains the node (c1, fun(n1))with an edge to (c2, f2),
• otherwise, (c2, f2) is a root of G.The resulting graph is essentially a subgraph of the 
all graph. A node in Gis a root if at least one of the in
oming 
all graph edges of the 
orrespondingfun
tion 
ontributes with a non-unknown value. Noti
e that root nodes may havein
oming edges in G.The se
ond phase is a �xpoint 
omputation over G:// re
over the abstra
t value at the roots of Gfor ea
h root (c′, f ′) of G dolet u′ = m(c′, entry(f ′))for all (c1, n1) where g(c1, n1, c

′, f ′) 6= none dolet ug = g(c1, n1, c
′, f ′) and u1 = m(c1, entry(fun(n1)))if ug(ℓ)(p) 6= unknown then

u′(ℓ)(p) := u′(ℓ)(p) ⊔ ug(ℓ)(p)else if u1(ℓ)(p) 6= unknown then
u′(ℓ)(p) := u′(ℓ)(p) ⊔ u1(ℓ)(p)end ifend forend for// propagate throughout G at fun
tion entry nodes

S := the set of roots of Gwhile S 6= ∅ dosele
t and remove (c′, f ′) from Slet u′ = m(c′, entry(f ′))for ea
h su

essor (c2, f2) of (c′, f ′) in G dolet u2 = m(c2, entry(f2))3 This 
onstraint has been 
orre
ted after the SAS 2010 paper was published.13



if u′(ℓ)(p) 6⊑ u2(ℓ)(p) then
u2(ℓ)(p) := u2(ℓ)(p) ⊔ u′(ℓ)(p)add (c2, f2) to Send ifend forend whileThis phase re
overs the abstra
t value at the roots of G and then propagatesthe value through the nodes of G until a �xpoint is rea
hed. Although recovermodi�es abstra
t states in this phase, it does not modify the worklist, an issuewhi
h we return to in Appendix A.3. After this phase, we have u(ℓ)(p) 6= unknownwhere u = m(c′, entry(f ′)) for ea
h node (c′, f ′) inG. (Noti
e that the side e�e
tson a only 
on
ern abstra
t states at fun
tion entry statements.) In parti
ular,this holds for (c, fun(n)), so when recover(c, n, ℓ, p) has 
ompleted the two phases,it returns the desired value u(ℓ)(p) where u = m(c, entry(fun(n))).Noti
e that the graph G is empty if u(ℓ)(p) 6= unknown where u = m(c,

entry(fun(n))) (see the �rst of the two 
onstraints de�ning G). In this 
ase, thedesired �eld has already been re
overed, the se
ond phase is e�e
tively skipped,and u(ℓ)(p) is returned immediately.Figure 7 illustrates an example of interpro
edural data�ow among four fun
-tions. (This example ignores data�ow for fun
tion returns and assumes a �xed
alling 
ontext c.) The statements write1 and write2 write to a �eld ℓ.p, and
read reads from it. Assume that the analysis dis
overs all the 
all edges beforevisiting read . In that 
ase, ℓ.p will have the value unknown when entering f2 and
f3, whi
h will propagate to f4. The transfer fun
tion for read will then invoke
getfield ′, whi
h in turn invokes recover . The graph G will be 
onstru
ted withthree nodes: (c, f2), (c, f3), and (c, f4) where (c, f2) and (c, f3) are roots andhave edges to (c, f4). The se
ond phase of recover will repla
e the unknown valueof ℓ.p at entry(f2) and entry(f2) by its proper value stored at the 
all edges andthen propagate that value to entry(f3) and �nally return it to getfield ′. Noti
ethat the value of ℓ.p at, for example, the 
all edges, remains unknown. How-ever, if data�ow subsequently arrives via transfer fun
tions of other statements,those unknown values may be repla
ed by ordinary values. Finally, note thatthis simple example does not require �xpoint iteration within recover , howeverthat be
omes ne
essary when 
all graphs 
ontain 
y
les (resulting from programswith re
ursive fun
tion 
alls).The modi�
ations only 
on
ern the AnalysisLatti
e ADT, in terms of whi
h alltransfer fun
tions of an analysis are de�ned. The transfer fun
tions themselvesare not 
hanged. Although invo
ations of recover involve traversals of parts ofthe 
all graph, the main worklist algorithm (Figure 1) requires no modi�
ations.4 Implementation and ExperimentsTo examine the impa
t of lazy propagation on analysis performan
e, we ex-tended the Java implementation of TAJS, our type analyzer for JavaS
ript [15℄,14
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Fig. 7. Fragments of four fun
tions, f1 . . . f4. As in Figure 6, edges indi
ate data�owand bullets 
orrespond to elements of State. The statements write1 and write2 write toa �eld ℓ.p, and read reads from it. The recover operation applied to the read statementand ℓ.p will ensure that values written at write1 and write2 will be read at the readstatements, despite the possible presen
e of unknown values.by systemati
ally applying the modi�
ations des
ribed in Se
tion 3. As usual indata�ow analysis, primitive statements are grouped into basi
 blo
ks. The im-plementation fo
uses on the JavaS
ript language itself and the built-in library,but presently ex
ludes the DOM API, so we use the most 
omplex ben
hmarksfrom the V84 and SunSpider5 ben
hmark 
olle
tions for the experiments.Des
riptions of other aspe
ts of TAJS not dire
tly related to lazy propaga-tion may be found in the TAJS paper [15℄. These in
lude the use of re
en
yabstra
tion [4℄, whi
h 
ompli
ates the implementation, but does not 
hange theproperties of the lazy propagation te
hnique.We 
ompare three versions of the analysis: basi
 
orresponds to the basi
framework des
ribed in Se
tion 2; basi
+ extends the basi
 version with the 
opy-on-write and maybe-modi�ed te
hniques dis
ussed in Se
tion 2.5, whi
h is theversion used in [15℄; and lazy is the new implementation using lazy propagation(without the other extensions from the basi
+ version).4 http://v8.google
ode.
om/svn/data/ben
hmarks/v1/5 http://www2.webkit.org/perf/sunspider-0.9/sunspider.html15



Iterations Time (se
onds) Memory (MB)LOC Blo
ks basi
 basi
+ lazy basi
 basi
+ lazy basi
 basi
+ lazyri
hards.js 529 478 2663 2782 1399 5.6 4.6 3.8 11.05 6.4 3.7ben
hpress.js 463 710 18060 12581 5097 33.2 13.4 5.4 42.02 24.0 7.8delta-blue.js 853 1054 ∞ ∞ 63611 ∞ ∞ 136.7 ∞ ∞ 140.5
ryptoben
h.js 1736 2857 ∞ 43848 17213 ∞ 99.4 22.1 ∞ 127.9 42.83d-
ube.js 342 545 7116 4147 2009 14.1 5.3 4.0 18.4 10.6 6.23d-raytra
e.js 446 575 ∞ 30323 6749 ∞ 24.8 8.2 ∞ 16.7 10.1
rypto-md5.js 296 392 5358 1004 646 4.5 2.0 1.8 6.1 3.6 2.7a

ess-nbody.js 179 149 551 523 317 1.8 1.3 1.0 3.2 1.7 0.9Table 1. Performan
e ben
hmark results.Table 1 shows for ea
h program, the number of lines of 
ode, the number ofbasi
 blo
ks, the number of �xpoint iterations for the worklist algorithm (Fig-ure 1), analysis time (in se
onds, running on a 3.2GHz PC), and memory 
on-sumption. We use ∞ to denote runs that require more than 512MB of memory.We fo
us on the time and spa
e requirements for these experiments. On ourben
hmark programs, the pre
ision improvement is insigni�
ant with respe
t tothe number of potential type related bugs, whi
h is the pre
ision measure wehave used in our previous work.The experiments demonstrate that although the 
opy-on-write and maybe-modi�ed te
hniques have a signi�
ant positive e�e
t on the resour
e require-ments, lazy propagation leads to even better results. The results for ri
hards.jsare a bit unusual as it takes more iterations in basi
+ than in basi
, however the�xpoint is more pre
ise in basi
+.The ben
hmark results demonstrate that lazy propagation results in a signif-i
ant redu
tion of analysis time without sa
ri�
ing pre
ision. Memory 
onsump-tion is redu
ed by propagating less information during the �xpoint 
omputationand �xpoints are rea
hed in fewer iterations by eliminating a 
ause of redundant
omputation observed in the basi
 framework.5 Related WorkRe
ently, JavaS
ript and other s
ripting languages have 
ome into the fo
us ofresear
h on stati
 program analysis, partly be
ause of their 
hallenging dynami
nature. These works range from analysis for se
urity vulnerabilities [9, 29℄ tostati
 type inferen
e [1, 8, 15, 27℄. We 
on
entrate on the latter 
ategory, aimingto develop program analyses that 
an 
ompensate for the la
k of stati
 type
he
king in these languages. The interplay of language features of JavaS
ript,in
luding �rst-
lass fun
tions, obje
ts with modi�able prototype 
hains, andimpli
it type 
oer
ions, makes analysis a demanding task.The IFDS framework by Reps, Horwitz, and Sagiv [23℄ is a powerful andwidely used approa
h for obtaining pre
ise interpro
edural analyses. It requiresthe underlying latti
e to be a powerset and the transfer fun
tions to be dis-tributive. Unfortunately, these requirements are not met by our type analysisproblem for dynami
 obje
t-oriented s
ripting languages. The more general IDEframework also requires distributive transfer fun
tions [25℄. A 
onne
tion to ourapproa
h is that �elds that are marked as unknown at fun
tion exits, and hen
e16



have not been referen
ed within the fun
tion, are re
overed from the 
all site inthe same way lo
al variables are treated in IFDS.Sharir and Pnueli's fun
tional approa
h to interpro
edural analysis 
an bephrased both with symboli
 representations and in an iterative style [26℄, wherethe latter is 
loser to our approa
h. With the 
omplex latti
es and transferfun
tions that appear to be ne
essary in analyses for obje
t-oriented s
riptinglanguages, symboli
 representations are di�
ult to work with, so TAJS uses theiterative style and a relatively dire
t representation of latti
e elements. Further-more, the fun
tional approa
h is expensive if the analysis latti
e is large.Our analysis framework en
ompasses a general notion of 
ontext sensitivitythrough the C 
omponent of the analysis instan
es. Di�erent instantiations of Clead to di�erent kinds of 
ontext sensitivity, in
luding variations of the 
all-stringapproa
h [26℄, whi
h may also a�e
t the quality of interpro
edural analysis. Weleave the 
hoi
e of C open here; TAJS 
urrently uses a heuristi
 that distinguishes
all sites that have di�erent values of this.The use of unknown �eld values is related to the maybe-modi�ed te
hniquethat we used in the �rst version of TAJS [15℄: a �eld whose value is unknownis de�nitely not modi�ed. Both ideas 
an be viewed as instan
es of side e�e
tanalysis. Unlike, for example, the side e�e
t analysis by Landi et al. [24℄ ouranalysis 
omputes the 
all graph on-the-�y and we exploit the information that
ertain �elds are found to be non-referen
ed for obtaining the lazy propagationme
hanism. Via this 
onne
tion to side e�e
t analysis, one may also view theunknown �eld values as establishing a frame 
ondition as in separation logi
 [21℄.Combining 
all graph 
onstru
tion with other analyses is 
ommon in pointeralias analysis with fun
tion pointers, for example in the work of Burke et al. [12℄.That paper also des
ribes an approa
h 
alled deferred evaluation for in
reasinganalysis e�
ien
y, whi
h is spe
ialized to �ow insensitive alias analysis.Lazy propagation is related to lazy evaluation (e.g., [22℄) as it produ
es valuespassed to fun
tions on demand, but there are some di�eren
es. Lazy propagationdoes not defer evaluation as su
h, but just the propagation of the values; itapplies not just to the parameters but to the entire state; and it restri
ts lazinessto data stru
tures (values of �elds).Lazy propagation is di�erent from demand-driven analysis [14℄. Both ap-proa
hes defer 
omputation, but demand-driven analysis only 
omputes resultsfor sele
ted hot spots, whereas our goal is a whole-program analysis that infersinformation for all program points. Other te
hniques for redu
ing the amountof redundant 
omputation in �xpoint solvers is di�eren
e propagation [7℄ anduse of interpro
edural def-use 
hains [28℄. It might be possible to 
ombine thosete
hniques with lazy propagation, although they are di�
ult to apply to the
omplex transfer fun
tions that we have in type analysis for JavaS
ript.6 Con
lusionWe have presented lazy propagation as a te
hnique for improving the perfor-man
e of interpro
edural analysis in situations where existing methods, su
h asIFDS or the fun
tional approa
h, do not apply. The te
hnique is des
ribed by a17



systemati
 modi�
ation of a basi
 iterative framework. Through an implemen-tation that performs type analysis for JavaS
ript we have demonstrated that it
an signi�
antly redu
e the memory usage and the number of �xpoint iterationswithout sa
ri�
ing analysis pre
ision. The result is a step toward sound, pre
ise,and fast stati
 analysis for obje
t-oriented languages in general and s
riptinglanguages in parti
ular.A
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A Theoreti
al PropertiesThe lazy propagation analysis framework is supposed to improve on the resultsof the basi
 framework in several respe
ts. First, the modi�
ations should nota�e
t termination. Se
ond, analysis results with lazy propagation should alwaysbe at least as pre
ise as in the basi
 framework, meaning that the extensionsintrodu
e no spurious results. Third, the extensions should be sound in the sensethat the analysis result is still a �xpoint of the transfer fun
tions, whi
h has tobe adjusted be
ause of the introdu
tion of unknown �eld values, and that thetransfer fun
tions remain meaningful with respe
t to the language semanti
s. Inthe following, we state these properties more pre
isely and study them in somedetail.A.1 TerminationAs observed in Se
tion 3, the AnalysisLatti
emodi�
ations do not preserve mono-toni
ity of the transfer fun
tions. Nevertheless, it is easy to see that the worklistalgorithm (Figure 1) always terminates.Proposition 1. The worklist algorithm always terminates in the lazy propaga-tion framework.Proof. Ea
h AnalysisLatti
e operation terminates. The only nontrivial 
ase is
recover : Its �rst phase 
learly terminates as only a �nite set of nodes is 
onsid-ered, and the se
ond phase terminates be
ause AnalysisLatti
e has �nite height.Every iteration of the worklist algorithm removes a lo
ation from the worklist,and transfer fun
tions only add new lo
ations to the worklist when the latti
eelement is modi�ed. As every su
h modi�
ation makes the latti
e element largerand the latti
e has �nite height, termination is ensured.The number of iterations required to rea
h the �xpoint may di�er due to themodi�
ations. First, as mentioned in Se
tion 2.3, we have left the worklist pro-
essing order unspe
i�ed and that order may be a�e
ted by the modi�
ations.Se
ond, as des
ribed in Se
tion 3, the operation funexit

′ improves pre
ision withrespe
t to the original funexit operation by avoiding 
ertain interpro
edurallyinvalid paths. Depending on the parti
ular analysis instan
e, this improved pre-
ision may result in an in
rease or in a de
rease of the number of iterationsrequired to 
ompute the �xpoint. In pra
ti
e, we observe an overall de
rease onea
h of our ben
hmark programs, as shown in Se
tion 4.The 
ost of performing a recover operation is proportional to the number oftimes it applies ⊔. In the basi
 framework, the same amount of work is done,although �eagerly� within propagate operations. Hen
e, re
overy does not impairthe amortized analysis 
omplexity. 20



α(m′, g′) = (α(m′), α(g′)) where (m′, g′) ∈ AnalysisLatti
e′
α(g′) = {x ∈ C ×N × C × F | g′(x) 6= none} where g′ ∈ CallGraph′
α(m′)(c, n) = α(m′(c, n)) where m′ ∈ (C ×N → State'↓none), c ∈ C, n ∈ N

α(u′)(ℓ)(p) = α(u′(ℓ)(p)) where u′ ∈ State'↓none, ℓ ∈ L, p ∈ P, if u′ 6= none
α(none) = ⊥State
α(v′) = v′ where v′ ∈ Value↓unknown, if v′ 6= unknown
α(unknown) = ⊥ValueFig. 8. Mapping between latti
es in the extended and the basi
 framework.A.2 Pre
isionFor 
larity, the text in this subse
tion marks all elements and latti
es from thelazy propagation framework with primes ′ whereas entities from the basi
 frame-work remain unadorned. Let a0 ∈ AnalysisLatti
e be a solution of an analysis in-stan
e A in the basi
 framework, and let a′ ∈ AnalysisLatti
e′ be an intermediatestep arising during the �xpoint iteration in the extended framework for A. Thegoal is to show that a′ is always smaller than a0 in the latti
e ordering, but thisordering 
annot be dire
tly established be
ause the two latti
es are di�erent.Hen
e, we �rst need a fun
tion α that maps values of the extended analysis tovalues of the basi
 analysis. Figure 8 
ontains the de�nition of this fun
tion onthe various latti
es. It is easily seen to be bottom-preserving, monotone, anddistributive.The property that no spurious results arise with lazy propagation 
an now bestated as an invariant of the while loop in the worklist algorithm from Figure 1.Proposition 2. Let A be an analysis instan
e, a0 ∈ AnalysisLatti
e be the solu-tion of A in the basi
 framework, and a′ ∈ AnalysisLatti
e′ be the analysis latti
eelement on an entry to the while loop in the worklist algorithm (Figure 1) ap-plied to A with the lazy propagation framework. Then a′ and a0 are α-related,i.e., α(a′) ⊑ a0.Proof. On �rst entry to the loop, a′ = ⊥AnalysisLatti
e′ . As α is bottom-preserving,
α(a′) ⊑ a0. To establish the invariant, we assume that α(a′) ⊑ a0, let t =
T (c0, n0), for some (c0, n0) ∈ C ×N , and show that α(t(a′)) ⊑ a0.As part of the 
omputation of t(a′), the transfer fun
tion t may invoke theADT operations on a′, and we need to (1) 
he
k the e�e
t of ea
h operationon a′ and prove that the α relation still holds. Additionally, sin
e the outputof one operation may be used as input to another and we may assume that thearguments of ea
h invo
ation of an operation in a transfer fun
tion are 
omputedby monotone fun
tions, we are also obliged to (2) 
he
k that α-related argumentsto the operations yield α-related results. In the following, we let (m0, g0) = a0and (m′, g′) = a′ and prove the properties (1) and (2) for ea
h operation in turn.Case getcallgraph ′. The invo
ation of a′.getcallgraph ′() does not a�e
t a′.The result is a subset of a0.getcallgraph() be
ause α(a′) ⊑ a0.Case getstate. This operation does not modify a′. For the result, we have
α(a′.getstate(c, n)) ⊑ a0.getstate(c, n). 21



Case getfield ′. Consider the invo
ation of a′.getfield ′(c, n, ℓ, p). If m′(c, n) =none, then a′ is not 
hanged and the result is ⊥ whi
h preserves the invariant.Let now m′(c, n) 6= none and v = a′.getfield(c, n, ℓ, p). If v 6= unknown, then a′ isnot 
hanged and α(v) ⊑ a0.getfield(c, n, ℓ, p). If v = unknown, then we need to
onsider the 
hanges e�e
ted by recover where we also relate the result to theexpe
ted one.Case propagate ′. Consider the invo
ation of a′.propagate ′(c, n, s′) from atransfer fun
tion t = T (c0, n0), where (c0, n0) is a prede
essor of (c, n). As a0 isa solution, it holds that t(a0) ⊑ a0 and that 
onsequently a0.propagate(c, n, s)leaves a0 un
hanged, where α(s′) ⊑ s as both states are 
omputed by the samemonotone fun
tion from α-related arguments.If u′ = m′(c, n) is none, then m′(c, n) is e�e
tively updated to s′. Now,
α(m′(c, n)) = α(s′) ⊑ s ⊑ m(c, n) with the last equation holding be
ause
a0.propagate leaves a0 un
hanged.Otherwise, parts of u′ may need to be re
overed whi
h (assumedly) doesnot violate the invariant. We then have that α(m′(c, n)) ⊑ m(c, n) before theinvo
ation of propagate and α(m′(c, n)⊔s′) = α(m′(c, n))⊔α(s′) ⊑ m(c, n)⊔s ⊑
m(c, n) afterwards.This operation returns no result, so the α-relation trivially holds.Case recover . Consider the invo
ation of a′.recover (c, n, ℓ, p). The �rst nodeadded to the graph G is (c, fun(n)).For this return value, it holds that α(v′) ⊑ m(c, entry(fun(n)))(ℓ)(p) byassumption. By similar reasoning as in sub
ase B below, it must be that

m(c, entry(fun(n)))(ℓ)(p) ⊑ m(c, n)(ℓ)(p) = a0.getfield(c, n, ℓ, p).Hen
e, α(v′) ⊑ a0.getfield(c, n, ℓ, p) as required.On
e the graphG has been 
onstru
ted, the re
overy algorithm �rst examinesthe roots (c′, f ′) of G and modi�es their states in a′. Let (c′, f ′) be su
h a root,
u′ = m′(c′, entry(f ′)), and let (c1, n1) be su
h that u′

g = g′(c1, n1, c
′, f ′) 6= none.Let further u′

c = m′(c1, n1) and u′
1 = m′(c1, entry(fun(n1))).As (c′, f ′) is rea
hable there must have been a prior step in the �xpointiteration where some transfer fun
tion t′ = T (c1, n1) invokes funentry′. Inside ofthis t′ there must be a monotone fun
tion invoke whi
h 
ommutes with α andwhi
h 
onstru
ts the State argument to funentry ′ su
h that u′

g = invoke(u′
c).This same fun
tion is also used in the veri�
ation that a0 is a solution. In thisveri�
ation, suppose that the State argument is s = invoke(uc) where uc =

m0(c1, n1). Let further u = m0(c
′, entry(f ′)) and u1 = m0(c1, entry(fun(n1))).Sub
ase A. Let us �rst assume that u′

g(ℓ)(p) 6= unknown. By our assump-tions, it holds that α(u′) ⊑ u and α(u′
c) ⊑ uc. Be
ause u′

g = invoke(u′
c) and

s = invoke(uc) and invoke 
ommutes with α, it also holds that α(u′
g) ⊑ s.Now, let u′

g
ℓp be bottom ex
ept at ℓ.p where it is equal to u′

g(ℓ)(p). With thissetting, we 
an reason that
α(u′ ⊔ u′

g

ℓp
) ⊑ α(u′ ⊔ u′

g) = α(u′ ⊔ invoke(u′
c))

= α(u′) ⊔ α(invoke(u′
c)) ⊑ u ⊔ invoke(uc) = u22



where the last equality is due to the propagate operation in the standard funentryoperation.Sub
ase B. For the se
ond 
ase, assume that u′
g(ℓ)(p) = unknown but

u′
1(ℓ)(p) 6= unknown. As the algorithm propagates the latter value, we needto prove that it would not 
hange if it were propagated to u′

c. In fa
t, to estab-lish the invariant it is su�
ient to show that u1(ℓ)(p) ⊑ uc(ℓ)(p) in the basi
analysis.Suppose for a 
ontradi
tion that u1(ℓ)(p) 6⊑ uc(ℓ)(p). Then there must besome nx on a path between ne = entry(fun(n1)) and n1 where ea
h node between
ne and nx satis�es u1(ℓ)(p) ⊑ m0(c1, ne)(ℓ)(p) but u1(ℓ)(p) 6⊑ m0(c1, nx)(ℓ)(p).Let n′

x be the prede
essor of nx on this path. Clearly, T (c1, n′
x) 
hanges the

ℓ.p �eld by invoking propagate(c1, n
′
x, sx) for some sx = action(m0(c1, n

′
x)) with

sx(ℓ)(p) ⊐ ⊥.As the same transfer fun
tion must have been 
alled in the extended frame-work (otherwise the fun
tion 
all at n1 would not be rea
hable), there musthave been an invo
ation of propagate ′(c1, n′
x, s

′
x) for some s′x with α(s′x) ⊑ sxand s′x(ℓ)(p) ⊐ ⊥ (be
ause T never pro
esses unknown). But su
h an invo
ation
ontradi
ts u′

g(ℓ)(p) = unknown, so no su
h node nx exists.Hen
e, α(u′
1(ℓ)(p)) ⊑ u1(ℓ)(p) ⊑ uc(ℓ)(p) so that

α(u′ ⊔ u′
1)(ℓ)(p) ⊑ α(u′ ⊔ u′

1)(ℓ)(p)

= α(u′)(ℓ)(p) ⊔ α(u′
1)(ℓ)(p)

⊑ u(ℓ)(p) ⊔ u1(ℓ)(p)

⊑ u(ℓ)(p) ⊔ uc(ℓ)(p)

⊑ u(ℓ)(p) ⊔ invoke(uc)(ℓ)(p)

= u(ℓ)(p)Thus, re
overy at the roots does not violate the desired invariant. The �nalpropagation does not do so either. It propagates state from the fun
tion entrynode of the 
aller to the fun
tion entry node of the 
allee under the assumptionthat the 
orresponding 
omponent on the 
all edge is unknown. This assumptionholds by 
onstru
tion of G. With the same argumentation as in the previous
ase, the state of the ℓ.p �eld 
annot 
hange between the entry to the 
aller andthe a
tual 
all, so the invariant holds after ea
h iteration of the loop and thusfor the �xpoint as well.The return value is extra
ted from m′(c, entry(fun(n)))(ℓ)(p) whi
h α ap-proximates the value a0.getfield(c, n, ℓ, p) as explained in the beginning of this
ase.Case funentry′. An invo
ation of a′.funentry′(c1, n1, c2, f2, s
′) �rst adds s′ tothe 
all edge, whi
h is 
orre
t be
ause the 
orresponding 
all to funentry(c1, n1,

c2, f2, s) in the basi
 framework adds the tuple (c1, n1, c2, f2) to the basi
 
allgraph.Next it 
omputes a proje
tion s′′ of s′, for whi
h 
learly s′′ ⊑ s′ and hen
e
α(s′′) ⊑ s holds. With this pre
ondition, the 
all to propagate preserves theinvariant. 23



If the �nal 
all to funexit′ does not happen, then there is no further 
hangeto a′. Otherwise, the invariant holds by assumption on funexit.This operation returns no result, so again the α-relation trivially holds.Case funexit ′. Ea
h invo
ation a′.funexit ′(c1, n1, c2, f2, s
′) happens with astate argument 
omputed from the exit node of fun
tion f2, su
h as, n2 =

exit(f2), so that s′ = fexit(m
′(c2, n2)). Hen
e, the analogous 
all in the veri�
a-tion of the basi
 framework uses s = fexit(m(c2, n2)), so that α(s′) ⊑ s holds, asusual.Let furthermore u′

g = g′(c1, n1, c2, f2) be the 
orresponding 
all edge and ugthe state parameter of the 
orresponding funentry 
all in the basi
 framework.Let LP = {(ℓ, p) | s′(ℓ, p) = unknown}. By similar reasoning as in the 
asefor re
over, for ea
h (ℓ, p) ∈ LP , it holds that ug(ℓ)(p) ⊑ m(c2, n2)(ℓ)(p), that is,this state 
omponent is preserved from the invo
ation to the end of the fun
tion.For the state s′′ 
omputed in funexit′ we must argue that α(s′′) ⊑ s whi
h isnot obvious. For (ℓ, p) /∈ LP , it holds that α(s′′(ℓ)(p)) = α(s′(ℓ)(p)) ⊑ s(ℓ)(p) byassumption α(s′) ⊑ s. For (ℓ, p) ∈ LP , it holds that α(s′′(ℓ)(p)) = α(u′
g(ℓ)(p)) ⊑

ug(ℓ)(p) ⊑ m(c2, n2)(ℓ)(p) = s(ℓ)(p).Hen
e, the �nal 
all to propagate′ happens with α-related arguments anddoes not destroy the invariant.This operation returns no result, so again the α-relation trivially holds.A.3 SoundnessThe 
hanges made to the AnalysisLatti
e operations indire
tly modify the transferfun
tions, so it is also important that these remain sound with respe
t to thesemanti
s of the program. To state this more pre
isely, let [[Q]] be a 
olle
tingsemanti
s of a programQ (in the abstra
t interpretation sense [6℄) su
h that β[[Q]]is an abstra
tion of [[Q]] in the domain AnalysisLatti
e from Se
tion 2 expressedvia the operations getfield and getcallgraph . We say that a ∈ AnalysisLatti
e(using either the basi
 framework or lazy propagation) over-approximates β[[Q]]if
β[[Q]].getfield ⊑ a.getfield ∧ β[[Q]].getcallgraph ⊑ a.getcallgraphWe 
onje
ture that lazy propagation is then sound in the following sense:Assume that a0 ∈ AnalysisLatti
e is the solution in the basi
 analysis frameworkof an analysis instan
e A for a program Q and that a0 over-approximates β[[Q]].If a′0 is the solution of A in the lazy propagation framework then a′0 also over-approximates β[[Q]].Without giving a full proof, we mention some key aspe
ts of the reasoning.Most importantly, lazy propagation gives a safe approximation 
ompared to themaybe-modi�ed te
hnique brie�y mentioned in Se
tion 2.5, and that te
hniqueis 
learly sound relative to the basi
 framework.The worklist algorithm for the basi
 framework produ
es a solution to theanalysis in the sense de�ned in Se
tion 2.3. A requirement for this to hold is that24



every AnalysisLatti
e ADT operation that modi�es an abstra
t state at some lo-
ation also adds that lo
ation to the worklist. This requirement is also ful�lledwith lazy propagation � ex
ept for a subtlety in the recover operation: It mod-i�es states that belong to fun
tion entry lo
ations without adding these to theworklist. This means that su
h values that have been re
overed at the fun
-tion entry lo
ations may not be propagated. However, re
all that transfer fun
-tions 
an only read obje
t �eld values via the getfield ′ operation. Assume that
getfield ′(c, n, ℓ, p) is invoked and the �eld ℓ.p is unknown at the lo
ation (c, n). Inthat 
ase, getfield ′ will 
all recover , and in the situation where the proper value
v has already been re
overed at the fun
tion entry lo
ation (c, entry(fun(n)))the value v is returned by getfield

′. This means that the transfer fun
tion willbehave in the same way as if v had been propagated from the fun
tion entrylo
ation. A similar situation o

urs if the re
overy has taken pla
e not at thesame fun
tion but at an earlier lo
ation in the 
all graph. Thus, the fa
t that
recover modi�es abstra
t states without adding their lo
ations to the worklistdoes not a�e
t 
orre
tness of the analysis result.
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