
Language-Based Caching of
Dynamically Generated HTML

Claus Brabrand, Anders Møller, Steffan Olesen, and Michael I. Schwartzbach

BRICS, Department of Computer Science

University of Aarhus, Denmark

{brabrand,amoeller,olesen,mis }@brics.dk

Abstract

Increasingly, HTML documents are dynamically generated by interactive Web
services. To ensure that the client is presented with the newest versions of such
documents it is customary to disable client caching causing a seemingly inevitable
performance penalty. In the<bigwig> system, dynamic HTML documents are
composed of higher-order templates that are plugged together to construct com-
plete documents. We show how to exploit this feature to provide an automatic
fine-grained caching of document templates, based on the service source code. A
<bigwig> service transmits not the full HTML document but instead a compact
JavaScript recipe for a client-side construction of the document based on a static
collection of fragments that can be cached by the browser in the usual manner. We
compare our approach with related techniques and demonstrate on a number of
realistic benchmarks that the size of the transmitted data and the latency may be
reduced significantly.

1 Introduction

One central aspect of the development of the World Wide Web during the last decade
is the increasing use ofdynamicallygenerated documents, that is, HTML documents
generated using e.g. CGI, ASP, or PHP by a server at the time of the request from
a client [22, 2]. Originally, hypertext documents on the Web were considered to be
principally static, which has influenced the design of protocols and implementations.
For instance, an important technique for saving bandwidth, time, and clock-cycles is
to cache documents on the client-side. Using the original HTTP protocol, a document
that never or rarely changes can be associated an “expiration time” telling the browsers
and proxy servers that there should be no need to reload the document from the server
before that time. However, for dynamically generated documents that change on every
request, this feature must be disabled—the expiration time is always set to “now”,
voiding the benefits of caching.

Even though most caching schemes consider all dynamically generated documents
“non-cachable” [20, 3], a few proposals for attacking the problem have emerged [24,

1

16, 7, 11, 6, 8]. However, as described below, these proposals are typically not appli-
cable for highly dynamic documents. They are often based on the assumptions that
although a document is dynamically generated, 1) its construction on the server often
does not have side-effects, for instance because the request is essentially a database
lookup operation, 2) it is likely that many clients provide the same arguments for the
request, or 3) the dynamics is limited to e.g. rotating banner ads. We take the next step
by considering complex services where essentially every single document shown to a
client is unique and its construction has side-effects on the server. A typical example of
such a service is a Web-board where current discussion threads are displayed according
to the preferences of each user. What we propose is not a whole new caching scheme
requiring intrusive modifications to the Web architecture, but rather a technique for
exploiting the caches already existing on the client-side in browsers, resembling the
suggestions for future work in [22].

Though caching does not work for whole dynamically constructed HTML docu-
ments, most Web services construct HTML documents using some sort of constant
templates that ideally ought to be cached, as also observed in [8, 21]. In Figure 1,
we show a condensed view of five typical HTML pages generated by different<big-
wig> Web services [4]. Each column depicts the dynamically generated raw HTML
text output produced from interaction with each of our five benchmark Web services.
Each non-space character has been colored either grey or black. The grey sections,
which appear to constitute a significant part, are characters that originate from a large
number of small, constant HTML templates in the source code; the black sections are
dynamically computed strings of character data, specific to the particular interaction.

The lycos example simulates a search engine giving 10 results from the query
“caching dynamic objects”; thebachelor service will based on a course roster gen-
erate a list of menus that students use to plan their studies; thejaoo service is part of
a conference administration system and generates a graphical schedule of events; the
webboard service generates a hierarchical list of active discussion threads; and the
dmodlog service generates lists of participants in a course. Apart from the first sim-
ulation, all these examples are sampled from running services and use real data. The
dmodlog example is dominated by string data dynamically retrieved from a database,
as seen in Figure 1, and is thus included as a worst-case scenario for our technique.
For the remaining four, the figure suggests a substantial potential gain from caching
the grey parts.

The main idea of this paper is—automatically, based on the source code of Web
services—to exploit this division into constant and dynamic parts in order to enable
caching of the constant parts and provide an efficient transfer of the dynamic parts
from the server to the client.

Using a technique based on JavaScript for shifting the actual HTML document
construction from the server to the client, our contributions in this paper are:

• an automatic characterization, based on the source code, of document fragments
ascachableor dynamic, permitting the standard browser caches to have signifi-
cant effect even on dynamically generated documents;

• a compact representationof the information sent to the client for constructing
the HTML documents; and

2

(a) lycos (b) bachelor (c) jaoo (d) webboard (e) dmodlog

Figure 1: Benchmark services: cachable (grey) vs. dynamic (black) parts.

• a generalization allowing a whole group of documents, called adocument clus-
ter, to be sent to the client in a single interaction and cached efficiently.

All this is possible and feasible due to the unique approach for dynamically construct-
ing HTML documents used in the<bigwig> language [17, 4], which we use as a
foundation. Our technique is non-intrusive in the sense that it builds only on preex-
isting technologies, such as HTTP and JavaScript—no special browser plug-ins, cache
proxies, or server modules are employed, and no extra effort is required by the service
programmer.

As a result, we obtain a simple and practically useful technique for saving network
bandwidth and reviving the cache mechanism present in all modern Web browsers.

Outline

Section 2 covers relevant related work. In Section 3, we describe the<bigwig> ap-
proach to dynamic generation of Web documents in a high-level language using HTML
templates. Section 4 describes how the actual document construction is shifted from
server-side to client-side. In Section 5, we evaluate our technique by experimenting
with five <bigwig> Web services. Finally, Section 6 contains plans and ideas for
further improvements.

3

2 Related Work

Caching of dynamic contents has received increasing attention the last years since it
became evident that traditional caching techniques were becoming insufficient. In the
following we present a brief survey of existing techniques that are related to the one
we suggest.

Most existing techniques labeled “dynamic document caching” are either server-
based, e.g. [16, 7, 11, 24], or proxy-based, e.g. [6, 18]. Ours is client-based, as e.g. the
HPP language [8].

The primary goal for server-based caching techniques is not to lower the network
load or end-to-end latency as we aim for, but to relieve the server by memoizing the
generated documents in order to avoid redundant computations. Such techniques are
orthogonal to the one we propose. The server-based techniques work well for ser-
vices where many documents have been computed before, while our technique works
well for services where every document is unique. Presumably, many services are
a mixture of the two kinds, so these different approaches might support each other
well—however, we do not examine that claim in this paper.

In [16], the service programmer specifies simple cache invalidation rules instruct-
ing a server caching module that the request of some dynamic document will make
other cached responses stale. The approach in [24] is a variant of this with a more ex-
pressive invalidation rule language, allowing classes of documents to be specified based
on arguments, cookies, client IP address, etc. The technique in [11] instead provides
a complete API for adding and removing documents from the cache. That efficient
but rather low-level approach is in [7] extended withobject dependency graphs, rep-
resenting data dependencies between dynamic documents and underlying data. This
allows cached documents to be invalidated automatically whenever certain parts of
some database are modified. These graphs also allow representation offragmentsof
documents to be represented, as our technique does, but caching is not on the client-
side. A related approach for caching in the Weave Web site specification system is
described in [23].

In [18], a protocol for proxy-based caching is described. It resembles many of
the server-based techniques by exploiting equivalences between requests. A notion of
partial request equivalenceallows similar but non-identical documents to be identi-
fied, such that the client quickly can be given an approximate response while the real
response is being generated.

Active Cache [6] is a powerful technique for pushing computation to proxies, away
from the server and closer to the client. Each document can be associated acache ap-
plet, a piece of code that can be executed by the proxy. This applet is able to determine
whether the document is stale and if so, how to refresh it. A document can be refreshed
either the traditional way by asking the server or, in the other extreme, completely by
the proxy without involving the server, or by some combination. This allows tailor-
made caching policies to be made, and—compared to the server-side approaches—it
saves network bandwidth. The drawbacks of this approach are: 1) it requires installa-
tion of new proxy servers which can be a serious impediment to wide-spread practical
use, and 2) since there is no general automatic mechanism for characterizing document
fragments as cachable or dynamic, it requires tedious and error-prone programming of

4

the cache applets whenever non-standard caching policies are desired.
Common to the techniques from the literature mentioned above is that truly dy-

namic documents, whose construction on the server often have side-effects and essen-
tially always are unique (but contain common constant fragments), either cannot be
cached at all or require a costly extra effort by the programmer for explicitly program-
ming the cache. Furthermore, the techniques either are inherently server-based, and
hence do not decrease network load, or require installation of proxy servers.

Delta encoding [14] is based on the observation that most dynamically constructed
documents have many fragments in common with earlier versions. Instead of transfer-
ring the complete document, adelta is computed representing the changes compared
to some common base. Using a cache proxy, the full document is regenerated near the
client. Compared to Active Cache, this approach is automatic. A drawback is—in ad-
dition to requiring specialized proxies—that it necessitates protocols for management
of past versions. Such intrusions can obviously limit widespread use. Furthermore,
it does not help with repetitions within a single document. Such repetitions occur
naturally when dynamically generating lists and tables whose sizes are not statically
known, which is common to many Web services that produce HTML from the contents
of a database. Repetitions may involve both dynamic data from the database and static
markup of the lists and tables.

The HPP language [8] is closely related to our approach. Both are based on the
observation that dynamically constructed documents usually contain common constant
fragments. HPP is an HTML extension which allows an explicit separation between
static and dynamic parts of a dynamically generated document. The static parts of a
document are collected in atemplatefile while the dynamic parameters are in a sepa-
ratebindingfile. The template file can contain simple instructions, akin to embedded
scripting languages such as ASP, PHP, or JSP, specifying how to assemble the com-
plete document. According to [8], this assembly and the caching of the templates can
be done either using cache proxies or in the browser with Java applets or plug-ins, but
it should be possible to use JavaScript instead, as we do.

Edge Side Includes [19] is an XML-based language for assembling HTML doc-
uments and other resources dynamically. The language is more expressive than the
binding language in HPP, however all caching is performed by intermediate servers in
a content delivery network, and not by the clients.

An essential difference between HPP and our approach is that the HPP solution
is not integrated with the programming language used to make the Web service. With
some work it should be possible to combine HPP with popular embedded scripting lan-
guages, but the effort of explicitly programming the document construction remains.
Our approach is based on the source language, meaning that all caching specifications
are automatically extracted from the Web service source code by the compiler and the
programmer is not required to be aware of caching aspects. Regarding cachability,
HPP has the advantage that the instructions describing the structure of the resulting
document are located in the template file which is cached, while in our solution the
equivalent information is in the dynamic file. However, in HPP the constant fragments
constituting a document are collected in a single template. This means that HTML
fragments that are common to different document templates cannot be reused by the
cache. Our solution is more fine-grained since it caches the individual fragments sepa-

5

x:

x<[=y]:

y:

g

g

Figure 2: Theplugoperator.

rately. Also, HPP templates are highly specialized and hence more difficult to modify
and reuse for the programmer. Being fully automatic, our approach guarantees cache
soundness. Analogously to optimizing compilers, we claim that the<bigwig> com-
piler generates caching code that is competitive to what a human HPP programmer
could achieve. This claim is substantiated by the experiments in Section 5. More-
over, we claim that<bigwig> provides a more flexible, safe, and hence easier to use
template mechanism than does HPP or any other embedded scripting language. The
<bigwig> notion ofhigher-order templatesis summarized in Section 3. A thorough
comparison between various mechanisms supporting document templates can be found
in [4].

As mentioned, we use compact JavaScript code to combine the cached and the dy-
namic fragments on the client-side. Alternatively, similar effects could be obtained
using browser plug-ins or proxies, but implementation and installation would become
more difficult. The HTTP 1.1 protocol [9] introduces both automatic compression
using general-purpose algorithms, such asgzip , byte-range requests, and advanced
cache-control directives. The compression features are essentially orthogonal to what
we propose, as shown in Section 5. The byte-range and caching directives provide fea-
tures reminiscent of our JavaScript code, but it would require special proxy servers
or browser extensions to apply them to caching of dynamically constructed docu-
ments. Finally, we could have chosen Java instead of JavaScript, but JavaScript is
more lightweight and is sufficient for our purposes.

3 Dynamic Documents in<bigwig>

The part of the<bigwig> Web service programming language that deals with dy-
namic construction of HTML documents is called DynDoc [17]. It is based on a notion
of templateswhich are HTML fragments that may containgaps. These gaps can at
runtime be filled with other templates or text strings, yielding a highly flexible mecha-
nism.

A <bigwig> serviceconsists of a number ofsessionswhich are essentially entry
points with a sequential action that may be invoked by a client. When invoked, a
session thread with its own local state is started for controlling the interactions with
the client. Two built-in operations,plugandshow, form the core of DynDoc. Theplug
operation is used for building documents. As illustrated in Figure 2, this operator takes

6

two templates,x andy , and a gap nameg and returns a copy ofx where a copy ofy
has been inserted into everyg gap. A template without gaps is considered a complete
document. Theshowoperation is used for interacting with the client, transmitting a
given document to the client’s browser. Execution of the client’s session thread is
suspended on the server until the client submits a reply. If the document contains input
fields, theshow statement must have areceive part for receiving the field values
into program variables.

As in Mawl [12, 1], the use of templates permits programmer and designer tasks to
be completely separated. However, our templates arefirst-classvalues in that they can
be passed around and stored in variables as any other data type. Also they arehigher-
order in that templates can be plugged into templates. In contrast, Mawl templates can-
not be stored in variables and only strings can be inserted into gaps. The higher-order
nature of our mechanism makes it more flexible and expressive without compromising
runtime safety because of two compile-time program analyses: agap-and-field analy-
sis [17] and anHTML validation analysis[5]. The former analysis guarantees that at
everyplug, the designated gap is actually present at runtime in the given template and
at everyshow, there is always a valid correspondence between the input fields in the
document being shown and the values being received. The latter analysis will guar-
antee that every document being shown is valid according to the HTML specification.
The following variant of a well-known example illustrates the DynDoc concepts:

service {
html ask = < html >What? <input name=" what "></ html >;
html hello = < html >Hello, <[thing]>!</ html >;

session HelloWorld() {
string s;
show ask receive [s= what];
hello = hello<[thing =s];
show hello;

}
}

Two HTML variables,ask andhello , are initialized with constant HTML templates,
and a sessionHelloWorld is declared. The entities<html> and </html> are
merely lexical delimiters and are not part of the actual templates. When invoked, the
session first shows theask template as a complete document to the client. All doc-
uments are implicitly wrapped into an<html> element and a form with a default
“continue” button before being shown. The client fills out thewhat input field and
submits a reply. The session resumes execution by storing the field value in thes vari-
able. It then plugs that value into thething gap of thehello template and sends the
resulting document to the client. The following more elaborate example will be used
throughout the remainder of the paper:

service {
html cover = < html >

<head><title>Welcome</title></head>
<body bgcolor=[color]>

7

<[contents]>
</body>

</ html >;

html greeting = < html >
Hello <[who]>, welcome to <[what]>.

</ html >;

html person = < html ><i>Stranger</i></ html >;

session welcome() {
html h;
h = cover<[color ="#9966ff",

contents =greeting<[who=person]];
show h<[what =<html >BRICS</ html >];

}
}

It builds a “welcome to BRICS” document by plugging together four constant tem-
plates and a single text string, shows it to the client, and terminates. The higher-order
template mechanism does not require documents to be assembled bottom-up: gaps may
occur non-locally as for instance thewhatgap inh in theshow statement that comes
from thegreeting template being plugged into thecover template in the preceding
statement. Its existence is statically guaranteed by the gap-and-field analysis.

We will now illustrate how our higher-order templates

Figure 3:webboard

are more expressive and provide better cachability com-
pared to first-order template mechanisms. First note that
ASP, PHP, and JSP also fit the first-order category as they
conceptually correspond to having one single first-order
template whose special code fragments are evaluated on
the server and implicitly plugged into the template. Con-
sider now the unbounded hierarchical list of messages in
a typical Web bulletin board. This is easily expressed re-
cursively using a small collection of DynDoc templates.
However, it can never be captured by any first-order solu-
tion without casting from templates to strings and hence
losing type safety. Of course, if one is willing to fix the
length of the list explicitly in the template at compile-time,
it can be expressed, but not with unbounded lengths. In
either case, sharing of repetitions in the HTML output is
sacrificed, substantially cutting down the potential bene-
fits of caching. Figure 3 shows thewebboard benchmark
as it would appear if it had been generated entirely using
first-order templates: only the outermost template remains
and the message list is produced by one big dynamic area.
Thus, nearly everything is dynamic (black) compared to the higher-order version dis-
played in Figure 1(d).

8

"Hello "

", welcome to "

"."

who

what

(a) Leaf:greeting

g

s

d

(b) Node:strplug(d, g,s)

1 2

g

dd

(c) Node:plug(d 1, g,d 2)

Figure 4: DynDocDag representation constituents.

Languages without a template mechanism, such as Perl and C, that simply generate
documents using low-levelprint -like commands generally have too little structure
of the output to be exploited for caching purposes.

All in all, we have with theplug-and-showmechanism in<bigwig> successfully
transferred many of the advantages known from static documents to a dynamic context.
The next step, of course, being caching.

Dynamic Document Representation

Dynamic documents in<bigwig> are at runtime represented by theDynDocDagdata
structure supporting four operations: constructing constant templates,constant(c) ;
string plugging,strplug(d, g,s) ; template plugging,plug(d 1, g,d 2) ; and show-
ing documents,show(d) . This data structure represents a dynamic document as a
binary DAG (Directed Acyclic Graph), where the leaves are either HTML templates
or strings that have been plugged into the document and where the nodes represent
pluggings that have constructed the document.

A constant template is represented as an ordered sequence of its text and gap con-
stituents. For instance, thegreeting template from the BRICS example service is
represented as displayed in Figure 4(a) as a sequence containing two gap entries,who
andwhat , and three text entries for the text around and between the gaps. A constant
template is represented onlyoncein memory and is shared among the documents it has
been plugged into, causing the data structure to be a DAG in general and not a tree.

The string plug operation,strplug , combines a DAG and a constant string by
adding a new string plug root node with the name of the gap, as illustrated in Fig-
ure 4(b). Analogously, theplug operation combines two DAGs as shown in Fig-
ure 4(c). For both operations, the left branch is the document containing the gap being
plugged and the right branch is the value being plugged into the gap. Thus, the data
structure merely records plug operations and defers the actual document construction
to subsequentshow operations.

Conceptually, theshow operation is comprised of two phases: agap linkingphase
that will insert a stack of links from gaps to templates and aprint traversalphase that
performs the actual printing by traversing all the gap links. The need for stacks comes
from the template sharing.

9

color who

what

contents

"..."

"..."

"..."

"..."

"..."

"..."

"..."

"..."

color

contents

who

what

"#9966ff"

(anonymous
fragment)

brics

person

greetingcover

Figure 5: DynDocDag representation of the document shown in the BRICS example.

Thestrplug(d, g,s) , plug(d 1, g,d 2) , andshow(d) operations have op-
timal complexities,O(1), O(1), andO(|d|), respectively, where|d| is the lexical size
of thed document.

Figure 5 shows the representation of the document shown in the BRICS example
service. In this simple example, the DAG is a tree since each constant template is used
only once. Note that for some documents, the representation is exponentially more
succinct than the expanded document. This is for instance the case with the following
recursive function:

html tree(int n) {
html list = < html ><[gap]><[gap]></ html >;
if (n==0) return <html >foo</ html >;
return list<[gap=tree(n-1)];

}

which, givenn, in O(n) time and space will produce a document of lexical sizeO(2n).
This shows that regarding network load, it can be highly beneficial to transmit the DAG
across the network instead of the resulting document, even if ignoring cache aspects.

4 Client-Side Caching

In this section we will show how to cache reoccurring parts of dynamically generated
HTML documents and how to store the documents in a compact representation. The
first step in this direction is to move the unfolding of the DynDocDag data structure
from the server to the client. Instead of transmitting the unfolded HTML document, the
server will now transmit a DynDocDag representation of the document in JavaScript

10

along with a link to a file containing some generic JavaScript code that will interpret
the representation and unfold the document on the client. Caching is then obtained by
placing the constant templates in separate files that can be cached by the browser as
any other files.

As we shall see in Section 5, both the caching and the compact representation
substantially reduce the number of bytes transmitted from the server to the client. The
compromise is of course the use of client clock cycles for the unfolding, but in a context
of fast client machines and comparatively slow networks this is a sensible tradeoff. As
explained earlier, the client-side unfolding is not a computationally expensive task, so
the clients should not be too strained from this extra work, even with an interpreted
language like JavaScript.

One drawback of our approach is that extra TCP connections are required for down-
loading the template files the first time, unless using the “keep connection alive” feature
in HTTP 1.1. However, this is no worse than downloading a document with many im-
ages. Our experiments show that the number of transmissions per interaction is limited,
so this does not appear to be a practical problem.

4.1 Caching

The DynDocDag representation has a useful property: it explicitly maintains a sepa-
ration of theconstant templatesoccurring in a document, thestringsthat are plugged
into the document, and thestructuredescribing how to assemble the document. In Fig-
ure 5, these constituents are depicted as framed rectangles, oval rectangles, and circles,
respectively.

Experiments suggest that templates tend to occur again and again in documents
shown to a client across the lifetime of a<bigwig> service, either because they occur
1) many times in the same document, 2) in many different documents, or 3) simply in
documents that are shown many times. The strings and the structure parts, however,
are typically dynamically generated and thus change with each document.

The templates account for a large portion of the expanded documents. This is sub-
stantiated by Figure 1, as earlier explained. Consequently, it would be useful to some-
how cache the templates in the browser and to transmit only the dynamic parts, namely
the strings and the structure at eachshow statement. This separation of cachable and
dynamic parts is for the BRICS example illustrated in Figure 6.

As already mentioned, the solution is to place each template in its own file and
include a link to it in the document sent to the client. This way, the caching mechanism
in the browser will ensure that templates already seen are not retransmitted.

The first time a service shows a document to a client, the browser will obviously
not have cached any of the JavaScript template files, but as more and more documents
are shown, the client will download fewer and fewer of these files. With enough inter-
actions, the client reaches a point ofasymptotic cachingwhere all constant templates
have been cached and thus only the dynamic parts are downloaded.

Since the templates are statically known at compile-time, the compiler enumer-
ates the templates and for each of them generates a file containing the corresponding
JavaScript code. By postfixing template numbers with version numbers, caching can
be enabled across recompilations where only some templates have been modified.

11

s[0]

s[] = {"#9966ff"}

Document structure:

color

contents

who

what

d1_2.js d2_3.js d3_3.js

d4_1.js

String Pool:

(a) Dynamic document structure reply file.

"..."

"..."

"..."

"..."

"..."

"..."

"..." "..."

color

contents

who

what

d1_2.js d2_3.js

d4_1.jsd3_3.js

(b) Cachable template files.

Figure 6: Separation into cachable and dynamic parts.

In contrast to HPP, our approach is entirely automatic. The distinction between
static and dynamic parts and the DynDocDag structure are identified by the compiler,
so the<bigwig> programmer gets the benefits of client-side caching without tedious
and error-prone manual programming of bindings describing the dynamics.

4.2 Compact Representation

In the following we show how to encode the cachable template files and the reply doc-
uments containing the document representation. Since the reply documents are trans-
mitted at eachshow statement, their sizes should be small. Decompression has to be
conducted by JavaScript interpreted in browsers, so we do not apply general purpose
compression techniques. Instead we exploit the inherent structure of the reply docu-
ments to obtain a lightweight solution: a simple yet compact JavaScript representation
of the string and structure parts that can be encoded and decoded efficiently.

Constant Templates

A constant template is placed in its own file for caching and is encoded as a call to a
JavaScript constructor function,F, that takes the number and version of the template
followed by an array of text and gap constituents respectively constructed via calls to
the JavaScript constructor functionsT andG. For instance, thegreeting template
from the BRICS example gets encoded as follows:

F(T(’Hello ’),G(3),T(’, welcome to ’),G(4),T(’.’));

Assuming this is version 3 of template number 2, it is placed in a file calledd2 3.js .
The gap identifierswho andwhat have been replaced by the numbers 3 and 4, respec-
tively, abstracting away the identifier names. Note that such a file needs only ever be
downloaded once by a given client, and it can be reused every time this template occurs
in a document.

12

Dynamics

The JavaScript reply files transmitted at eachshow contain three document specific
parts:include directivesfor loading the cachable JavaScript template files, thedynamic
structureshowing how to assemble the document, and astring poolcontaining the
strings used in the document.

The structure part of the representation is encoded as a JavaScript string constant,
by a uuencode-like scheme which is tuned to the kinds of DAGs that occur in the
observed benchmarks.

Empirical analyses have exposed three interesting characteristics of the strings used
in a document: 1) they are all relatively short, 2) some occur many times, and 3)
many seem to be URLs and have common prefixes. Since the strings are quite short,
placing them in individual files to be cached would drown in transmission overhead.
For reasons of security, we do not want to bundle up all the strings in cachable string
pool files. This along with the multiple occurrences suggests that we collect the strings
from a given document in a string pool which is inlined in the reply file sent to the
client. String occurrences within the document are thus designated by their offsets into
this pool. Finally, the common prefix sharing suggests that we collect all strings in a
trie which precisely yields sharing of common prefixes. As an example, the following
four strings:

"foo",
"http://www.brics.dk/bigwig/",
"http://www.brics.dk/bigwig/misc/gifs/bg.gif",
"http://www.brics.dk/bigwig/misc/gifs/bigwig.gif"

are linearized and represented as follows:

"foo | http://www.brics.dk/bigwig/ [misc/gifs/b (igwig.gif | g.gif)] "

When applying the trie encoding to the string data of the benchmarks, we observe a
reduction ranging from 1780 to 1212 bytes (onbachelor) to 27728 to 10421 bytes
(ondmodlog).

The reply document transmitted to the client at theshow statement in the BRICS
example looks like:

<html>
<head>

<script src="http://www.brics.dk/bigwig/dyndoc.js"></script>
<script>I(1,2,3,4, 2,3,3,1);</script>
<script>S("#9966ff"); D("/& Ë$Î&I%",2,8,4);</script>

</head>
<body onload="E();"></body>

</html>

The document starts by including a generic 15K JavaScript library,dyndoc.js , for
unfolding the DynDocDag representation. This file is shared among all services and is
thus only ever downloaded once by each client as it is cached after the first service in-
teraction. For this reason, we have not put effort into writing it compactly. The include

13

directives are encoded as calls to the functionI whose argument is an array designat-
ing the template files that are to be included in the document along with their version
numbers. TheS constructor function reconstructs the string trie which in our example
contains the only string plugged into the document, namely “#9966ff ”. As expected,
the document structure part, which is reconstructed by theDconstructor function, is not
humanly readable as it uses the extended ASCII set to encode the dynamic structure.
The last three arguments toD recount how many bytes are used in the encoding of a
node, the number of templates plus plug nodes, and the number of gaps, respectively.
The last line of the document calls the JavaScript functionE that will interpret all con-
stituents to expand the document. After this, the document has been fully replaced by
the expansion. Note that three script sections are required to ensure that processing
occurs in distinct phases and dependencies are resolved correctly. Viewing the HTML
source in the browser will display the resulting HTML document, not our encodings.

Our compact representation makes no attempts at actual compression such asgzip
or XML compression [13], but is highly efficient to encode on the server and to decode
in JavaScript on the client. Compression is essentially orthogonal in the sense that
our representation works independently of whether or not the transmission protocol
compresses documents sent across the network, as shown in Section 5. However, the
benefit factor of our scheme is of course reduced when compression is added.

4.3 Clustering

In <bigwig> , the show operation is not restricted to transmit a single document.
It can be a collection of interconnected documents, called acluster. For instance, a
document with input fields can be combined in a cluster with a separate document with
help information about the fields.

A hypertext reference to another document in the same cluster may be created using
the notation&x to refer to the document held in the HTML variablex at the time the
cluster is shown. When showing a document containing such references, the client
can browse through the individual documents without involving the service code. The
control-flow in the service code becomes more clear since the interconnections can be
set up as if the cluster were a single document and the references were internal links
within it.

The following example shows how to set up a cluster of two documents,input
andhelp , that are cyclically connected withinput being the main document:

service {
html input = < html >

Please enter your name: <input name=" name"><p>
Click here for help.

</ html >;

html help = < html >
You can enter your given name, family name, or nickname.
<p>Back to the form.

</ html >;

14

html output = < html >Hello <[name]>!</ html >;

session cluster_example() {
html h, i;
string s;
h = help<[back =&i];
i = input<[help =&h];
show i receive [s= name];
show output<[name=s];

}
}

The cluster mechanism gives us a unique opportunity for further reducing network
traffic. We can encode the entire cluster as a single JavaScript document, containing
all the documents of the cluster along with their interconnections. Wherever there is
a document reference in the original cluster, we generate JavaScript code to overwrite
the current document in the browser with the referenced document of the cluster. Of
course, we also need to add some code to save and restore entered form data when the
client leaves and re-enters pages with forms. In this way, everything takes place in the
client’s browser and the server is not involved until the client leaves the cluster.

5 Experiments

Figure 7 recounts the experiments we have performed. We have applied our caching
technique to the five Web service benchmarks mentioned in the introduction.

In Figure 7(b) we show the sizes of the data transmitted to the client. The grey
columns show the original document sizes, ranging between 20 and 90 KB. The white
columns show the sizes of the total data that is transmitted using our technique, none
of which exceeds 20 KB. Of ultimate interest is the black column which shows the
asymptotic sizes of the transmitted data, when the templates have been cached by the
client. In this case, we see reductions of factors between 4 and 37 compared to the
original document size.

The lycos benchmark is similar to one presented for HPP [8], except that our
reconstruction is of course in<bigwig> . It is seen that the size of our residual dy-
namic data (from 20,183 to 3,344 bytes) is virtually identical to that obtained by HPP
(from 18,000 to 3,250 bytes). However, in that solution all caching aspects are hand-
coded with the benefit of human insight, while ours is automatically generated by the
<bigwig> compiler. The other four benchmarks would be more challenging for HPP.

In Figure 7(c) we repeat the comparisons from Figure 7(b) but under the assump-
tion that the data is transmitted compressed usinggzip . Of course, this drastically
reduces the benefits of our caching technique. However, we still see asymptotic reduc-
tion factors between 1.3 and 2.9 suggesting that our approach remains worthwhile even
in these circumstances. Clearly, there are documents for which the asymptotic reduc-
tion factors will be arbitrarily large, since large constant text fragments count for zero
on our side of the scales whilegzip can only compress them to a certain size. Hence
we feel justified in claiming that compression is orthogonal to our approach. When the

15

HTTP protocol supports compression, we represent the string pool in a naive fashion
rather than as a trie, sincegzip does a better job on plain string data. Note that in
some cases our uncompressed residual dynamic data is smaller than the compressed
version of the original document.

In Figure 7(d) and 7(e) we quantify the end-to-end latency for our technique. The
total download and rendering times for the five services are shown for both the stan-
dard documents and our cached versions. The client is Internet Explorer 5 running on
an 800 MHz Pentium III Windows PC connected to the server via either a 28.8K mo-
dem or a 128K ISDN modem. These are still realistic configurations, since by August
2000 the vast majority of Internet subscribers used dial-up connections [10] and this
situation will not change significantly within the next couple of years [15]. The times
are averaged over several downloads (plus renderings) with browser caching disabled.
As expected, this yields dramatic reduction factors between 2.1 and 9.7 for the 28.8K
modem. For the 128K ISDN modem, these factors reduce to 1.4 and 3.9. Even our
“worst-case example”,dmodlog , benefits in this setup. For higher bandwidth dimen-
sions, the results will of course be less impressive.

In Figure 7(f) we focus on the pure rendering times which are obtained by averag-
ing several document accesses (plus renderings) following an initial download, caching
it on the browser. For the first three benchmarks, our times are in fact a bit faster than
for the original HTML documents. Thus, generating a large document is sometimes
faster than reading it from the memory cache. For the last two benchmarks, they are
somewhat slower. These figures are of course highly dependent on the quality of the
JavaScript interpreter that is available in the browser. Compared to the download la-
tencies, the rendering times are negligible. This is why we have not visualized them in
Figure 7(d) and 7(e).

6 Future Work

In the following, we describe a few ideas for further cutting down the number of bytes
and files transmitted between the server and the client.

In many services, certain templates often occur together in allshow statements.
Such templates could be grouped in the same file for caching, thereby lowering the
transmission overhead. In<bigwig> , the HTML validation analysis [5] already ap-
proximates a graph from which we can readily derive the set of templates that can
reach a givenshow statement. These sets could then be analyzed for tightly connected
templates using various heuristics. However, there are certain security concerns that
need to be taken into consideration. It might not be good idea to indirectly disclose a
template in a cache bundle if the show statement does not directly include it.

Finally, it is possible to also introduce language-based server-side caching which
is complementary to the client-side caching presented here. The idea is to exploit the
structure of<bigwig> programs to automatically cache and invalidate the documents
being generated. This resembles the server-side caching techniques mentioned in Sec-
tion 2.

16

original cachable+ dynamics dynamics

0

20

40

60

80

100

︸ ︷︷ ︸

lycos
︸ ︷︷ ︸

bachelor
︸ ︷︷ ︸

jaoo
︸ ︷︷ ︸

webboard
︸ ︷︷ ︸

dmodlog

KB

(b) size

0

2

4

6

8

10

︸ ︷︷ ︸

lycos
︸ ︷︷ ︸

bachelor
︸ ︷︷ ︸

jaoo
︸ ︷︷ ︸

webboard
︸ ︷︷ ︸

dmodlog

KB

(c) gzip size

0

5

10

15

20

25

30

︸ ︷︷ ︸

lycos
︸ ︷︷ ︸

bachelor
︸ ︷︷ ︸

jaoo
︸ ︷︷ ︸

webboard
︸ ︷︷ ︸

dmodlog

sec

(d) 28.8K modem download+rendering

0

2

4

6

8

10

︸ ︷︷ ︸

lycos
︸ ︷︷ ︸

bachelor
︸ ︷︷ ︸

jaoo
︸ ︷︷ ︸

webboard
︸ ︷︷ ︸

dmodlog

sec

(e) 128K ISDN download+rendering

0

500

1000

1500

2000

︸ ︷︷ ︸

lycos
︸ ︷︷ ︸

bachelor
︸ ︷︷ ︸

jaoo
︸ ︷︷ ︸

webboard
︸ ︷︷ ︸

dmodlog

msec

(f) pure rendering

Figure 7: Experiments with the template representation.

17

7 Conclusion

We have presented a technique to revive the existing client-side caching mechanisms in
the context of dynamically generated Web pages. With our approach, the programmer
need not be aware of caching issues since the decomposition of pages into cachable
and dynamic parts is performed automatically by the compiler. The resulting caching
policy is guaranteed to be sound, and experiments show that it results in significantly
smaller transmissions and reduced latency. Our technique requires no extensions to
existing protocols, clients, servers, or proxies. We only exploit that the browser can
interpret JavaScript code. These results lend further support to the unique design of
dynamic documents in<bigwig> .

References

[1] David Atkins, Thomas Ball, Glenn Bruns, and Kenneth Cox. Mawl: a domain-
specific language for form-based services. InIEEE Transactions on Software
Engineering, June 1999.

[2] Paul Barford, Azer Bestavros, Adam Bradley, and Mark Crovella. Changes in
web client access patterns: Characteristics and caching implications.World Wide
Web Journal, 2(1–2):15–28, January 1999. Kluwer.

[3] Greg Barish and Katia Obraczka. World Wide Web caching: Trends and tech-
niques.IEEE Communications Magazine Internet Technology Series, May 2000.

[4] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The
<bigwig> project. Submitted for publication. Available fromhttp://

www.brics.dk/bigwig/ .

[5] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static validation of
dynamically generated HTML. InProceedings of Workshop on Program Analysis
for Software Tools and Engineering (PASTE 2001). ACM, 2001.

[6] Pei Cao, Jin Zhang, and Kevin Beach. Active cache: Caching dynamic contents
on the Web. InProceedings of the 1998 Middleware conference, 1998.

[7] Jim Challenger, Paul Dantzig, and Arun Iyengar. A scalable system for con-
sistently caching dynamic web data. InProceedings of the 18th Annual Joint
Conference of the IEEE Computer and Communications Societies, March 1999.

[8] Fred Douglis, Antonio Haro, and Michael Rabinovich. HPP: HTML macro-
preprocessing to support dynamic document caching. InProceedings of the 1997
Usenix Symposium on Internet Technologies and Systems (USITS-97), December
1997.

[9] J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext transfer protocol, HTTP/1.1. Available fromhttp://www.

w3.org/Protocols/rfc2616/rfc2616.html , 1999.

18

[10] ICONOCAST Newsletter, August 17, 2000. Available from
http://www.iconocast.com/issue/20000817.html .

[11] Arun Iyengar and Jim Challenger. Improving web server performance by caching
dynamic data. InUSENIX Symposium on Internet Technologies and Systems,
December 1997.

[12] David A. Ladd and J. Christopher Ramming. Programming the web: An
application-oriented language for hypermedia services. In4th Intl. World Wide
Web Conference (WWW4), 1995.

[13] Hartmut Liefke and Dan Suciu. XMill: an efficient compressor for XML data.
ACM SIGMOD Record, 29(2):153–164, 2000.

[14] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander Krishna-
murthy. Potential benefits of delta encoding and data compression for HTTP.
In SIGCOMM, pages 181–194, 1997.

[15] Jakob Nielsen.Designing Web Usability: The Practice of Simplicity. New Riders
Publishing, 2000.

[16] Karthick Rajamani and Alan Cox. A simple and effective caching scheme for
dynamic content. Technical report, CS Dept., Rice University, September 2000.

[17] Anders Sandholm and Michael I. Schwartzbach. A type system for dynamic Web
documents. InPrinciples of Programming Languages (POPL’00). ACM, 2000.

[18] Ben Smith, Anurag Acharya, Tao Yang, and Huican Zhu. Exploiting result equiv-
alence in caching dynamic web content. InUSENIX Symposium on Internet Tech-
nologies and Systems, 1999.

[19] Mark Tsimelzon, Bill Weihl, and Larry Jacobs. ESI language specification 1.0.
http://www.edge-delivery.org/language spec 1-0.html , 2001.

[20] Jia Wang. A survey of web caching schemes for the Internet.ACM Computer
Communication Review, 29(5):36–46, October 1999.

[21] Craig Wills and Mikhail Mikhailov. Studying the impact of more complete server
information on web caching.Computer Communications, 24(2):184–190, 2001.

[22] Alec Wolman. Characterizing web workloads to improve performance, July 1999.
University of Washington.

[23] Khaled Yagoub, Daniela Florescu, Valerie Issarny, and Patrick Valduriez.
Caching strategies for data-intensive web sites.The VLDB Journal, pages 188–
199, 2000.

[24] H. Zhu and T. Yang. Class-based cache management for dynamic web contents.
In Proceedings IEEE INFOCOM 2001, pages 1215–1224, 2001.

19

