Interprocedural Analysis with Lazy Propagation

Simon Holm Jensen':*, Anders Mgller’*f, and Peter Thiemann?
1 Aarhus University, Denmark,
{simonhj,amoeller}@cs.au.dk

2 Universitit Freiburg, Germany,
thiemann@informatik.uni-freiburg.de

Abstract. We propose lazy propagation as a technique for flow- and
context-sensitive interprocedural analysis of programs with objects and
first-class functions where transfer functions may not be distributive. The
technique is described formally as a systematic modification of a variant
of the monotone framework and its theoretical properties are shown. It
is implemented in a type analysis tool for JavaScript where it results in
a significant improvement in performance.

1 Introduction

With the increasing use of object-oriented scripting languages, such as JavaScript,
program analysis techniques are being developed as an aid to the program-
mers [2,8-10,27,29]. Although programs written in such languages are often
relatively small compared to typical programs in other languages, their highly
dynamic nature poses difficulties to static analysis. In particular, JavaScript
programs involve complex interplays between first-class functions, objects with
modifiable prototype chains, and implicit type coercions that all must be care-
fully modeled to ensure sufficient precision.

While developing a program analysis for JavaScript [15] aiming to stati-
cally infer type information we encountered the following challenge: How can
we obtain a flow- and context-sensitive interprocedural dataflow analysis that
accounts for mutable heap structures, supports objects and first-class functions,
is amenable to non-distributive transfer functions, and is efficient and precise?
Various directions can be considered. First, one may attempt to apply the clas-
sical monotone framework [18] as a whole-program analysis with an iterative
fixpoint algorithm, where function call and return flow is treated as any other
dataflow. This approach turns out to be unacceptable: the fixpoint algorithm re-
quires too many iterations, and precision may suffer because spurious dataflow
appears via interprocedurally unrealizable paths. Another approach is to apply
the IFDS technique [23], which eliminates those problems. However, it is re-
stricted to distributive analyses, which makes it inapplicable in our situation.
A further consideration is the functional approach [26] which models each func-
tion in the program as a partial summary function that maps input dataflow

* Supported by The Danish Research Council for Technology and Production,
grant no. 274-07-0488. 'Corresponding author.

facts to output dataflow facts and then uses this summary function whenever
the function is called. However, with a dataflow lattice as large as in our case
it becomes difficult to avoid reanalyzing each function a large number of times.
Although there are numerous alternatives and variations of these approaches,
we have been unable to find one in the literature that adequately addresses the
challenge described above. Much effort has also been put into more specialized
analyses, such as pointer analysis [11], however it is far from obvious how to
generalize that work to our setting.

As an introductory example, consider this fragment of a JavaScript program:

function Person(n) { this.setName(n); }

Person.prototype.setName = function(n) { this.name = n; }

function Student(n,s) { Person.call(this, n);
this.studentid = s.toString(); }

Student.prototype = new Person;

var x = new Student("John Doe", 12345);

x.setName ("John Q. Doe");

The code defines two “classes” with constructors Person and Student. Person
has a method setName via its prototype object, and Student inherits setName
and defines an additional field studentid. The call statement in Student in-
vokes the super class constructor Person.

Analyzing the often intricate flow of control and data in such programs re-
quires detailed modeling of points-to relations among objects and functions and
of type coercion rules. TAJS is a whole-program analysis based on the monotone
framework that follows this approach, and our first implementation is capable
of analyzing complex properties of many JavaScript programs. However, our
experiments have shown a considerable redundancy of computation during the
analysis that causes simple functions to be analyzed a large number of times.
If, for example, the setName method is called from other locations in the pro-
gram, then the slightest change of any abstract state appearing at any call site
of setName during the analysis would cause the method to be reanalyzed, even
though the changes may be entirely irrelevant for that method. In this paper,
we propose a technique for avoiding much of this redundancy while preserving,
or even improving, the precision of the analysis. Although our main applica-
tion is type analysis for JavaScript, we believe the technique is more generally
applicable to analyses for object-oriented languages.

The main idea is to introduce a notion of “unknown” values for object fields
that are not accessed within the current function. This prevents much irrelevant
information from being propagated during the fixpoint computation. The anal-
ysis initially assumes that no fields are accessed when flow enters a function.
When such an unknown value is read, a recovery operation is invoked to go back
through the call graph and propagate the correct value. By avoiding to recover
the same values repeatedly, the total amortized cost of recovery is never higher
than that of the original analysis. With large abstract states, the mechanism
makes a noticeable difference to the analysis performance.

Lazy propagation should not be confused with demand-driven analysis [14].
The goal of the latter is to compute the results of an analysis only at specific pro-
gram points thereby avoiding the effort to compute a global result. In contrast,
lazy propagation computes a model of the state for each program point.

The contributions of this paper can be summarized as follows:

— We propose an ADT-based adaptation of the monotone framework to pro-
gramming languages with mutable heap structures and first-class functions
and exhibit some of its limitations regarding precision and performance.

— We describe a systematic modification of the framework that introduces
lazy propagation. This novel technique propagates dataflow facts “by need”
in an iterative fixpoint algorithm. We provide a formal description of the
method to reason about its properties and to serve as a blueprint for an
implementation.

— The lazy propagation technique is experimentally validated: It has been im-
plemented into our type analysis for JavaScript, TAJS [15], resulting in a
significant improvement in performance.

In the appendix we prove termination, relate lazy propagation with the basic
framework—showing that precision does not decrease, and sketch a soundness
proof of the analysis.

2 A Basic Analysis Framework

Our starting point is the classical monotone framework [18] tailored to pro-
gramming languages with mutable heap structures and first-class functions. The
mutable state consists of a heap of objects. Each object is a map from field
names to values, and each value is either a reference to an object, a function, or
some primitive value. Note that this section contains no new results, but it sets
the stage for presenting our approach in Section 3.

2.1 Analysis Instances

Given a program (, an instance of the monotone framework for an analysis of
Q is a tuple A = (F, N, L, P,C,ng, co, Base, T') consisting of:

F: the set of functions in Q;

N: the set of primitive statements (also called nodes) in Q;

L: a set of object labels in Q;

P: a set of field names (also called properties) in Q;

C: a set of abstract contezts, which are used for context sensitivity;

ng € N and ¢y € C: an initial statement and context describing the entry of @Q;

Base: a base lattice for modeling primitive values, such as integers or booleans;

T :C x N — AnalysisLattice — AnalysisLattice: a monotone transfer function for
each primitive statement, where AnalysisLattice is a lattice derived from the
above information as detailed in Section 2.2.

Each of the sets must be finite and the Base lattice must have finite height. The
primitive statements are organized into intraprocedural control flow graphs [19],
and the set of object labels is typically determined by allocation-site abstrac-
tion [5,16].

The notation fun(n) € F denotes the function that contains the statement
n € N, and entry(f) and exit(f) denote the unique entry statement and exit
statement, respectively, of the function f € F. For a function call statement
n € N, after(n) denotes the statement being returned to after the call. A location
is a pair (¢, n) of a context ¢ € C and a statement n € N.

2.2 Derived Lattices

An analysis instance gives rise to a collection of derived lattices. In the following,
each function space is ordered pointwise and each powerset is ordered by inclu-
sion. For a lattice X, the symbols | x, Cx, and Lix denote the bottom element
(representing the absence of information), the partial order, and the least upper
bound operator (for merging information). We omit the X subscript when it is
clear from the context.

An abstract value is described by the lattice Value as a set of object labels,
a set of functions, and an element from the base lattice:

Value = P(L) x P(F) x Base
An abstract object is a map from field names to abstract values:
Obj = P — Value
An abstract state is a map from object labels to abstract objects:
State = L — Obj
Call graphs are described by this powerset lattice:
CallGraph =P(C' x N x C x F)

In a call graph g € CallGraph, we interpret (c1,n1,c2, f2) € g as a potential
function call from statement n, in context ¢; to function f5 in context cs.

Finally, an element of AnalysisLattice provides an abstract state for each con-
text and primitive statement (in a forward analysis, the program point immedi-
ately before the statement), combined with a call graph:

AnalysisLattice = (C' x N — State) x CallGraph

In practice, an analysis may involve additional lattice components such as an
abstract stack or extra information associated with each abstract object or field.
We omit such components to simplify the presentation as they are irrelevant to
the features that we focus on here. Our previous paper [15] describes the full
lattices used in our type analysis for JavaScript.

solve(A) where A= (F,N, L, P,C,no, co, Base, T):
a = J—AnalysisLai:!:ice
W = {(co,n0) }
while W # 0 do
select and remove (c,n) from W
Ta(c,n)
end while
return a

Fig. 1. The worklist algorithm. The worklist contains locations, i.e., pairs of a context
and a statement. The operation T, (c,n) computes the transfer function for (¢,n) on
the current analysis lattice element a and updates a accordingly. Additionally, it may
add new entries to the worklist W. The transfer function for the initial location (co, no)
is responsible for creating the initial abstract state.

2.3 Computing the Solution

The solution to A is the least element a € AnalysisLattice that solves these
constraints:

Vee Cone N :T(e,n)(a) Ca

Computing the solution to the constraints involves fixpoint iteration of the
transfer functions, which is typically implemented with a worklist algorithm as
the one presented in Figure 1. The algorithm maintains a worklist W C C' x N
of locations where the abstract state has changed and thus the transfer function
should be applied. Lattice elements representing functions, in particular a €
AnalysisLattice, are generally considered as mutable and we use the notation
Tu(c,n) for the assignment a := T'(c,n)(a). As a side effect, the call to T,(c,n)
is responsible for adding entries to the worklist W, as explained in Section 2.4.
This slightly unconventional approach to describing fixpoint iteration simplifies
the presentation in the subsequent sections.

Note that the solution consists of both the computed call graph and an
abstract state for each location. We do not construct the call graph in a prelim-
inary phase because the presence of first-class functions implies that dataflow
facts and call graph information are mutually dependent (as evident from the
example program in Section 1).

This fixpoint algorithm leaves two implementation choices: the order in which
entries are removed from the worklist W, which can greatly affect the number of
iterations needed to reach the fixpoint, and the representation of lattice elements,
which can affect both time and memory usage. These choices are, however, not
the focus of the present paper (see, e.g. [3,13,17,19,28]).

2.4 An Abstract Data Type for Transfer Functions

To precisely explain our modifications of the framework in the subsequent sec-
tions, we treat AnalysisLattice as an imperative ADT (abstract data type) [20]
with the following operations:

getfield : C x N x L x P — Value
getcallgraph : () — CallGraph

getstate : C' x N — State

— propagate : C x N x State — ()

— funentry : C x N x C' x F' x State — ()
— funexit : C' x N x C x F x State — ()

We let a € AnalysisLattice denote the current, mutable analysis lattice element.
The transfer functions can only access a through these operations.

The operation getfield(c,n, £, p) returns the abstract value of the field p in
the abstract object £ at the entry of the primitive statement n in context c. In
the basic framework, getfield performs a simple lookup, without any side effects
on the analysis lattice element:

a.getfield(c e C,n € N,L € L,p € P):
return u(f)(p) where (m,) =a and u=m(c,n)

The getcallgraph operation selects the call graph component of the analysis
lattice element:

a.getcallgraph():
return g where (_,g9) =a

Transfer functions typically use the getcallgraph operation in combination with
the funerit operation explained below. Moreover, the getcallgraph operation
plays a role in the extended framework presented in Section 3.

The getstate operation returns the abstract state at a given location:

a.getstate(c € C,n € N):
return m(c,n) where (m,)=a

The transfer functions must not read the field values from the returned abstract
state (for that, the getfield operation is to be used). They may construct param-
eters to the operations propagate, funentry, and funezit by updating a copy of
the returned abstract state.

The transfer functions must use the operation propagate(c,n, s) to pass in-
formation from one location to another within the same function (excluding re-
cursive function calls). As a side effect, propagate adds the location (¢, n) to the
worklist W if its abstract state has changed. In the basic framework, propagate
is defined as follows:

a.propagate(c € C, n € N, s € State):
let (m,g9) =a
if s Z m(c,n) then
m(c,n) ;== m(e,n)Us
W :=WuU{(e,n)}
end if

The operation funentry(ci,ni, ca, f2,$) models function calls in a forward
analysis. It modifies the analysis lattice element a to reflect the possibility of a

function call from a statement n; in context ¢; to a function entry statement
entry(f2) in context co where s is the abstract state after parameter passing.
(With languages where parameters are passed via the stack, which we ignore
here, the lattice is augmented accordingly.) In the basic framework, funentry
adds the call edge from (¢1,n1) to (ce, f2) and propagates s into the abstract
state at the function entry statement entry(fz) in context co:

a.funentry(c; € C,ny € N, co € C, fa € F, s € State):
g:=g U {(01,711,02, fQ)} where (_ag) =a
a.propagate(ca, entry(fa), s)
a.funexit(ci,n1, ca, fa, m(cz, exit(f2)))

Adding a new call edge also triggers a call to funezit to establish dataflow from
the function exit to the successor of the new call site.

The operation funexit(ci,ni, ca, f2, s) is used for modeling function returns.
It modifies the analysis lattice element to reflect the dataflow of s from the exit
of a function fy in callee context c¢o to the successor of the call statement n4
with caller context ¢;. The basic framework does so by propagating s into the
abstract state at the latter location:

a.funexit(c; € C,ny € N, co € C, fo € F, s € State):
a.propagate(cy, after(ny), s)

The parameters co and fy are not used in the basic framework; they will be used
in Section 3. The transfer functions obtain the connections between callers and
callees via the getcallgraph operation explained earlier. If using an augmented
lattice where the call stack is also modeled, that component would naturally be
handled differently by funezit simply by copying it from the call location (c1,n1),
essentially as local variables are treated in, for example, IFDS [23].

This basic framework is sufficiently general as a foundation for many analyses
for object-oriented programming languages, such as Java or C#, as well as for
object-based scripting languages like JavaScript as explained in Section 4. At
the same time, it is sufficiently simple to allow us to precisely demonstrate the
problems we attack and our solution in the following sections.

2.5 Problems with the Basic Analysis Framework

The first implementation of TAJS, our program analysis for JavaScript, is based
on the basic analysis framework. Our initial experiments showed, perhaps not
surprisingly, that many simple functions in our benchmark programs were ana-
lyzed over and over again (even for the same calling contexts) until the fixpoint
was reached.

For example, a function in the richards. js benchmark from the V8 collec-
tion was analyzed 18 times when new dataflow appeared at the function entry:

TaskControlBlock.prototype.markAsRunnable = function () {
this.state = this.state | STATE_RUNNABLE;
3

Most of the time, the new dataflow had nothing to do with the this object or the
STATE_RUNNABLE variable. Although this particular function body is very short,
it still takes time and space to analyze it and similar situations were observed
for more complex functions and in other benchmark programs.

In addition to this abundant redundancy, we observed — again not surpris-
ingly — a significant amount of spurious dataflow resulting from interprocedurally
invalid paths. For example, if the function above is called from two different lo-
cations, with the same calling context, their entire heap structures (that is, the
State component in the lattice) become joined, thereby losing precision.

Another issue we noticed was time and space required for propagating the
initial state, which consists of 161 objects in the case of JavaScript. These objects
are mutable and the analysis must account for changes made to them by the
program. Since the analysis is both flow- and context-sensitive, a typical element
of AnalysisLattice carries a lot of information even for small programs.

Our first version of TAJS applied two techniques to address these issues: (1)
Lattice elements were represented in memory using copy-on-write to make their
constituents shared between different locations until modified. (2) The lattice
was extended to incorporate a simple effect analysis called maybe-modified: For
each object field, the analysis would keep track of whether the field might have
been modified since entering the current function. At function exit, field values
that were definitely not modified by the function would be replaced by the
value from the call site. As a consequence, the flow of unmodified fields was not
affected by function calls. Although these two techniques are quite effective, the
lazy propagation approach that we introduce in the next section often supersedes
the maybe-modified technique and renders copy-on-write essentially superfluous.
In Section 4 we experimentally compare lazy propagation with both the basic
framework and the basic framework extended with the copy-on-write and maybe-
modified techniques.

3 Extending the Framework with Lazy Propagation

To remedy the shortcomings of the basic framework, we propose an extension
that can help reducing the observed redundancy and the amount of informa-
tion being propagated by the transfer functions. The key idea is to ensure that
the fixpoint solver propagates information “by need”. The extension consists of
a systematic modification of the ADT representing the analysis lattice. This
modification implicitly changes the behavior of the transfer functions without
touching their implementation.

3.1 Modifications of the Analysis Lattice

In short, we modify the analysis lattice as follows:

1. We introduce an additional abstract value, unknown. Intuitively, a field p of
an object has this value in an abstract state associated with some location in

a function f if the value of p is not known to be needed (that is, referenced)
in f or in a function called from f.

2. Each call edge is augmented with an abstract state that captures the data
flow along the edge after parameter passing, such that this information is
readily available when resolving unknown field values.

3. A special abstract state, none, is added, for describing absent call edges and
locations that may be unreachable from the program entry.

More formally, we modify three of the sub-lattices as follows:

Obj =P — (Value\lrunknown)

CallGraph = C x N x C x F — (Statelnone)
AnalysisLattice = (C x N — (State¢none)) x CallGraph

Here, X, means the lattice X lifted over a new bottom element y. In a call graph
g € CallGraph in the original lattice, the presence of an edge (c¢1,n1,c¢a, f2) € g
is modeled by ¢'(c1, n1, c2, f2) # none for the corresponding call graph ¢’ in the
modified lattice. Notice that Lsiate is now the function that maps all object
labels and field names to unknown, which is different from the element none.

3.2 Modifications of the Abstract Data Type Operations

Before we describe the systematic modifications of the ADT operations we mo-
tivate the need for an auxiliary operation, recover, on the ADT:

recover : C x N x L x P — Value

Suppose that, during the fixpoint iteration, a transfer function T,(c,n) invokes
a.getfield(c,n, ¢, p) with the result unknown. This result indicates the situation
that the field p of an abstract object ¢ is referenced at the location (¢, n), but
the field value has not yet been propagated to this location due to the lazy
propagation. The recover operation can then compute the proper field value by
performing a specialized fixpoint computation to propagate just that field value
to (¢, n). We explain in Section 3.3 how recover is defined.

The getfield operation is modified such that it invokes recover if the de-
sired field value is unknown, as shown in Figure 2. The modification may break
monotonicity of the transfer functions, however, as we argue in Appendix A, the
analysis still produces the correct result.

Similarly, the propagate operation needs to be modified to account for the
lattice element none and for the situation where unknown is joined with an ordi-
nary element. The latter is accomplished by using recover whenever this situation
occurs. The resulting operation propagate’ is shown in Figure 3.

We then modify funentry(ci,ni,ca, f2,s) such that the abstract state s is
propagated “lazily” into the abstract state at the primitive statement entry(fz)
in context cy. Here, laziness means that every field value that, according to a,
is not referenced within the function fs in context co gets replaced by unknown
in the abstract state. Additionally, the modified operation records the abstract
state at the call edge as required in the modified CallGraph lattice. The resulting

a.getfield' (ce C,ne N, L€ L,p € P):

if m(c,n) # none where (m,) = a then
v := a.getfield(c,n, ¢, p)
if v = unknown then

v 1= a.recover(c,mn, £,p)

end if
return v

else
return |yv.ue

end if

Fig. 2. Algorithm for getfield'(c,n,¢,p). This modified version of getfield invokes
recover in case the desired field value is unknown. If the state is none according to
a, the operation simply returns Lyajye-

a.propagate’ (c € C, n € N, s € State):
let (m,g) =a and u = m(c,n)
s'i=3s
if u # none then
for all/ e L,pe P do
if u(€)(p) = unknown A s(¢)(p) # unknown then
u(€)(p) := a.recover(c,n, £, p)

else if u(¢)(p) # unknown A s(¢)(p) = unknown then
s'(£)(p) := a.recover(c,n, £, p)
end if
end for
end if

a.propagate(c,n, s')

Fig. 3. Algorithm for propagate’(c,n, s). This modified version of propagate takes into
account that field values may be unknown in both a and s. Specifically, it uses recover
to ensure that the invocation of propagate in the last line never computes the least
upper bound of unknown and an ordinary field value. The treatment of unknown values
in s assumes that s is recoverable with respect to the current location (c,n). If the
abstract state at (c,n) is none (the least element), then that gets updated to s.

operation funentry’ is defined in Figure 4. (Without loss of generality, we assume
that the statement at exit(f2) returns to the caller without modifying the state.)
As consequence of the modification, unknown field values get introduced into the
abstract states at function entries.

The funexit operation is modified such that every unknown field value ap-
pearing in the abstract state being returned is replaced by the corresponding
field value from the call edge, as shown in Figure 5. In JavaScript, entering a
function body at a functions call affects the heap, which is the reason for using
the state from the call edge rather than the state from the call statement. If we
extended the lattice to also model the call stack, then that component would
naturally be recovered from the call statement rather than the call edge.

Figure 6 illustrates the dataflow at function entries and exits as modeled
by the funezit’ and funentry’ operations. The two nodes n; and ny represent

10

a.funentry’(c1 € C,m1 € N, ca € C, fo € F, s € State):

let (m,g) = a and u = m(cz, entry(f2))
// update the call edge
g(c1,m1,c2, f2) :=g(ci,na, 2, f2) U's
// introduce unknown field values
s := Lstate
if u # none then

forall/e L,pe P do

if u(€)(p) # unknown then
// the field has been referenced
s'(0)(p) == s(£)(p)
end if

end for
end if
// propagate the resulting state into the function entry
a.propagate’(c2, entry(f2), s')
// propagate flow for the return edge, if any is known already
let t = m(ce, exit(f2))
if ¢ # none then

a.funezit’'(c1,n1, ca, fa,t)
end if

Fig. 4. Algorithm for funentry’(ci,m1,co, f2,s). This modified version of funentry
“lazily” propagates s into the abstract state at entry(f2) in context c2. The abstract
state s’ is unknown for all fields that have not yet been referenced by the function being
called according to u (recall that Lstate maps all fields to unknown).

a.funezit’(c1 € C,n1 € N, c2 € C, fo € F, s € State):
let (_,9) =aand uy = g(c1,n1,c2, f2)
S/ = J—State
for all/e L,pe P do
if s(¢)(p) = unknown then
// the field has not been accessed, so restore its value from the call edge state
5 (O)(p) = ug(0)(p)
else
s'(€)(p) = s(£)(p)
end if
end for
a.propagate’(c1, after(n1),s’)

Fig. 5. Algorithm for funezit’(c1,n1, cz2, f2, s). This modified version of funezit restores
field values that have not been accessed within the function being called, using the value
from before the call. It then propagates the resulting state as in the original operation.

function call statements that invoke the function f. Assume that the value of
the field p in the abstract object ¢, denoted £.p, is v1 at my and vy at ny where
v1,v9 € Value. When dataflow first arrives at entry(f) the funentry’ operation
sets £.p to unknown. Assuming that f does not access £.p it remains unknown
throughout f, so funerit’ can safely restore the original value v; by merging the
state from exit(f) with ug1 (the state recorded at the call edge) at after(nq).

11

Fig. 6. A function f being called from two different statements, n; and ns appearing
in other functions (for simplicity, all with the same context c). The edges indicate
dataflow, and each bullet corresponds to an element of State with ug1 = g(c¢,n1,¢, f)
and ug2 = g(e,n2, ¢, f) where g € CallGraph.

Similarly for the other call site, the value vo will be restored at after(ns). Thus,
the dataflow for non-referenced fields respects the interprocedurally valid paths.
This is in contrast to the basic framework where the value of ¢.p would be
v1 U vy at both after(ni) and after(ng). Thereby, the modification of funexit
may — perhaps surprisingly — cause the resulting analysis solution to be more
precise than in the basic framework. If a statement in f writes a value v’ to £.p it
will no longer be unknown, so v’ will propagate to both after(ni) and after(nz).
If the transfer function of a statement in f invokes getfield’ to obtain the value
of £.p while it is unknown, it will be recovered by considering the call edges into
f, as explained in Section 3.3.

The getstate operation is not modified. A transfer function cannot notice the
fact that the returned State elements may contain unknown field values, because
it is not permitted to read a field value through such a state.

Finally, the getcallgraph operation requires a minor modification to ensure
that its output has the same type although the underlying lattice has changed:

a.getcallgraph’():
return {(c1,n1,c2, f2) | g(c1,n1, c2, f2) # none} where (_,g9) =a

To demonstrate how the lazy propagation framework manages to avoid cer-
tain redundant computations, consider again the markAsRunnable function in
Section 2.5. Suppose that the analysis first encounters a call to this function
with some abstract state s. This call triggers the analysis of the function body,
which accesses only a few object fields within s. The abstract state at the entry
location of the function is unknown for all other fields. If new flow subsequently
arrives via a call to the function with another abstract state s’ where s C s/, the
introduction of unknown values ensures that the function body is only reanalyzed
if s’ differs from s at the few relevant fields that are not unknown.

3.3 Recovering Unknown Field Values

We now turn to the definition of the auxiliary operation recover. It gets invoked
by getfield' and propagate’ whenever an unknown element needs to be replaced

12

by a proper field value. The operation returns the desired field value but also,
as a side effect, modifies the relevant abstract states for function entry locations
in a.

The key observation for defining recover(c,n, ¢, p) wherec € C,n € N, ¢ € L,
and p € P is that unknown is only introduced in funentry’ and that each call
edge — very conveniently — records the abstract state just before the ordinary field
value is changed into unknown. Thus, the operation needs to go back through
the call graph and recover the missing information. However, it only needs to
modify the abstract states that belong to function entry statements.

Recovery is a two phase process. The first phase constructs a directed multi-
rooted graph G the nodes of which are a subset of C' x F'. It is constructed from
the call graph in a backward manner starting from (¢,n) as the smallest graph
satisfying the following two constraints, where (m, g) = a:

— The graph G contains the node (c, fun(n)).?
— For each node (¢, f2) in G and for each (c¢q, n1) where g(c1,n1, ca, f2) # none:
o If uy(¢)(p) = unknown A uy(¢)(p) = unknown where u, = g(c1,n1, 2, f2)
and u; = m(cy, entry(fun(ny))) then G contains the node (¢, fun(ny))
with an edge to (ca, f2),
e otherwise, (co, f2) is a root of G.

The resulting graph is essentially a subgraph of the call graph. A node in G
is a root if at least one of the incoming call graph edges of the corresponding
function contributes with a non-unknown value. Notice that root nodes may have
incoming edges in G.

The second phase is a fixpoint computation over G:

// recover the abstract value at the roots of G
for each root (¢, f') of G do
let v = m(c, entry(f’))
for all (¢1,n1) where g(c1,n1,¢, f’) # none do
let u, = g(c1,m1,c, ') and w1 = m(cq, entry(fun(ny)))
if u,(¢)(p) # unknown then
W (0)(p) = ' (€)(p) U g (€) (p)
else if u1(¢)(p) # unknown then
w'(0)(p) := u'()(p) U ua (€)(p)
end if
end for
end for
// propagate throughout G at function entry nodes
S := the set of roots of G
while S # () do
select and remove (¢, f’) from S
let v = m(c, entry(f’))
for each successor (ca, f2) of (¢/, f') in G do
let us = m(ce, entry(f2))

% This constraint has been corrected after the SAS 2010 paper was published.

13

if u/(€)(p) £ u2(¢)(p) then
u2(€)(p) = u2(€)(p) U (€)(p)
add (CQ, fg) to S
end if
end for
end while

This phase recovers the abstract value at the roots of G and then propagates
the value through the nodes of G until a fixpoint is reached. Although recover
modifies abstract states in this phase, it does not modify the worklist, an issue
which we return to in Appendix A.3. After this phase, we have u(¢)(p) # unknown
where v = m(c, entry(f’)) for each node (¢, f') in G. (Notice that the side effects
on a only concern abstract states at function entry statements.) In particular,
this holds for (¢, fun(n)), so when recover(c, n, £, p) has completed the two phases,
it returns the desired value u(¢)(p) where u = m(c, entry(fun(n))).

Notice that the graph G is empty if u(¢)(p) # unknown where v = m(c,
entry(fun(n))) (see the first of the two constraints defining G). In this case, the
desired field has already been recovered, the second phase is effectively skipped,
and u(¢)(p) is returned immediately.

Figure 7 illustrates an example of interprocedural dataflow among four func-
tions. (This example ignores dataflow for function returns and assumes a fixed
calling context c.) The statements write; and writes write to a field £.p, and
read reads from it. Assume that the analysis discovers all the call edges before
visiting read. In that case, £.p will have the value unknown when entering f and
f3, which will propagate to fs4. The transfer function for read will then invoke
getfield’, which in turn invokes recover. The graph G will be constructed with
three nodes: (¢, f2), (¢, f3), and (¢, f4) where (c, f2) and (c, f3) are roots and
have edges to (¢, f4). The second phase of recover will replace the unknown value
of £.p at entry(f2) and entry(fz2) by its proper value stored at the call edges and
then propagate that value to entry(f3) and finally return it to getfield’. Notice
that the value of £.p at, for example, the call edges, remains unknown. How-
ever, if dataflow subsequently arrives via transfer functions of other statements,
those unknown values may be replaced by ordinary values. Finally, note that
this simple example does not require fixpoint iteration within recover, however
that becomes necessary when call graphs contain cycles (resulting from programs
with recursive function calls).

The modifications only concern the AnalysisLattice ADT, in terms of which all
transfer functions of an analysis are defined. The transfer functions themselves

are not changed. Although invocations of recover involve traversals of parts of
the call graph, the main worklist algorithm (Figure 1) requires no modifications.

4 TImplementation and Experiments

To examine the impact of lazy propagation on analysis performance, we ex-
tended the Java implementation of TAJS, our type analyzer for JavaScript [15],

14

Fig. 7. Fragments of four functions, fi... fs. As in Figure 6, edges indicate dataflow
and bullets correspond to elements of State. The statements write; and writes write to
a field £.p, and read reads from it. The recover operation applied to the read statement
and £.p will ensure that values written at write; and writes will be read at the read
statements, despite the possible presence of unknown values.

by systematically applying the modifications described in Section 3. As usual in
dataflow analysis, primitive statements are grouped into basic blocks. The im-
plementation focuses on the JavaScript language itself and the built-in library,
but presently excludes the DOM API, so we use the most complex benchmarks
from the V8* and SunSpider® benchmark collections for the experiments.

Descriptions of other aspects of TAJS not directly related to lazy propaga-
tion may be found in the TAJS paper [15]. These include the use of recency
abstraction [4], which complicates the implementation, but does not change the
properties of the lazy propagation technique.

We compare three versions of the analysis: basic corresponds to the basic
framework described in Section 2; basic+ extends the basic version with the copy-
on-write and maybe-modified techniques discussed in Section 2.5, which is the
version used in [15]; and lazy is the new implementation using lazy propagation
(without the other extensions from the basic+ version).

* http://v8.googlecode. com/svn/data/benchmarks/v1/
® http://uww2.webkit.org/perf/sunspider-0.9/sunspider.html

15

Tterations Time (seconds) Memory (MB)

LOC|Blocks| basic|basic+]| lazy|basic|basic+]| lazy| basic|basic+]| lazy
richards.js 529 478| 2663| 2782| 1399 5.6 4.6| 3.8|11.05 6.4 3.7
benchpress.js 463 710|18060| 12581 5097| 33.2 13.4| 5.4|42.02 24.01 7.8
delta-blue.js 853| 1054 [e's) 0|63611| oo 00 |136.7 [%S) 00|140.5
cryptobench.js |1736| 2857 oco| 4384817213 o] 99.4| 22.1 ool 127.9| 42.8
3d-cube. js 342 545| T116| 4147| 2009| 14.1 5.3| 4.0| 18.4 10.6| 6.2
3d-raytrace.js | 446 575 oco| 30323| 6749| oo 24.8| 8.2 oo| 16.7| 10.1
crypto-md5. js 296 392| 5358| 1004 646 4.5 2.0 1.8] 6.1 3.6| 2.7
access-nbody.js| 179 149| 551 523| 317 1.8 1.3 1.0] 3.2 1.7 0.9

Table 1. Performance benchmark results.

Table 1 shows for each program, the number of lines of code, the number of
basic blocks, the number of fixpoint iterations for the worklist algorithm (Fig-
ure 1), analysis time (in seconds, running on a 3.2GHz PC), and memory con-
sumption. We use co to denote runs that require more than 512MB of memory.

We focus on the time and space requirements for these experiments. On our
benchmark programs, the precision improvement is insignificant with respect to
the number of potential type related bugs, which is the precision measure we
have used in our previous work.

The experiments demonstrate that although the copy-on-write and maybe-
modified techniques have a significant positive effect on the resource require-
ments, lazy propagation leads to even better results. The results for richards. js
are a bit unusual as it takes more iterations in basic+ than in basic, however the
fixpoint is more precise in basic+.

The benchmark results demonstrate that lazy propagation results in a signif-
icant reduction of analysis time without sacrificing precision. Memory consump-
tion is reduced by propagating less information during the fixpoint computation
and fixpoints are reached in fewer iterations by eliminating a cause of redundant
computation observed in the basic framework.

5 Related Work

Recently, JavaScript and other scripting languages have come into the focus of
research on static program analysis, partly because of their challenging dynamic
nature. These works range from analysis for security vulnerabilities [9,29] to
static type inference [1,8,15,27]. We concentrate on the latter category, aiming
to develop program analyses that can compensate for the lack of static type
checking in these languages. The interplay of language features of JavaScript,
including first-class functions, objects with modifiable prototype chains, and
implicit type coercions, makes analysis a demanding task.

The IFDS framework by Reps, Horwitz, and Sagiv [23] is a powerful and
widely used approach for obtaining precise interprocedural analyses. It requires
the underlying lattice to be a powerset and the transfer functions to be dis-
tributive. Unfortunately, these requirements are not met by our type analysis
problem for dynamic object-oriented scripting languages. The more general IDE
framework also requires distributive transfer functions [25]. A connection to our
approach is that fields that are marked as unknown at function exits, and hence

16

have not been referenced within the function, are recovered from the call site in
the same way local variables are treated in IFDS.

Sharir and Pnueli’s functional approach to interprocedural analysis can be
phrased both with symbolic representations and in an iterative style [26], where
the latter is closer to our approach. With the complex lattices and transfer
functions that appear to be necessary in analyses for object-oriented scripting
languages, symbolic representations are difficult to work with, so TAJS uses the
iterative style and a relatively direct representation of lattice elements. Further-
more, the functional approach is expensive if the analysis lattice is large.

Our analysis framework encompasses a general notion of context sensitivity
through the C' component of the analysis instances. Different instantiations of C
lead to different kinds of context sensitivity, including variations of the call-string
approach [26], which may also affect the quality of interprocedural analysis. We
leave the choice of C open here; TAJS currently uses a heuristic that distinguishes
call sites that have different values of this.

The use of unknown field values is related to the maybe-modified technique
that we used in the first version of TAJS [15]: a field whose value is unknown
is definitely not modified. Both ideas can be viewed as instances of side effect
analysis. Unlike, for example, the side effect analysis by Landi et al. [24] our
analysis computes the call graph on-the-fly and we exploit the information that
certain fields are found to be non-referenced for obtaining the lazy propagation
mechanism. Via this connection to side effect analysis, one may also view the
unknown field values as establishing a frame condition as in separation logic [21].

Combining call graph construction with other analyses is common in pointer
alias analysis with function pointers, for example in the work of Burke et al. [12].
That paper also describes an approach called deferred evaluation for increasing
analysis efficiency, which is specialized to flow insensitive alias analysis.

Lazy propagation is related to lazy evaluation (e.g., [22]) as it produces values
passed to functions on demand, but there are some differences. Lazy propagation
does not defer evaluation as such, but just the propagation of the values; it
applies not just to the parameters but to the entire state; and it restricts laziness
to data structures (values of fields).

Lazy propagation is different from demand-driven analysis [14]. Both ap-
proaches defer computation, but demand-driven analysis only computes results
for selected hot spots, whereas our goal is a whole-program analysis that infers
information for all program points. Other techniques for reducing the amount
of redundant computation in fixpoint solvers is difference propagation [7] and
use of interprocedural def-use chains [28]. It might be possible to combine those
techniques with lazy propagation, although they are difficult to apply to the
complex transfer functions that we have in type analysis for JavaScript.

6 Conclusion

We have presented lazy propagation as a technique for improving the perfor-
mance of interprocedural analysis in situations where existing methods, such as
IFDS or the functional approach, do not apply. The technique is described by a

17

systematic modification of a basic iterative framework. Through an implemen-
tation that performs type analysis for JavaScript we have demonstrated that it
can significantly reduce the memory usage and the number of fixpoint iterations
without sacrificing analysis precision. The result is a step toward sound, precise,
and fast static analysis for object-oriented languages in general and scripting
languages in particular.

Acknowledgments The authors thank Stephen Fink, Michael Hind, and Thomas
Reps for their inspiring comments on early versions of this paper.

References

1. Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards type
inference for JavaScript. In Proc. 19th European Conference on Object-Oriented
Programming, ECOOP 05, volume 3586 of LNCS. Springer-Verlag, July 2005.

2. Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit M. Paradkar,
and Michael D. Ernst. Finding bugs in dynamic web applications. In Proc. In-
ternational Symposium on Software Testing and Analysis, ISSTA ’08. ACM, July
2008.

3. Darren C. Atkinson and William G. Griswold. Implementation techniques for
efficient data-flow analysis of large programs. In Proc. International Conference
on Software Maintenance, ICSM ’01, pages 52—61, November 2001.

4. Gogul Balakrishnan and Thomas W. Reps. Recency-abstraction for heap-allocated
storage. In Proc. 13th International Static Analysis Symposium, SAS 06, volume
4134 of LNCS. Springer-Verlag, August 2006.

5. David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers
and structures. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 90, June 1990.

6. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proc. 4th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 77, pages 238-252, 1977.

7. Christian Fecht and Helmut Seidl. Propagating differences: An efficient new fix-
point algorithm for distributive constraint systems. In Programming Languages
and Systems, Proc. Tth European Symposium on Programming, ESOP ’98, volume
1381 of LNCS. Springer-Verlag, March/April 1998.

8. Michael Furr, Jong hoon (David) An, Jeffrey S. Foster, and Michael W. Hicks.
Static type inference for Ruby. In Proc. ACM Symposium on Applied Computing,
SAC 09, 2009.

9. Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static analysis for
Ajax intrusion detection. In Proc. 18th International Conference on World Wide
Web, WWW 09, 2009.

10. Phillip Heidegger and Peter Thiemann. Recency types for analyzing scripting
languages. In Proc. 24th European Conference on Object-Oriented Programming,
ECOOP ’10, LNCS. Springer-Verlag, June 2010.

11. Michael Hind. Pointer analysis: haven’t we solved this problem yet? In Proc.
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools
and Engineering, PASTE ’01, pages 54—61, June 2001.

18

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Michael Hind, Michael G. Burke, Paul R. Carini, and Jong-Deok Choi. Interpro-
cedural pointer alias analysis. ACM Transactions on Programming Languages and
Systems, 21(4):848-894, 1999.

Susan Horwitz, Alan Demers, and Tim Teitebaum. An efficient general iterative
algorithm for dataflow analysis. Acta Informatica, 24(6):679-694, 1987.

Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand interprocedural dataflow
analysis. In Proc. 8rd ACM SIGSOFT Symposium on Foundations of Software
Engineering, FSE ’95, October 1995.

Simon Holm Jensen, Anders Mgller, and Peter Thiemann. Type analysis for
JavaScript. In Proc. 16th International Static Analysis Symposium, SAS 09, vol-
ume 5673 of LNCS. Springer-Verlag, August 2009.

Neil D. Jones and Steven S. Muchnick. A flexible approach to interprocedural
data flow analysis and programs with recursive data structures. In Proc. 9th ACM
Symposium on Principles of Programming Languages, POPL ’82, January 1982.
John B. Kam and Jeffrey D. Ullman. Global data flow analysis and iterative
algorithms. Journal of the ACM, 23(1):158-171, 1976.

John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks.
Acta Informatica, 7:305-317, 1977. Springer-Verlag.

Gary A. Kildall. A unified approach to global program optimization. In Proc. 1st
ACM Symposium on Principles of Programming Languages, POPL 73, October
1973.

Barbara Liskov and Stephen N. Zilles. Programming with abstract data types.
ACM SIGPLAN Notices, 9(4):50-59, 1974.

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In Proc. 15th International Workshop on
Computer Science Logic, CSL ’01, September 2001.

Simon L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proc. 22th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’95, pages 49-61, January 1995.
Barbara G. Ryder, William Landi, Phil Stocks, Sean Zhang, and Rita Altucher. A
schema for interprocedural modification side-effect analysis with pointer aliasing.
ACM Transactions on Programming Languages and Systems, 23(2):105-186, 2001.
Shmuel Sagiv, Thomas W. Reps, and Susan Horwitz. Precise interprocedural
dataflow analysis with applications to constant propagation. Theoretical Computer
Science, 167(1&2):131-170, 1996.

Micha Sharir and Amir Pnueli. Two approaches to interprocedural dataflow analy-
sis. In Program Flow Analysis: Theory and Applications, pages 189-233. Prentice-
Hall, 1981.

Peter Thiemann. Towards a type system for analyzing JavaScript programs. In
Proc. Programming Languages and Systems, 14th European Symposium on Pro-
gramming, ESOP 05, April 2005.

Teck Bok Tok, Samuel Z. Guyer, and Calvin Lin. Efficient flow-sensitive interpro-
cedural data-flow analysis in the presence of pointers. In Proc. 15th International
Conference on Compiler Construction, CC ’06, pages 17-31, March 2006.

Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting
languages. In Proc. 15th USENIX Security Symposium, August 2006.

19

A Theoretical Properties

The lazy propagation analysis framework is supposed to improve on the results
of the basic framework in several respects. First, the modifications should not
affect termination. Second, analysis results with lazy propagation should always
be at least as precise as in the basic framework, meaning that the extensions
introduce no spurious results. Third, the extensions should be sound in the sense
that the analysis result is still a fixpoint of the transfer functions, which has to
be adjusted because of the introduction of unknown field values, and that the
transfer functions remain meaningful with respect to the language semantics. In
the following, we state these properties more precisely and study them in some
detail.

A.1 Termination

As observed in Section 3, the AnalysisLattice modifications do not preserve mono-
tonicity of the transfer functions. Nevertheless, it is easy to see that the worklist
algorithm (Figure 1) always terminates.

Proposition 1. The worklist algorithm always terminates in the lazy propaga-
tion framework.

Proof. Each AnalysisLattice operation terminates. The only nontrivial case is
recover: Its first phase clearly terminates as only a finite set of nodes is consid-
ered, and the second phase terminates because AnalysisLattice has finite height.

Every iteration of the worklist algorithm removes a location from the worklist,
and transfer functions only add new locations to the worklist when the lattice
element is modified. As every such modification makes the lattice element larger
and the lattice has finite height, termination is ensured.

The number of iterations required to reach the fixpoint may differ due to the
modifications. First, as mentioned in Section 2.3, we have left the worklist pro-
cessing order unspecified and that order may be affected by the modifications.
Second, as described in Section 3, the operation funexit’ improves precision with
respect to the original funexit operation by avoiding certain interprocedurally
invalid paths. Depending on the particular analysis instance, this improved pre-
cision may result in an increase or in a decrease of the number of iterations
required to compute the fixpoint. In practice, we observe an overall decrease on
each of our benchmark programs, as shown in Section 4.

The cost of performing a recover operation is proportional to the number of
times it applies L. In the basic framework, the same amount of work is done,
although “eagerly” within propagate operations. Hence, recovery does not impair
the amortized analysis complexity.

20

(m’,g") = (a(m’),a(g’)) where (m’,g’) € AnalysisLattice’
(¢g") = X N x C x F | g (z) # none} where g’ € CallGraph’
((c,m)) where m’ € (C x N — State'lnone),c € C,n € N
a(u')(0)(p) = a(u'(€)(p)) where u' € State'none, £ € L,p € P, if ' # none
(none) = Lstate
(!

(

Fig. 8. Mapping between lattices in the extended and the basic framework.

A.2 Precision

For clarity, the text in this subsection marks all elements and lattices from the
lazy propagation framework with primes ’ whereas entities from the basic frame-
work remain unadorned. Let ag € AnalysisLattice be a solution of an analysis in-
stance A in the basic framework, and let a’ € AnalysisLattice’ be an intermediate
step arising during the fixpoint iteration in the extended framework for A. The
goal is to show that a’ is always smaller than ag in the lattice ordering, but this
ordering cannot be directly established because the two lattices are different.
Hence, we first need a function « that maps values of the extended analysis to
values of the basic analysis. Figure 8 contains the definition of this function on
the various lattices. It is easily seen to be bottom-preserving, monotone, and
distributive.

The property that no spurious results arise with lazy propagation can now be
stated as an invariant of the while loop in the worklist algorithm from Figure 1.

Proposition 2. Let A be an analysis instance, ag € AnalysisLattice be the solu-
tion of A in the basic framework, and o’ € AnalysisLattice’ be the analysis lattice
element on an entry to the while loop in the worklist algorithm (Figure 1) ap-
plied to A with the lazy propagation framework. Then o' and ag are a-related,
i.e., a(a’) C ag.

Proof. On first entry to the loop, a’ = L anaiysistattice’- AS « is bottom-preserving,
a(a’) C ap. To establish the invariant, we assume that «(a’) C ag, let t =
T(co, no), for some (co,mg) € C x N, and show that a(t(a’)) C ao.

As part of the computation of t(a’), the transfer function ¢ may invoke the
ADT operations on o', and we need to (1) check the effect of each operation
on a’ and prove that the « relation still holds. Additionally, since the output
of one operation may be used as input to another and we may assume that the
arguments of each invocation of an operation in a transfer function are computed
by monotone functions, we are also obliged to (2) check that a-related arguments
to the operations yield a-related results. In the following, we let (mg, go) = ag
and (m/,¢") = o’ and prove the properties (1) and (2) for each operation in turn.

Case getcallgraph’. The invocation of a’.getcallgraph’() does not affect a’.
The result is a subset of ag.getcallgraph() because a(a’) C ap.

Case getstate. This operation does not modify a’. For the result, we have
a(a’.getstate(c,n)) C ag.getstate(c,n).

21

Case getfield’. Consider the invocation of a’.getfield' (c,n, £, p). If m'(c,n) =
none, then a’ is not changed and the result is L which preserves the invariant.
Let now m/(c,n) # none and v = a’.getfield(c,n, ¢, p). If v # unknown, then a’ is
not changed and a(v) C ag.getfield(c,n, £, p). If v = unknown, then we need to
consider the changes effected by recover where we also relate the result to the
expected one.

Case propagate’. Consider the invocation of a'.propagate’(c,n,s’) from a
transfer function ¢ = T'(cg, ng), where (cg, ng) is a predecessor of (¢,n). As ag is
a solution, it holds that ¢(ag) C ap and that consequently ag.propagate(c,n, s)
leaves ap unchanged, where «(s’) C s as both states are computed by the same
monotone function from a-related arguments.

If &' = m/(¢,n) is none, then m’(c,n) is effectively updated to s’. Now,
a(m/(e,n)) = a(s’) C s £ m(e,n) with the last equation holding because
ag.propagate leaves ag unchanged.

Otherwise, parts of v/ may need to be recovered which (assumedly) does
not violate the invariant. We then have that a(m/(c,n)) C m(c,n) before the
invocation of propagate and a(m’(c,n)Us") = a(m/(c,n))Ua(s’) C m(c,n)Us C
m(c,n) afterwards.

This operation returns no result, so the a-relation trivially holds.

Case recover. Consider the invocation of a’.recover(c, n, ¢, p). The first node
added to the graph G is (c, fun(n)).

For this return value, it holds that a(v’') T m(c, entry(fun(n)))(¢)(p) by
assumption. By similar reasoning as in subcase B below, it must be that

m(c, entry(fun(n)))(€)(p) E m(c,n)(€)(p) = ao.getfield(c,n, ¢, p).

Hence, a(v') C ag.getfield(c,n, £, p) as required.

Once the graph G has been constructed, the recovery algorithm first examines
the roots (¢/, f') of G and modifies their states in o’. Let (¢, f’) be such a root,
u' =m'(c’, entry(f')), and let (c1,n1) be such that uj = g'(c1,n1,¢’, f’) # none.
Let further u/, = m/(¢1,n1) and v} = m/(cq, entry(fun(ny))).

As (¢, f') is reachable there must have been a prior step in the fixpoint
iteration where some transfer function ¢ = T'(¢1,n1) invokes funentry . Inside of
this ¢’ there must be a monotone function invoke which commutes with o and
which constructs the State argument to funentry’ such that u = invoke(ul).
This same function is also used in the verification that ag is a solution. In this
verification, suppose that the State argument is s = invoke(u.) where u, =
mo(c1,ny). Let further u = mo(c/, entry(f’)) and w1 = mo(c1, entry(fun(ny))).

Subcase A. Let us first assume that ug (¢)(p) # unknown. By our assump-
tions, it holds that a(u') C u and a(u;) E u.. Because uj = invoke(u,) and
s = invoke(u.) and invoke commutes with «, it also holds that a(uy) C s.

Now, let uglp be bottom except at £.p where it is equal to uj(¢)(p). With this
setting, we can reason that

1 €p

afu’ U ug

) C a(u’ Uuy) = au’ U invoke(uy,))

= a(u') U a(invoke(u.)) C u U invoke(u.) = u

22

where the last equality is due to the propagate operation in the standard funentry
operation.

Subcase B. For the second case, assume that wu,()(p) = unknown but
uj(€)(p) # unknown. As the algorithm propagates the latter value, we need
to prove that it would not change if it were propagated to u’. In fact, to estab-
lish the invariant it is sufficient to show that w1 (£)(p) C u.(¢)(p) in the basic
analysis.

Suppose for a contradiction that ui(€)(p) Z u.(¢)(p). Then there must be
some n, on a path between n, = entry(fun(ny)) and n; where each node between
ne and n, satisfies u1(¢)(p) C mo(c1,ne)(€)(p) but ui (€)(p) € mo(c1,na)(€)(p).
Let n}, be the predecessor of n, on this path. Clearly, T'(¢1,n,) changes the
£.p field by invoking propagate(ci, nl,, s;) for some s, = action(mg(cy,nl,)) with
sz(0)(p) 3 L.

As the same transfer function must have been called in the extended frame-
work (otherwise the function call at n; would not be reachable), there must

H H !/ !/ !/ / H /
have been an invocation of propagate’(c1,nl, s,) for some s/, with a(s),) C sy

T

and s.(¢)(p) O L (because T never processes unknown). But such an invocation

contradicts uy (¢)(p) = unknown, so no such node n, exists.

Hence, a(uy (£)(p)) C u1(£)(p) C uc(¢)(p) so that

a(u’ Uui)(0)(p)

M

M1

Thus, recovery at the roots does not violate the desired invariant. The final
propagation does not do so either. It propagates state from the function entry
node of the caller to the function entry node of the callee under the assumption
that the corresponding component on the call edge is unknown. This assumption
holds by construction of G. With the same argumentation as in the previous
case, the state of the £.p field cannot change between the entry to the caller and
the actual call, so the invariant holds after each iteration of the loop and thus
for the fixpoint as well.

The return value is extracted from m/(c, entry(fun(n)))(¢)(p) which « ap-
proximates the value ag.getfield(c,n,¢,p) as explained in the beginning of this
case.

Case funentry’. An invocation of a’.funentry’ (c1,n1, ca, f2, s') first adds s’ to
the call edge, which is correct because the corresponding call to funentry(ci,ni,
¢2, f2,8) in the basic framework adds the tuple (c1,n1,c2, f2) to the basic call
graph.

Next it computes a projection s” of s’, for which clearly s” C s’ and hence
a(s”) € s holds. With this precondition, the call to propagate preserves the
invariant.

23

If the final call to funezit does not happen, then there is no further change
to a’. Otherwise, the invariant holds by assumption on funezit.

This operation returns no result, so again the a-relation trivially holds.

Case funerit’. Each invocation a'.funewit’(ci,n1,c2, f2,5') happens with a
state argument computed from the exit node of function fo, such as, no =
exit(f2), so that s = fezit(m’(c2,n2)). Hence, the analogous call in the verifica-
tion of the basic framework uses s = fegit(m(ca,n2)), so that a(s’) C s holds, as
usual.

Let furthermore u; = ¢'(c1,n1, c2, f2) be the corresponding call edge and wu,
the state parameter of the corresponding funentry call in the basic framework.

Let LP = {(¢,p) | s'(£,p) = unknown}. By similar reasoning as in the case
for recover, for each (¢,p) € LP, it holds that uy(¢)(p) C m(cz,n2)(€)(p), that is,
this state component is preserved from the invocation to the end of the function.

For the state s” computed in funezit we must argue that a(s”) C s which is
not obvious. For (¢, p) ¢ LP, it holds that a(s”(¢)(p)) = a(s'(£)(p)) C s(¢)(p) by
assumption a(s’) C s. For (¢, p) € LP, it holds that a(s"”(£)(p)) = a(uy(£)(p)) C
g (O)(p) C mica,n2)(€)(p) = 5(6)(p):

Hence, the final call to propagate’ happens with a-related arguments and
does not destroy the invariant.

This operation returns no result, so again the a-relation trivially holds.

A.3 Soundness

The changes made to the AnalysisLattice operations indirectly modify the transfer
functions, so it is also important that these remain sound with respect to the
semantics of the program. To state this more precisely, let [@Q] be a collecting
semantics of a program @ (in the abstract interpretation sense [6]) such that B¢
is an abstraction of [Q] in the domain AnalysisLattice from Section 2 expressed
via the operations getfield and getcallgraph. We say that a € AnalysisLattice
(using either the basic framework or lazy propagation) over-approximates fygj
if
Bloy-getfield T a.getfield N Bqp-getcallgraph T a.getcallgraph

We conjecture that lazy propagation is then sound in the following sense:

Assume that ag € AnalysisLattice is the solution in the basic analysis framework
of an analysis instance A for a program Q and that ag over-approzimates Pq-
If af, is the solution of A in the lazy propagation framework then aj also over-
approzimates Bqy-

Without giving a full proof, we mention some key aspects of the reasoning.
Most importantly, lazy propagation gives a safe approximation compared to the
maybe-modified technique briefly mentioned in Section 2.5, and that technique
is clearly sound relative to the basic framework.

The worklist algorithm for the basic framework produces a solution to the
analysis in the sense defined in Section 2.3. A requirement for this to hold is that

24

every AnalysisLattice ADT operation that modifies an abstract state at some lo-
cation also adds that location to the worklist. This requirement is also fulfilled
with lazy propagation — except for a subtlety in the recover operation: It mod-
ifies states that belong to function entry locations without adding these to the
worklist. This means that such values that have been recovered at the func-
tion entry locations may not be propagated. However, recall that transfer func-
tions can only read object field values via the getfield’ operation. Assume that
getfield'(c,n, £, p) is invoked and the field £.p is unknown at the location (c,n). In
that case, getfield’ will call recover, and in the situation where the proper value
v has already been recovered at the function entry location (c, entry(fun(n)))
the value v is returned by getfield’. This means that the transfer function will
behave in the same way as if v had been propagated from the function entry
location. A similar situation occurs if the recovery has taken place not at the
same function but at an earlier location in the call graph. Thus, the fact that
recover modifies abstract states without adding their locations to the worklist
does not affect correctness of the analysis result.

25

