
Practical AJAX Race Detection for JavaScript Web Applications
Christoffer Quist Adamsen

Aarhus University
quist@cs.au.dk

Anders Møller
Aarhus University
amoeller@cs.au.dk

Saba Alimadadi
Northeastern University
saba@northeastern.edu

Frank Tip
Northeastern University

f.tip@northeastern.edu

ABSTRACT

Asynchronous client-server communication is a common source
of errors in JavaScript web applications. Such errors are difficult
to detect using ordinary testing because of the nondeterministic
scheduling of AJAX events. Existing automated event race detectors
are generally too imprecise or too inefficient to be practically useful.
To address this problem, we present a new approach based on a light-
weight combination of dynamic analysis and controlled execution
that directly targets identification of harmful AJAX event races.

We experimentally demonstrate using our implementation,Ajax-
Racer, that this approach is capable of automatically detecting
harmful AJAX event races in many websites, and producing in-
formative error messages that support diagnosis and debugging.
Among 20 widely used web pages that use AJAX, AjaxRacer dis-
covers harmful AJAX races in 12 of them, with a total of 72 error
reports, and with very few false positives.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

event race detection, JavaScript, dynamic analysis
ACM Reference Format:

Christoffer Quist Adamsen, Anders Møller, Saba Alimadadi, and Frank Tip.
2018. Practical AJAX Race Detection for JavaScript Web Applications. In
Proceedings of the 26th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18),

November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3236024.3236038

1 INTRODUCTION

Millions of JavaScript web applications use AJAX for client-server
communication. AJAX is today a commonly used term that de-
scribes uses of the XMLHttpRequest (abbreviated XHR) API that all
modern browsers support. This API enables JavaScript programs
running in browsers to send HTTP requests to a server based on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236038

a user’s input, and receive responses that are then used to up-
date the UI. A prominent example is the autocomplete feature at
google.com where suggestions are provided as soon as the user
starts entering a search term.

To ensure a smooth user experience, AJAX communication is
usually asynchronous, meaning that a user can continue interact-
ing with the page and that more JavaScript code can be executed
between the time that the HTTP request is sent and when the re-
sponse is received. Additionally, it is possible to perform multiple
AJAX interactions simultaneously. This may cause nondeterminism
when the same sequence of user events leads to different behaviors
depending on the order in which the AJAX responses and other
events are processed. Often, this leads to errors that are missed by
ordinary testing when programmers are insufficiently aware of the
many possible interleavings of events. For the end user, the con-
sequences of such errors typically range from minor functionality
glitches to misleading inconsistencies in the UI.

The fact that the JavaScript execution model is susceptible to
so-called event races is well known [13, 23]. Many techniques have
been developed to detect and prevent event race errors and their
harmful consequences [1, 2, 10, 14, 19–21, 24–26]. However, none
of those existing techniques are capable of detecting harmful event
race errors that involve AJAX with sufficient precision and per-
formance to be practically useful. In particular, EventRacer [21]
reports too many benign races and may miss harmful ones [2],
R
4 [14] relies on stateless model checking, which does not scale well

and requires complex browser instrumentation, and InitRacer [2]
only detects event races that appear during the initialization of a
web application, not those that involve AJAX later in the execution.

The goal of our work is to provide an automated event race detec-
tor that is practical for event races that involve AJAX. Specifically,
such a tool should be able to detect AJAX event races that have
observable effects, without reporting a large number of spurious
or harmless races. Also, it should not require browser instrumenta-
tion, which is platform-specific and difficult to maintain as browsers
evolve, and it should be fast and produce informative error messages
that facilitate debugging.

We present an approach that meets these requirements, inspired
by the ideas of adverse execution used by InitRacer [2] and con-

trolled execution used by EventRaceCommander [1]. Our approach
is based on the key observation that JavaScript developers typically
test their code using networks and servers that are fast and reliable,
so in their tests AJAX is effectively synchronous, meaning that the
AJAX request-response pairs are essentially atomic, without other
events occurring in between. This observation allows us to establish
a notion of “expected” event schedules as those where an AJAX

https://doi.org/10.1145/3236024.3236038
https://doi.org/10.1145/3236024.3236038


ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA C.Q. Adamsen, A. Møller, S. Alimadadi, and F. Tip

response event handler eresp executes immediately after the event
handler ereq that sent the request. In contrast, any schedule where
another event handler e is scheduled between ereq and eresp can be
regarded as less likely to be exercised during ordinary testing. An
AJAX event race occurs if the effects of e conflict with the effects
of eresp. The idea of adverse execution is to systematically expose
a program to adverse conditions and compare the result with the
normal behavior. In our case, schedules where AJAX is processed
synchronously define the normal expected behavior, and adverse
conditions are situations where the network or server is slow or
unreliable allowing other events to interfere.

Our approach consists of two phases. The first phase dynami-
cally monitors an execution of a web application, with the purpose
of identifying (1) user event handlers that have conflicting AJAX
response event handlers, and (2) information about which event
handlers may be reordered. This initial execution may be driven
by a human user, an automated testing tool, or a pre-existing test
script, similarly to other dynamic race detectors. For each user event
handler u that has been observed, an event graph Gu is generated
that captures relevant information about the events that have been
triggered either directly or indirectly by u. For example, clicking
on a button may create a timer event that leads to an AJAX request
that, in turn, triggers an AJAX response event, which finally up-
dates the UI. The second phase uses these event graphs to plan a
series of tests. Each test simulates two event schedules, one where
AJAX is synchronous and one that simulates adverse conditions
as discussed above, and automatically compares screenshots of the
resulting web pages. Observable differences are reported along with
detailed information about the event schedules that gave rise to
them. To control the scheduling of event handlers when execut-
ing the tests, we use an event controller mechanism inspired by
EventRaceCommander in which nondeterminism is restricted by
selectively postponing the execution of event handlers.

We evaluate AjaxRacer using 20 web pages from 12 large and
widely used web applications. The results show that the approach
is effective in detecting AJAX races in real settings. AjaxRacer
generates 152 tests, of which 65 reveal harmful races among 12
of the web pages, and only seven reports are false positives. We
additionally demonstrate the usefulness of AjaxRacer’s compre-
hensive web-based reports for understanding the detected AJAX
races and diagnosing their root causes.

In summary, this paper makes the following contributions:
• We define a notion of event graphs that captures relevant
information about effects and orderings of event handlers,
relative to a given initial execution.

• We present a two-phased approach for automatically detect-
ing harmful AJAX event races in JavaScript web applications.
The first phase performs a dynamic analysis for computing
event graphs; the second phase executes the generated tests
under different event schedules and determines if observably
different results appear.

• We describe the open-source tool AjaxRacer, which imple-
ments the approach.

• We present experimental results showing AjaxRacer to be
effective at detecting AJAX races in real-world web applica-
tions, that it reports few false positives, and that it provides
insightful explanations that are helpful to developers.

1 function fetchJSONFromURL(url, callback) {

2 var xhr = new XMLHttpRequest();

3 xhr.open('GET', url, true);

4 xhr.onreadystatechange = function () {

5 if (xhr.readyState == XMLHttpRequest.DONE && xhr.status == 200) {

6 var obj = JSON.stringify(xhr.responseText);

7 return callback(obj);

8 }

9 };

10 xhr.send(null);

11 }

Figure 1: AJAX example that demonstrates how a web appli-

cation can fetch a JSON object from a server.

2 BACKGROUND ON AJAX

AJAX (Asynchronous JavaScript and XML) is a technology that
enables web applications to exchange data asynchronously with
a server without imposing page reloads, which enables rich and
responsive client-side web applications.

Figure 1 illustrates how a web application can retrieve a JSON ob-
ject asynchronously from a server using the XMLHttpRequest (XHR)
API.1 To send an XHR request, a web application first needs to
construct an XHR object (line 2) and initialize the object by calling
the open method with the relevant HTTP method and URL (line 3).
The open method takes as optional arguments a boolean that spec-
ifies if the request should be asynchronous (defaults to true) and
credentials for authentication purposes. When the XHR object has
been initialized, the AJAX request can be sent by calling the send

method, optionally with data for the body of the request (line 10).
Each XHR object goes through several phases during the life-

cycle of the corresponding request. The current state of an XHR
object can be accessed at any time by reading its readyState prop-
erty. This state indicates (among others) if the request has been
sent, if the headers and status code have been received from the
server, or if the entire response has been received. Each time the
state of an XHR object changes, a so-called readystatechange event
is triggered. Web applications can react to these events by regis-
tering an event handler for this event type, as in line 4. The event
handler in lines 4–9 explicitly checks that the response has been
fully received before it accesses the body of the AJAX response
in line 6. XHR involves several other kinds of events, in addition
to readystatechange events. These include a load event when the
resource has been loaded, a timeout event if the response takes too
long, and an error event if, for example, the request is blocked by
the browser’s same-origin policy.

To circumvent the same-origin policy of XHR, many websites
instead implement AJAX using JSONP. To get data from a server
with that approach, the client code dynamically creates a script

element with the URL of a script, which is executed when it has
been retrieved from the server. For this reason we also need to take
dynamically loaded scripts into account.

We distinguish between user events (mouse click events, key-
board events, etc.) and system events (most importantly, AJAX

1 See https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest.
The new Fetch API (https://developer.mozilla.org/en-US/docs/Web/API/
Fetch_API) andWebSockets (https://developer.mozilla.org/en-US/docs/Web/
API/WebSockets_API) provide related functionality. In this paper, we focus on XHR,
which is currently the most widely used AJAX API, but the alternatives may be inter-
esting for future work.

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API


ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

www.chevronwithtechron.com/findastation.aspx

12 <script src="js/gmap-helper-main-compiled.js"></script>

13 <input id="search" value="Enter Location/ZIP code">

14 <div id="searchBar">

15 <p>FILTER YOUR SEARCH</p>

16 <a onclick="addRemoveFilter('search7');" ...>Car Wash Locations</a>

17 <a onclick="addRemoveFilter('search11');" ...>Diesel Locations</a>

18 </div>

19 <div id="stationResult"></div>

www.chevronwithtechron.com/js/gmap-helper-main-compiled.js

20 var curGeoObj, filters = [];

21 function addRemoveFilter(filterId) {

22 toggleFilter(filterId);

23 $('#stationResult').html('');

24 searchLocationsNearByJSON();

25 }

26 function searchLocationsNearByJSON() {

27 var url = createURL("webservices/GetStationsNearMe.aspx",

28 curGeoObj, filters);

29 $.ajax({ url: url, type: "GET", success: parseStationData });

30 }

31 function parseStationData(data) {

32 if (data.status == "ok") {

33 var htmls = [];

34 for (var i = 0; i < data.stations.length; i++) {

35 var html = ...;

36 htmls.push(html);

37 }

38 $("#stationResult").html(htmls.join("<hr />"));

39 } else ...

40 }

Figure 2: Motivating example.

response events and timer events). After the web page has been
loaded and initialized, every system event is triggered either di-
rectly or indirectly by a user event. Each such system event can thus
be associated uniquely with a user event; we say that the system
event is derived from that user event.

AJAX is one of the key ingredients of modern web applications.
However, it also introduces complexities in the execution of web
applications. In particular, there are no guarantees regarding the
exact timing and order of arrival of AJAX requests at the server, nor
of the corresponding AJAX response events at the client. The user
controls the ordering of user events, but the execution of system
events is to some extent nondeterministic. Borrowing terminology
from concurrency in multi-threaded settings, a schedule fixes the
nondeterministic choices relative to a given sequence of user events.
As a consequence of this nondeterminism, event race errors may
occur in production web applications when the order of events in
the execution differs from the ones observed during testing.

3 MOTIVATING EXAMPLE

Figure 2 shows a snippet of HTML and JavaScript code from www.

chevronwithtechron.com/findastation.aspx. This web page allows
the user to search for gas stations in a given area, and to filter
these gas stations based on various criteria. For example, the user
can search for gas stations that have a car wash by clicking on
the “Car Wash Locations” button defined in line 16, which causes
the JavaScript function addRemoveFilter in line 21 to execute. This
function updates the set of filters that have been selected by the user
(line 22), clears the contents of the HTML element that presents

click

“Car Wash Loc’s”

click

“Car Wash Loc’s”
click

“Diesel Loc’s”
xhr load

filter = {7}
xhr load

filter = {7, 11}

xhr load

filter = {7}
click

“Diesel Loc’s”
xhr load

filter = {7, 11}

(a) Correct schedules.

click

“Car Wash Loc’s”
click

“Diesel Loc’s”
xhr load

filter = {7, 11}
xhr load

filter = {7}

(b) Erroneous schedules.

u
u v : event v is derived from event u

v : event u arrives before event v

Figure 3: Possible interleavings in the motivating example.

the list of gas stations to the user (line 23), and finally invokes
the function searchLocationsNearByJSON (line 24) to retrieve the
list of gas stations from the server according to the search query
provided by the user (lines 27–29). By the time the server response
arrives, an AJAX response event fires, causing the event handler
parseStationData (line 31) to execute. This function constructs
a snippet of HTML for each gas station in the server response
(lines 34–37), and then updates the UI using these snippets (line 38).

The example web page exhibits an AJAX event race when the
user selects more than one criterion. Consider what happens when
the user clicks on the “Car Wash Locations” button and subse-
quently on the “Diesel Locations” button. Each of these click events
causes an AJAX request to be sent in line 29. The corresponding
AJAX response events arrive asynchronously and without a pre-
determined order, so either may be processed first. If the AJAX
response corresponding to the click on the “Car Wash Locations”
button is processed first, then the web page works correctly, since
the subsequent AJAX response event (corresponding to the click
on the “Diesel Locations” button) simply updates the UI with the
gas stations that have a car wash and diesel. However, if the AJAX
responses arrive in the opposite order, then the AJAX response
event corresponding to the click on “Car Wash Locations” results in
an inconsistent state: the filters “Car Wash Locations” and “Diesel
Locations” are both selected (and highlighted in the UI), but the list
of gas stations in the UI only shows those stations that have a car
wash, but not necessarily diesel.

Figure 3a illustrates two schedules that lead to correct behavior
for the example user event sequence with the two button clicks. (For
simplicity, it only shows a subset of the actual events that occur.)
In one schedule, the AJAX response event derived from the first
button click occurs before the second button click, and vice versa in
the other schedule. In both cases, the AJAX response event derived
from the second button click comes last. Figure 3b shows a third
schedule for the same user event sequence. In this case, the AJAX
response events arrive out of order, which results in the error.

The event handler for the “Car Wash Locations” button not only
conflicts with the event handler for the “Diesel Locations” button,
but also conflicts with itself. In particular, it is possible to expose an
error that is similar to the one described above, by triggering two

www.chevronwithtechron.com/findastation.aspx
www.chevronwithtechron.com/findastation.aspx


ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA C.Q. Adamsen, A. Møller, S. Alimadadi, and F. Tip

simultaneous click events on the “Car Wash Locations” button. If
the AJAX responses arrive out of order, the markers on the map are
inconsistent with the selected filters. The technique we describe in
the following sections finds both these errors.

For an event race error detection technique to be practical, it is
not sufficient for it to detect errors and produce useful error mes-
sages; it is also important that it does not report too many false pos-
itives. Predictive event race error detectors like EventRacer gen-
erally report many races that are infeasible or harmless [2, 19, 25].
This is particularly problematic when web application program-
mers carefully use ad-hoc synchronization to avoid race errors. For
this reason, our technique is designed so that it only reports event
race errors that can be witnessed by concrete schedules that exhibit
visible differences in the browser.

4 THE AJAXRACER TECHNIQUE

Our technique comprises two phases. Phase 1 generates event
graphs that can be used to identify pairs of user events that are
likely to be involved in an observable AJAX event race. Phase 2 ex-
amines, for each such pair of events, whether or not an observable
AJAX event race actually exists.

4.1 Phase 1: Generating Event Graphs

Phase 1 is seeded by a sequence of user events, similar to other
dynamic race detectors [14, 19, 21]. This sequence can be obtained
by a single manual execution of the web application, or using an
automated crawler [3, 17]. AjaxRacer loads the (instrumented)
web page in the browser and waits until it has been fully initialized
(meaning that the HTML has been parsed, its scripts have been
executed, and there are no pending system events; see Section 5
for details). It then triggers the user events in the sequence one
by one, in each step awaiting a quiescent state where no system
events are pending, until the next user event is triggered. With
such a controlled execution, it is easy to determine from which
user event each system event is derived, and we reduce the risk of
interference.2

For each user event u, AjaxRacer generates a trace τu by moni-
toring the execution of u and its derived system events. A trace is a
sequence of operations of the following kinds:

• fork[v , w , k] models the fact that an event v creates a
new system event w of kind k to be dispatched later. For
example, fork[v , w , XHR load] means that v performs an
XHR request and w is the associated XHR load event, and
fork[v ,w , timeout]means thatv sets a timer using setTimeout
andw is the associated timeout event.

• join[v ,w] specifies that eventw cannot occur before event
v . Every XHR request creates several XHR readystatechange

events and an XHR load event, and we use join to model the
ordering constraints on those events.

• mutate-dom[v,x ,y,w,h] models that eventv has modified
the HTML DOM, where the parameters x ,y,w,h specify the
position and size of the affected bounding box on the screen.3

2As an example, if we did not wait between the user events but triggered them without
any delay, an unfinished XHR interaction initiated by one user event might be aborted
by an XHR interaction initiated by another user event.
3Other effects, for example involving web storage or cookies [19], can be modeled as
variants of this operation.

{(x, y, w, h)}
v1

∅
v2

∅
v3

∅
v4

{(x ′, y′, w ′, h′)}
v5

XHR ready-

statechange (1/3)

XHR readystate-

change (2/3)
XHR ready-

statechange

(3/3) XHR

load

Figure 4: The event graph for a click event on the “CarWash

Locations” button from Section 3. The click event leads to

three XHR readystatechange events and an XHR load event.

Compared to the notion of event actions in EventRacer [21], the
key differences are that (1) we generate one trace per user event
rather than one global trace, and (2) we use a different model of
memory accesses where we consider the effects of HTML DOM
write operations on the pixels on the screen instead of low-level
read/write operations.

From each trace τu , AjaxRacer now generates an event graph

Gu . An event graph is a directed graph Gu = (N ,E, ℓ) where each
node v ∈ N is an event, which is either u itself or an event derived
from u, and where the edges E represent constraints on the event
order:4 Each operation fork[v , w , k] in τu gives rise to a labeled

edge v
k−→ w ∈ E, and each operation join[v ,w] in τu gives rise to

an unlabeled edge v −→ w ∈ E. The component ℓ annotates each
node with a set of bounding boxes according to the HTML DOM
modifications: for each operation mutate-dom[v,x ,y,w,h], the
bounding box (x ,y,w,h) is included in ℓ(v). The event graph thus
describes the HTML DOM modifications made by the user event u
and all its derived system events. We will refer to the user event u
as the (unique) root of Gu .

Example. Figure 4 shows a simplified version of the event graph
for a click event on the “Car Wash Locations” button from Section 3.
The root is the click event itself. Since the addRemoveFilter function
clears the contents of the HTML element with ID #stationResult

(line 23), the node annotation contains its bounding box (x = 280,
y = 1132, w = 1024, h = 334). The bottom-most node represents
the XHR load event, whose event handler updates the same HTML
element, as indicated by the node annotation. □

Our approach targets a scenario in which web application pro-
grammers have tested their code using fast servers and networks,
and with plenty of time between each user event. In such situations,
if a user event u1 is followed by a user event u2, it is to be expected
that all events derived fromu1 appear beforeu2 and all of its derived
events. It is less likely that the programmers have encountered exe-
cutions in which some of the events derived from u2 appear before
some of the events derived from u1. Such executions are exactly
what AjaxRacer aims to explore.

For that purpose, we now define a suitable notion of event
conflicts. Let u1 and u2 be user events with event graphs Gu1 =
(N1,E1, ℓ1) andGu2 = (N2,E2, ℓ2), respectively. The two user events
4Notice that the event graph captures a happens-before relation in the style of Petrov
et al. [20]: v ⪯ w if there is a path from v tow .



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Algorithm 1: Planning AJAX race tests.
foreach (ui ,uj ) where i, j ∈ 1, . . . ,n do

if ui and uj are potentially AJAX conflicting then

test (ui , uj )
end

end

u1 and u2 are potentially AJAX conflicting if there exists an event
v1 ∈ N1 and an event v2 ∈ N2 such that

(1) u1 andv1 are separated by an AJAX event, meaning that Gu1
has a path from u1 to v1 containing an edge

k−→ where the
label k is XHR load or script load, and

(2) a bounding box in ℓ(v1) overlaps with one in ℓ(v2).
The intuition of the first condition is thatu1 triggers an XHR request
or loads an external script, which subsequently leads to an event
v1, and the second condition checks whether v1 may interfere with
events derived from u2.

We say potentially conflicting, because the criterion does not
guarantee that u1 and u2 are simultaneously enabled. For example,
u1 and u2 may be click events on two different buttons, where
the button for u2 is created by u1 or one of its derived events.
Also, the event handlers may behave differently depending on the
schedule, due to, e.g., ad-hoc synchronization. Phase 2, described
in Section 4.2, examines whether potential conflicts are realizable.

In principle, some AJAX race errors require more than two user
events to manifest. However, in all real-world cases we are aware of,
two user events suffice, so we focus on this more common situation.

Example. As mentioned in Section 3, a “Car Wash Locations”
button click event not only conflicts with a “Diesel Locations” but-
ton click event, but also with itself. The event graph for a click on
“Car Wash Locations”, as shown in Figure 4, indeed satisfies the
conditions for this event to potentially AJAX conflict with itself:
there is a path from v1 to v5 containing an XHR load event, and
the bounding box of v1 overlaps with that of v5 (in fact, they are
identical in this case). This tells us that it may be worthwhile in
Phase 2 to test a user event sequence containing two clicks on “Car
Wash Locations”, with a schedule where the events derived from
the second click appear before those derived from the first click. □

4.2 Phase 2: Testing Potential Conflicts

From Phase 1, we have a sequence of user events u1, . . . ,un , each
described by an event graph, and we know for each pair of user
events whether or not they are potentially AJAX conflicting. In
principle, AjaxRacer could simply output the resulting pairs of
events as warnings to the user, which would be reminiscent of
how predictive race detectors work [19, 21]. However, to avoid
many false positives and produce more informative error messages,
Phase 2 attempts to provoke actual observable race errors, similar to
other techniques [2, 10, 14, 25], but using a mechanism specifically
designed for AJAX event races.

We perform a set of tests according to Algorithm 1. For each
pair of user events (ui ,uj ), one test is created if the two events are
potentially AJAX conflicting. Note that we consider all ordered
pairs of user events from u1, . . . ,un , including those where i = j,
which is relevant for the previously mentioned example involving

Algorithm 2: Executing an AJAX race test.
// execute ui and uj in ‘synchronous’ mode

1 reload the web page
2 trigger ui
3 wait until the events in Gui have been executed
4 trigger uj
5 wait until the events in Guj have been executed
6 s1 = screenshot
// execute ui and uj in ‘adverse’ mode

7 reload the web page
8 trigger ui , and postpone all its derived AJAX events
9 trigger uj

10 wait until the events in Guj have been executed
11 allow the events derived from ui to execute
12 wait until the events in Gui have been executed
13 s2 = screenshot

// decide outcome

14 if s1 , s2 then emit error message

multiple clicks on “Car Wash Locations”. In practice, relatively few
of the event pairs are potentially AJAX conflicting, so the total
number of tests performed is usually low (see Section 6).

Algorithm 2 shows how each test is performed. Lines 1–6 sim-
ulate a user event sequence where ui and uj are performed after
the web page has been loaded, using a schedule where all system
events derived from ui appear before those derived from uj , as if
AJAX communication were synchronous. Next, lines 7–13 simulate
the same two user events, but this time using an “adverse” schedule
where the AJAX events derived from ui are postponed until after
all the events derived from uj have appeared. After each run, we
take a screenshot of the browser contents, and an error is reported
if the two screenshots are not identical (line 14).

When attempting to trigger an event (lines 2, 4, 8, and 9), the
test aborts without emitting any error message if the event is not
enabled because the associated DOM element does not exist or
is not visible. This can happen because other events that appear
in the Phase 1 execution but not in the Phase 2 executions may
have changed the system state, however this is rarely a problem
in practice (see Section 6). One pattern is quite common, though:
In many web pages, an HTML element (e.g., a menu item) only
becomes visible after clicking or hovering over another HTML
element. For this reason, we allow the user of AjaxRacer to group
such low-level events in the initial event sequence into “macro
events” [7], so that AjaxRacer can trigger them together, which
increases the chance of the events being enabled.

Each time the web page is reloaded (lines 1 and 7), we wait until
it is fully initialized, as in Phase 1. Waiting for derived events to be
executed (lines 3, 5, 10, and 12) is also implemented by waiting until
the web page becomes idle. In this way, we do not risk waiting for
derived events that were observed in Phase 1 but do not occur in
this execution, which is reminiscent of the concept of approximate
replay in R

4 [14]. Postponing events (line 8) and allowing them to
execute (line 11) is implemented using an approach inspired by
EventRaceCommander [1].



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA C.Q. Adamsen, A. Møller, S. Alimadadi, and F. Tip

Example. Continuing the example, an initial user event sequence
that contains a single click event u on “Car Wash Locations” and
a single click event v on “Diesel Locations” suffices to find both
errors described earlier. One test being performed is for the event
pair (u,v). This test first executes u followed by v in “synchro-
nous” mode, and then in “adverse” mode. The resulting screenshots
are different, so an error is reported. Another test is performed
for the event pair (u,u), and again an error is reported because
the screenshots differ between the synchronous and the adverse
schedules. □

An important difference between AjaxRacer and other event
race detectors like EventRacer [21], R4 [14], andWAVE [10] is that
AjaxRacer not only explores different schedules for the system
events but also user event sequences that are different from the
seed execution. This allows AjaxRacer to detect errors that are
missed by the other techniques.

Consider for example a web page with two buttons, A and B.
Clicking the A button triggers an XHR request where the XHR
load event adds contents to an HTML element, and clicking the
B button clears the contents of the HTML element. In this case, a
race error appears if the B button is clicked after the A button is
clicked but before the XHR load event occurs. If the initial sequence
of user events consists of a click on A followed by a click on B,
then EventRacer, R4, WAVE, and AjaxRacer will all find the
error. However, if the initial event sequence consists of a click on
B followed by a click on A, then EventRacer, R4, and WAVE do
not find the error (because they treat user events as being happens-
before ordered), but AjaxRacer does find it.

As another example, consider a web page with a single button
C where clicking on C triggers an XHR request, and the XHR load
event handler writes the server response data into the HTML DOM.
A user event sequence that contains a single C click event may
cover all the JavaScript code, but it is not enough for EventRacer,
R
4, or WAVE to expose the race error that occurs if C is clicked

twice and the responses arrive out of order. In contrast, AjaxRacer
can find the error, even with a single occurrence of theC click event
in the initial event sequence.

5 IMPLEMENTATION

AjaxRacer is implemented as a command-line JavaScript applica-
tion that takes as input a URL and a user event sequence to analyze,
and is available at http://www.brics.dk/ajaxracer/.

The implementation uses a proxy server, mitmproxy,5 to dy-
namically instrument HTML and JavaScript source files as they are
fetched by the browser. The instrumentation wraps all property
assignments and DOM API functions that involve event handlers
and modifications of the HTML DOM, so that we can intercept
the relevant operations at runtime. Dynamically generated code is
instrumented by wrapping the built-in functions eval and Function.

When the proxy is running, AjaxRacer uses the end-to-end
testing framework Protractor6 to load the given URL in Google
Chrome via the proxy server, trigger a given sequence of user events
(or macro events, as discussed in Section 4.2), store results from
the execution, and optionally take a screenshot of the resulting
5https://mitmproxy.org/
6http://www.protractortest.org/

state. These steps are carried out once for Phase 1 and twice for
each test that has been planned in Phase 2 (recall Algorithm 2).
The screenshots that are captured for each test are compared us-
ing the LooksSame library.7 AjaxRacer ignores a difference at a
pixel (x ,y), if the adverse mode and synchronous mode executions
already differed at (x ,y) when the web page finished loading. This
mechanism helps to prevent false positives in situations where a
server returns slightly different HTML each time. In addition to clas-
sifying the two screenshots as identical or not,AjaxRacer also uses
the LooksSame library to generate an image where the differences
(if any) are highlighted, which is useful for further debugging.

The instrumentation of the web application code allows Ajax-
Racer to generate a trace for each user event. It also makes it
possible to determinewhen theweb application has finished loading
(by waiting for the set of pending events to become empty, as
explained in Section 4.1), and when the web application becomes
idle after a user event has been triggered and processed.

Someweb applications never finish loading, in the sense that they
continuously react to timer events (e.g., to implement a slideshow
that automatically changes every few seconds). AjaxRacer deals
with such situations during page loading by deleting timer events
with a delay above a given threshold, and by stopping a chain of
timer events if the length of the chain reaches some threshold. We
have not found cases where this breaks the main functionality of
the web application. Because we wait until the web application
is entirely idle, the user event handlers triggered by AjaxRacer
cannot interleave with code that has been spawned during the
loading of the web application. This helps prevent false positives
from the screenshot comparison. For example, in the presence of a
slideshow, the screenshots taken by AjaxRacer would otherwise
depend on the exact timing, and be unsuitable for use as an oracle.
GIF animations are another source of nondeterministic results. To
combat this issue,AjaxRacer uses its proxy to intercept the loading
of GIF images and remove animations.

6 EVALUATION

To assess the effectiveness of our approach, we conducted three
experiments to answer the following research questions:
RQ1 (Effectiveness) Does AjaxRacer report AJAX event race er-

rors in real-world web applications? How often do AjaxRacer’s
warnings identify real errors?

RQ2 (Race characteristics) Do the detected AJAX races exhibit
interesting patterns?

RQ3 (Usefulness) Do the generated reports provide informative
explanations of the causes and effects of each AJAX event race?

RQ4 (Performance) Is AjaxRacer’s performance acceptable?
RQ5 (Comparison with state-of-the-art) How effective isAjax-

Racer compared to other tools, most importantly EventRacer?

6.1 Experimental Methodology

To answer the research questions, we consider randomly selected
web pages from a subset of the companies from the Fortune 500
list.8 We manually identified web pages that use AJAX by browsing
the company web sites using the Chrome browser, while enabling
7https://www.npmjs.com/package/looks-same
8http://fortune.com/fortune500/

http://www.brics.dk/ajaxracer/
https://mitmproxy.org/
http://www.protractortest.org/
https://www.npmjs.com/package/looks-same
http://fortune.com/fortune500/


ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 1: Summary of results.

Company Tests Avg. runtime (s)

Name Web page Total Failures

False

positives Phase 1 Phase 2

1. Amerisource Bergen Job Openings 25 22 0 33 83
2. Apple Accessibility 4 0 0 14 57
3. Buy MacBook 4 2 0 31 82
4. Customize 4 2 0 18 52
5. Search Jobs 4 0 0 19 59
6. Search Support 4 4 0 19 53
7. Bank of America Search Locations 9 2 0 32 72
8. Berkshire Hathaway Search Listings 12 2 2 77 162
9. Chevron Find a Station 30 21 5 34 71
10. Citigroup News 4 2 0 13 49
11. Exxon Mobil Job Locations 4 2 0 16 47
12. Fannie Mae Search 4 0 0 14 42
13. Grainger Home 4 0 0 36 95
14. McKesson Home 4 0 0 39 100
15. Blog Archive 4 2 0 28 108
16. Event Calendar 4 2 0 21 64
17. Press Releases 16 9 0 27 82
18. Verizon Search Locations 4 0 0 31 80
19. Wells Fargo Home 4 0 0 17 53
20. Search 4 0 0 17 51

Total 152 72 7

Average 7.6 3.6 0.4 25.9 68.4

the “Log XMLHttpRequests” feature and the “Network” panel from
the Chrome DevTools,9 which makes it easy to recognize when
an XHR message is being exchanged or an external script is being
loaded dynamically. We ignored requests that send analytics data.
With this approach, we obtained 20 web pages from 12 different
companies, as shown in the “Company” columns of Table 1.

For each of the web pages, we manually create a short user event
sequence that exercises some of the dynamic behavior on the web
page. Each user event sequence consists of two to nine user events
and has been made without any knowledge of the JavaScript code
on the web page or the client-server communication. We then carry
out the following experiments, on an Ubuntu 15.10 desktopmachine
with an Intel Core i7-3770 CPU and 16 GB RAM.

Experiment 1. We run AjaxRacer on each subject application
using the given manual event sequence. To answer RQ1, we in-
spect the AJAX event race errors that it reports, and manually
check whether each of them can be reproduced. To answer RQ2,
we present patterns that we observe in the reported AJAX races.
We answer RQ3 by reporting on our experiences during this study
with the asynchronous code and the generated reports.

Experiment 2. To answer RQ4, we measure the time needed by
AjaxRacer’s two phases. For Phase 1, we separately report the
time spent on loading the web page and on generating traces for
the user events. For Phase 2, we separately measure the time spent
on test planning (Algorithm 1) and test execution (Algorithm 2).
We repeat the experiments three times and report the average and
worst-case running times.

Experiment 3. We run EventRacer on the subject applications
using the manually created user event sequences, and answer RQ5
by investigating the results. EventRacer also detects races during
the loading of a web page. To estimate how many races arise from
the execution of the user event sequence, we analyze the results of
9https://developer.chrome.com/devtools

EventRacer when no user events are triggered. We report average
numbers across three runs. Regrettably, we could not compare to
RClassify [25], as it was not available to us.

6.2 Results and Discussion

In this section, we present the results of our experiments, summa-
rized in Table 1, and elaborate on more interesting findings, while
addressing RQ1–RQ5.

6.2.1 Effectiveness (RQ1). After Phase 1,AjaxRacer created a total
of 152 tests for the web pages in Table 1, which follows from column
“Tests”. Of the 152 tests, four proved to be infeasible (i.e., one of
the user events in these tests was not enabled by the time it was
scheduled to be executed). The number of test failures is reported
in column “Failures”. Each failure reveals a situation where adverse
mode execution of a pair of user events leads to a state that is
observably different from the corresponding synchronous mode
execution. In total, 72 tests failed. The page from Amerisource
Bergen produced the highest number of failing tests with 22 failures
(row 1). After manually inspecting the results, we found that only
seven of the 72 test failures were false positives (column “False
positives”). This is a significantly smaller false positive rate than that
of existing predictive race detectors such as EventRacer [21]. In
particular, each of the 80 succeeding test cases indicates a situation
where EventRacer would report a race warning, but where the
race is not observable, because ad-hoc synchronization prevents
the harmful effects, or the two events from the race commute (i.e.,
the events have the same effects, irrespective of their arrival order).

Overall, our results show that AjaxRacer is capable of detecting

observable AJAX races in real-world web applications with only few

spurious warnings.

The fact that the web applications of some of the largest com-
panies in the United States suffer from observable AJAX races
demonstrates that this is a widespread problem. Left undetected,
they may render the application in an inconsistent state (as we give
examples of later in this section). As such, they can frustrate end
users and negatively impact their experience. AjaxRacer unveils
such situations semi-automatically, with relatively few tests per
web page. In summary, AjaxRacer generated an average of eight test

cases per web page, of which half exposed an observable AJAX race.

False positives. As mentioned above, we observed only seven spu-
rious warnings among the 72 failing tests. Five false positive arose
for a web page from Chevron (row 9) because live traffic, which was
changing during the execution of the tests (row 9), was being shown
on a map. AjaxRacer also reported two false positives for a web
page from Berkshire Hathaway (row 8), where the user can search
for real estate listings. One test was failing because the screenshot
from synchronous mode showed “35,537 Results,” whereas the one
from adverse mode showed “35,536 Results.” Presumably, a listing
was removed from the website during the execution of the test.
The other false positive from Berkshire Hathaway was similar. We
confirmed this behavior by rerunning the tests, which lead to suc-
cessful executions. If AjaxRacer did not ignore pixels that were
already different by the time the web page had been loaded (Sec-
tion 5), then 11 additional false positives would have been reported
(for rows 5, 9, 13 and 19). Generally, there may be other sources

https://developer.chrome.com/devtools


ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA C.Q. Adamsen, A. Møller, S. Alimadadi, and F. Tip

of nondeterminism in the application’s UI, such as multimedia re-
sources and third-party entities (e.g., videos and advertisements).
Using AjaxRacer, we were able to detect these inconsistencies at
a glance, without any need for manual analysis of the code, with
the help of the generated reports.

Observable AJAX races are neither the only type of races that ex-
ist in web applications, nor did we attempt to reveal all such races
within each application. However, the prevalence of observably
harmful AJAX races in our subject applications indicates the need
for systematic analysis of race-prone code. We used AjaxRacer’s
reports to gain further insight into the behavior of such code, by
manually examining successful tests. As expected, a group of tests
succeeded because they lead to the same DOM state, regardless of
the ordering of the AJAX events. More interestingly, we encoun-
tered another group of successful tests that did not show symptoms
of AJAX races, contrary to our initial assumptions (e.g., rows 2, 5,
and 8). After a thorough examination of the source code of these
applications, we found that the developers had deployed means of
remedying the AJAX races. Their strategies not only strengthened
our motivation regarding the problematic nature of such races in
practice, but also provided insights on common practices for pre-
venting AJAX races (discussed more thoroughly in Section 6.2.6).
We also observed AJAX race errors that lead to a series of uncaught
exceptions (row 18). AjaxRacer conservatively classified these er-
rors as benign, since they had no observable effects on the screen.
Overall, we encountered no cases where the user event sequence
lead to an observable AJAX race that was missed by AjaxRacer.

Only four tests among all 152 were deemed infeasible during
Phase 2 of AjaxRacer. These tests all belonged to the Press Releases
web page of McKesson (row 17). A “next” button on the page was
removed from the UI when the number of results did not exceed
one page. Therefore, a click event could not be issued on this button
if an event that filters the press releases had already been triggered
(e.g., an event that clicks on the “November 2017” button).

6.2.2 Race Characteristics (RQ2). We observed that most of the
detected AJAX races fit in one of the following categories.

Dataset Queries. Many applications present some data from a
database to the user through a list or a table (e.g., web shops).
With the overwhelming amount of information available to users,
many modern web applications provide means of filtering the dis-
played dataset, based on users’ needs. This is the case for the web
pages in rows 1–6, 8, 10, and 17–18 of Table 1. However, when
users send multiple queries and the corresponding responses arrive
asynchronously, race conditions arise. Such races may cause the
displayed data to be inconsistent with the user queries.

Interactive Maps.Manyweb applications display interactivemaps
that are used for various purposes, e.g., specifying the locations of
retail stores (row 9) or available job postings (row 11). Triggered by
user queries, the information overlaid on the maps is updated using
AJAX. Conflicts between the user events, discovered byAjaxRacer,
lead to incorrect data on the maps of these applications.

Autocompletion. Autocompletion is a feature for generating tex-
tual suggestions as soon as a user starts typing in a text field. Such
suggestions are often updated asynchronously, which can cause
AJAX races that lead to incorrect recommendations. Rows 12–14
and 19–20 correspond to autocompletion features.

(a) Adverse mode. (b) Autogenerated diff.

Figure 5: Inconsistent state when customizing a MacBook.

6.2.3 Usefulness (RQ3). Manual analysis of the dynamic, asyn-
chronous, and event-driven behavior of JavaScript applications is
a challenging endeavor. To assist developers with understanding
AJAX races and locating their root causes, AjaxRacer creates a
comprehensive web-based report as the final step. From the report,
developers can view the event graphs corresponding to the user
events that have been triggered during Phase 1, and see which
user events are potentially AJAX conflicting. The report also allows
developers to navigate the test results, examine the screenshots
that have been taken at different steps during the adverse and
synchronous mode executions, and compare the final screenshots.

Example (Apple). On a web page from Apple (row 4), users can
customize a MacBook before purchasing it. When the user selects
one of the available processors, the UI is updated asynchronously, in
response to an AJAX request that fetches the model’s information
from a web service. AjaxRacer automatically found an AJAX race
error on this web page. One of the generated tests is for a user event
sequence that clicks on the button for the 1.3GHz processor, and
then on the 1.4GHz processor button. Figure 5a shows the undesir-
able outcome that results from executing this scenario in adverse
mode. As it follows from the screenshot, the UI showed that the
price would increase by $150 if the user selected the 1.4GHz proces-
sor, although it was already chosen (indicated by the blue border).
In the screenshot from synchronous mode, a price difference was
only shown for the processors that were not selected. The total
price of the model was also incorrect in adverse mode. It reflected
the price of the previously selected configuration ($1,549.00), rather
than that of the 1.4GHz model. Figure 5b shows the diff image that
was automatically generated by AjaxRacer. From this image, it
was effortless to recognize the consequences of the race, which
could otherwise be labor intensive. □

Further analysis of all the generated reports revealed that AJAX
event races were common in most subject applications. We exam-
ined each report to locate and understand the underlying mecha-
nisms that enabled the races.

Example (Chevron). Recall themotivating example fromChevron,
discussed in Section 3. Figure 6 shows the two screenshots that were
captured from a test that clicks twice on the “Car Wash Locations”
button. The map that results from adverse mode (Figure 6b) did not
show any gas stations without a car wash, although it should (the
“Car Wash Locations” button is a toggle switch, initially turned off).
When the same user event sequence was executed in synchronous
mode, the web application correctly showed all the gas stations in
the given area, regardless of whether they had a car wash. □

Overall, we found that AjaxRacer’s reports provided informative

explanations of the causes and effects of each AJAX race.



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

(a) Synchronous mode. (b) Adverse mode.

Figure 6: Nondeterministic search results on Chevron.

6.2.4 Performance (RQ4). The worst case execution time of Ajax-
Racer is shown in the rightmost columns of Table 1. In Phase 1,
on average, AjaxRacer spent 18 seconds waiting for the web ap-
plication to load, and eight seconds executing the input user event
sequence, while monitoring the execution to build a trace. In the
worst case, Phase 1 took 77 seconds (row 8). The test planning
(Algorithm 1) took 0.2 seconds in the worst case, including the
time required for constructing the event graphs from the traces. In
Phase 2, AjaxRacer executed Algorithm 2 for each planned test.
On average, this took 69 seconds per test—with 36 seconds spent
waiting for the web application to load, and five seconds spent on
generating the report. The average running time of Phase 2 was
approximately nine minutes, when run sequentially, with a worst
case of 34 minutes. However, all tests could easily be executed in
parallel. Column “Phase 2” depicts the worst case running time
for Algorithm 2, which reflects the time “Phase 2” would take if
all tests were executed in parallel. The time required for executing
a test in the worst case was below three minutes (row 8). These
results demonstrate that the overall performance of AjaxRacer is
acceptable for practical use.

6.2.5 Comparison with state-of-the-art (RQ5). When running Event-
Racer on the subject applications, we found that it reports an over-
whelming number of races. As an example, we applied EventRacer
to the web application of Berkshire Hathaway (row 8) with a user
event sequence that searches for real estate listings, by clicking on
the buttons “4+ Beds” and “12+ Beds” (a subsequence of the one
given to AjaxRacer). On average, across three runs, EventRacer
reported 103,166 races on 37,697 memory locations. 741 of the races
were uncovered.10 The reports contain no information about the
effects of the races. When no user events were triggered, Event-
Racer reported 45,161 races on 28,956 memory locations. This time,
368 of the races were uncovered. Thus, somewhat surprisingly, the
two user events caused the number of reported races to approx-
imately double. This shows that EventRacer would still report
an overwhelming number of races, even if it had a mechanism
for ignoring races that manifest during the loading of web pages.
Inevitably, the majority of these races are harmless. Even after man-
ual investigation of the web page, we were unable to detect any
observable races. We did find examples of ad-hoc synchronization
in the web page, as described below.

10Intuitively, a race is uncovered if it is guaranteed that no ad-hoc synchronization
prevents the two events of the race from being reordered (assuming the happens-before
relation is complete).

6.2.6 Common Development Practices. We encountered several
practices in the subject applications, which prevented AJAX race
errors from manifesting. A simple solution is to avoid the use of
AJAX altogether, by reloading the entire web page upon a user
event. Although offering a less smooth user experience, this ap-
proach was still widespread in practice. Among the applications
that utilized AJAX, it was common practice to circumvent AJAX
races by disabling UI elements while waiting for a pending response.
For example, many applications render a dialog showing a spinner
when an AJAX request is sent, until the corresponding response
arrives, in a manner that prevents the user from interacting with
the web page. While generally offering a better user experience, this
approach reduces the responsiveness of the application. Another
group of applications used ad-hoc synchronization in a way that
did not prevent the user from interacting with the page. For ex-
ample, on McKesson, an autocompletion feature was implemented
in a way that ignored all AJAX response events except the one
corresponding to the last request, as documented in the code:11

41 success: function (data) { // make sure it's the latest request

42 if (__global_counter[container.index] ===

43 requestcounter[container.index]) {

44 ... o.render(container, data, query); ...

The following code from Berkshire Hathaway illustrates one of
the more sophisticated remedies we found, in terms of the logic
and the quality of the user experience.12

45 var jqXHRs = {};

46 $(checkbox).change(submit);

47 function submit() {

48 if (jqXHRs.search) {

49 jqXHRs.search.abort();

50 }

51 jqXHRs.search = $.ajax(...);

52 }

53 jQuery.noop = function() {};

54 jQuery.ajax = function () {

55 var xhr = new XMLHttpRequest();

56 var jqXHR = { ...

57 abort: function () {

58 xhr.onreadystatechange =

59 jQuery.noop;

60 xhr.abort();

61 } ...

When the user clicks on a button labeled “2+ Beds”, the function
submit executes (lines 47–52). This function contacts a web service
and updates the search results (line 51). If an AJAX request is already
active, the function cancels it by calling the function in lines 57–61,
from jQuery 1.7.2. This is done by replacing the readystatechange

event handler with the empty function in line 53, and calling the
native method abort of the XHR object.

These countermeasures are helpful in their scope and prevent
many AJAX race errors in practice. The mere existence of such
treatments indicate that AJAX races are real problems, and that
professional developers make an effort to prevent them.

6.3 Threats to Validity

We addressed the external threats of representativeness of our
subjects and generality of the investigated scenarios by testing
executable sequences of events within widely-used pages of large
companies. An internal threat arises from selection of pages, partic-
ularly triggering AJAX races as targeted in the scope of this work,
a subset of all potential races. To mitigate this bias, we devised

11http://www.mckesson.com/js/min/adobe.target.targetcomplete.min.js
12The code has been simplified for presentation. It originates from the scripts
f345a312-25b7-4242-8165-6dfc8ce834fa and 91ff98c9-a847-4d7b-8bf0-
ef5c9697c8ba from http://www.bhhsneprime.com/jscss/23.0.1474/js/.

http://www.mckesson.com/js/min/adobe.target.targetcomplete.min.js
http://www.bhhsneprime.com/jscss/23.0.1474/js/


ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA C.Q. Adamsen, A. Møller, S. Alimadadi, and F. Tip

scenarios for analysis prior to experiment, similar to exploratory
testing. Inspection of races and their severity was performed man-
ually, and was thus labor-intensive, and prone to examiners’ bias
and errors. We alleviated this bias by having two of the authors
carefully examining the code and the reports independently.

7 RELATEDWORK

It has long been known that JavaScript applications may experi-
ence nondeterministic failures depending on the order in which
event handlers execute. Steen [23] observed situations where web
applications that rely on setTimeout to modify a page’s DOM repre-
sentation fail in mysterious ways when browsers parse web pages
too quickly or too slowly. Ide et al. [13] point out that these prob-
lems can be viewed as a type of race condition, similar to data races
in programming languages with concurrency (see, e.g., [5, 8, 9]).
One scenario discussed by Ide et al. involves erroneous UI updates
that occur when AJAX requests are processed out of order, similar
to scenarios we consider. The throttling feature in Google’s Chrome
Developer Tools [15] can be viewed as a poor man’s race detec-
tor: by simulating various network conditions, situations can be
identified where event race errors cause nondeterministic failures.

Zheng et al. [26] present an approach based on static analysis
for automatically detecting bugs in web applications where an
asynchronous event handler writes to a global variablev , and a user
event handler reads v . In such cases, serious errors (e.g., deleting
the wrong file on a server) may occur if other event handlers are
interleaved that also write tov . Some of the asynchronous scenarios
studied in our work have similar characteristics.

Petrov et al. [20] define a happens-before relation for commonly
used HTML and JavaScript features and a model of logical memory
locations on which web applications operate. These concepts form
the basis of WebRacer, a dynamic race detector. Raychev et al. [21]
propose a notion of race coverage to eliminate false positives that
are due to synchronization deliberately introduced by program-
mers (ad-hoc synchronization). Intuitively, a race a covers a race b
iff treating a as synchronization eliminates b as a race. Neverthe-
less, predictive race detectors such as WebRacer and EventRacer
have been found to report an overwhelming number of races, the
majority of which are harmless or benign.

Several projects focus on classifying event races as harmful or
harmless. Mutlu et al. [18, 19] apply a dataflow analysis to a trace
in order to detect situations where executing racing event han-
dlers under different schedules results in different values being
written to persistent storage (cookies and local and session storage).
WAVE [10] and R4 [14] explore executions that can be obtained by
reordering events in a sequence of events observed in some initial
execution. These tools classify a race as harmful if reordering a
pair of conflicting events results in a different DOM, heap state, or
uncaught exception. RClassify [25] classifies a race reported by
EventRacer as harmful or harmless by generating two executions
in which the racing events are executed in both orders and deter-
mining if the resulting program states differ in important fields of
the DOM, heap, or environment variables. Our work differs from
these existing approaches by focusing specifically on AJAX races,
by providing detailed explanations for reported issues, and by not
relying on the modification of a JavaScript engine.

InitRacer [2] detects race errors that commonly arise during
page initialization (form-input-overwritten, late event-handler reg-
istration, and access-before-definition errors) using adverse and ap-
proximate execution. AjaxRacer follows a similar instrumentation-
based implementation technique as InitRacer and provides sim-
ilar, detailed explanations. However, unlike InitRacer, we focus
on detecting AJAX-related races that occur after page initializa-
tion. InitRacer’s adverse execution works by injecting new events
whereas AjaxRacer instead delays (AJAX response) events.

Several projects focus on repairing event race errors.ARROW [24]
performs a static analysis to determine happens-before relation-
ships between page elements and record these in a causal graph.
Races are detected by identifying inconsistencies between the causal
graph and def-use relationships inferred from source code order, and
prevented by adding causal edges that preclude undesired execution
orders. EventRaceCommander [1] is an instrumentation-based
tool for repairing event race errors that match patterns that reflect
undesirable interleavings (e.g., AJAX requests that are processed
out of order). EventRaceCommander avoids these errors by drop-
ping or postponing events so that no undesirable patterns can occur.
We use the same mechanism to implement adverse execution.

Several projects focus on detecting event races for other pro-
gramming languages, including Android [4, 11, 12, 16] and C/C++
[22]. While these works are directly inspired by the work on detect-
ing event races in JavaScript applications [21], applications written
in these languages do not rely on AJAX, so the techniques explored
in our work do not apply there.

Brutschy et al. [6] show how a generalization of the notion of
conflict-serializability can be used to detect race errors in applica-
tions that use eventually-consistent data stores.

8 CONCLUSION

We have presented a technique for detecting AJAX event race errors
in JavaScript web applications, and described its implementation,
AjaxRacer. Our technique uses a combination of light-weight
dynamic analysis and controlled execution, and identifies pairs of
user events that are potentially AJAX conflicting. For each pair, it
generates a test that is expected to fail only if the corresponding
AJAX race has observable effects on the screen. Unlike previous
techniques, AjaxRacer has been designed specifically to detect
AJAX races. As a result, AjaxRacer can detect observable AJAX
races in real-world web applications with very few false positives.

In an evaluation on 20 widely used web pages, AjaxRacer de-
tects errors in 12 of them. In total, AjaxRacer generates 152 tests
of which 65 reveal AJAX race errors and only seven are false pos-
itives. We additionally report on the usefulness of AjaxRacer’s
comprehensive web-based reports, from which it was easy to locate
the root cause and effects of AJAX races, although we had no prior
experience with the web pages. In summary, our results show that
AJAX race errors are commonplace in web applications and that
AjaxRacer is an effective tool for detecting them.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
program (grant agreement No 647544).



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES

[1] Christoffer Quist Adamsen, Anders Møller, Rezwana Karim, Manu Sridharan,
Frank Tip, and Koushik Sen. 2017. Repairing Event Race Errors by Controlling
Nondeterminism. In Proc. 39th International Conference on Software Engineering

(ICSE). 289–299.
[2] Christoffer Quist Adamsen, Anders Møller, and Frank Tip. 2017. Practical Initial-

ization Race Detection for JavaScript Web Applications. In Proc. ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applica-

tions (OOPSLA). 66:1–66:22.
[3] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank Tip. 2011.

A Framework for Automated Testing of JavaScript Web Applications. In Proc.

33rd International Conference on Software Engineering (ICSE). 571–580.
[4] Pavol Bielik, Veselin Raychev, andMartin T. Vechev. 2015. Scalable Race Detection

for Android Applications. In Proc. 2015 ACMSIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications, (OOPSLA).
332–348.

[5] Chandrasekhar Boyapati and Martin C. Rinard. 2001. A Parameterized Type Sys-
tem for Race-Free Java Programs. In Proc. ACM SIGPLAN Conference on Object-

Oriented Programming Systems, Languages and Applications (OOPSLA). 56–69.
[6] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin T. Vechev. 2017.

Serializability for Eventual Consistency: Criterion, Analysis, and Applications.
In Proc. 44th ACM SIGPLAN Symposium on Principles of Programming Languages

(POPL). 458–472.
[7] Markus Ermuth and Michael Pradel. 2016. Monkey See, Monkey Do: Effective

Generation of GUI Tests with Inferred Macro Events. In Proc. 25th International

Symposium on Software Testing and Analysis (ISSTA). 82–93.
[8] Cormac Flanagan and Stephen N. Freund. 2000. Type-Based Race Detection for

Java. In Proc. ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). 219–232.
[9] Cormac Flanagan and Stephen N. Freund. 2013. RedCard: Redundant Check

Elimination for Dynamic Race Detectors. In Proc. ECOOP 2013 - Object-Oriented

Programming - 27th European Conference. 255–280.
[10] Shin Hong, Yongbae Park, and Moonzoo Kim. 2014. Detecting Concurrency

Errors in Client-Side JavaScript Web Applications. In Proc. 7th IEEE International

Conference on Software Testing, Verification and Validation (ICST). 61–70.
[11] Chun-Hung Hsiao, Cristiano Pereira, Jie Yu, Gilles Pokam, Satish Narayanasamy,

Peter M. Chen, Ziyun Kong, and Jason Flinn. 2014. Race Detection for Event-
Driven Mobile Applications. In ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI). 326–336.
[12] Yongjian Hu, Iulian Neamtiu, and Arash Alavi. 2016. Automatically Verifying

and Reproducing Event-Based Races in Android Apps. In Proc. 25th International

Symposium on Software Testing and Analysis (ISSTA). 377–388.
[13] James Ide, Rastislav Bodik, and Doug Kimelman. 2009. Concurrency Concerns

in Rich Internet Applications. In Proc. Workshop on Exploiting Concurrency Effi-

ciently and Correctly.

[14] Casper Svenning Jensen, Anders Møller, Veselin Raychev, Dimitar Dimitrov, and
Martin T. Vechev. 2015. Stateless Model Checking of Event-Driven Applica-
tions. In Proc. 30th ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA). 57–73.
[15] Meggin Kearney and Jonathan Garbee. 2018. Optimize Performance Under

Varying Network Conditions. https://developers.google.com/web/tools/
chrome-devtools/network-performance/network-conditions

[16] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race Detection for
Android Applications. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI). 316–325.
[17] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. 2012. Crawling Ajax-Based

Web Applications through Dynamic Analysis of User Interface State Changes.
TWEB 6, 1 (2012), 3:1–3:30.

[18] Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. 2014. I Know It When I See
It: Observable Races in JavaScript Applications. In Proc. Workshop on Dynamic

Languages and Applications (Dyla). 1:1–1:7.
[19] Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. 2015. Detecting JavaScript

Races that Matter. In Proc. 10th Joint Meeting on Foundations of Software Engi-

neering (ESEC/FSE). 381–392.
[20] Boris Petrov, Martin T. Vechev, Manu Sridharan, and Julian Dolby. 2012. Race

Detection for Web Applications. In Proc. 33rd ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI). 251–262.
[21] Veselin Raychev, Martin T. Vechev, and Manu Sridharan. 2013. Effective Race

Detection for Event-Driven Programs. In Proc. 28th ACM SIGPLAN International

Conference on Object Oriented Programming Systems Languages, and Applications

(OOPSLA). 151–166.
[22] Anirudh Santhiar, Shalini Kaleeswaran, and Aditya Kanade. 2016. Efficient

Race Detection in the Presence of Programmatic Event Loops. In Proc. 25th

International Symposium on Software Testing and Analysis (ISSTA). 366–376.
[23] Hallvord Reiar Michaelsen Steen. 2009. Websites playing timing roulette.

https://hallvors.wordpress.com/2009/03/07/websites-playing-
timing-roulette/.

[24] Weihang Wang, Yunhui Zheng, Peng Liu, Lei Xu, Xiangyu Zhang, and Patrick
Eugster. 2016. ARROW: Automated Repair of Races on Client-Side Web Pages.
In Proc. 25th International Symposium on Software Testing and Analysis (ISSTA).
201–212.

[25] Lu Zhang and Chao Wang. 2017. RClassify: Classifying Race Conditions in Web
Applications via Deterministic Replay. In Proc. 39th International Conference on

Software Engineering (ICSE). 278–288.
[26] Yunhui Zheng, Tao Bao, and Xiangyu Zhang. 2011. Statically Locating Web

Application Bugs Caused by Asynchronous Calls. In Proc. 20th International

Conference on World Wide Web (WWW). 805–814.

https://developers.google.com/web/tools/chrome-devtools/network-performance/network-conditions
https://developers.google.com/web/tools/chrome-devtools/network-performance/network-conditions
https://hallvors.wordpress.com/2009/03/07/websites-playing-timing-roulette/
https://hallvors.wordpress.com/2009/03/07/websites-playing-timing-roulette/

	Abstract
	1 Introduction
	2 Background on AJAX
	3 Motivating Example
	4 The AjaxRacer Technique
	4.1 Phase 1: Generating Event Graphs
	4.2 Phase 2: Testing Potential Conflicts

	5 Implementation
	6 Evaluation
	6.1 Experimental Methodology
	6.2 Results and Discussion
	6.3 Threats to Validity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

